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Abstract

This paper describes a new model for human visual classification that enables the
recovery of image features that explain human subjects’ performance on differ-
ent visual classification tasks. Unlike previous methods, this algorithm does not
model their performance with a single linear classifier operating on raw image
pixels. Instead, it represents classification as the combination of multiple feature
detectors. This approach extracts more information about human visual classifi-
cation than previous methods and provides a foundation for further exploration.

1 Introduction

Although a great deal is known about the low-level features computed by the human visual system,
determining the information used to make high-level visual classifications is an active area of re-
search. When a person distinguishes between two faces, for example, what image regions are most
salient? Since the early 1970s, one of the most important research tools for answering such questions
has been the classification image (or reverse correlation) algorithm, which assumes a linear classi-
fication model [1]. This paper describes a new approach, GRIFT (GRaphical models for Inferring
Feature Templates). Instead of representing human visual discrimination as a single linear classifier,
GRIFT models it as the non-linear combination of multiple independently detected features. This
allows GRIFT to extract more detailed information about human classification.

This paper describes GRIFT and the algorithms for fitting it to data, demonstrates the model’s effi-
cacy on simulated and human data, and concludes with a discussion of future research directions.

2 Related work

Ahumada’s classification image algorithm [1] models an observer’s classifications of visual stimuli
with a noisy linear classifier — a fixed set of weights and a normally distributed threshold. The
random threshold accounts for the fact that multiple presentations of the same stimulus are often
classified inconsistently. In a typical classification image experiment, participants are presented
with hundreds or thousands of noise-corrupted examples from two categories and asked to classify
each one. The noise ensures that the samples cover a large volume of the sample space in order to
allow recovery of a unique linear classifier that best explains the data.

Although classification images are useful in many cases, it is well established that there are domains
in which recognition and classification are the result of combining the detection of parts or fea-
tures, rather than applying a single linear template. For example, Pelli et al. [10], have convincingly
demonstrated that humans recognize noisy word images by parts, even when whole-word templates
would perform better. Similarly, Gold et al. [7] verified that subjects employed feature-based clas-
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Figure 1: Left: The GRIFT model is a Bayes net that describes classification as the result of com-
bining NV feature detectors. Right: Targets and sample stimuli from the three experiments.
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sification strategies for some simple artificial image classes. GRIFT takes the next step and infers
features which predict human performance directly from classification data.

Most work on modeling non-linear, feature-based classification in humans has focused on verifying
the use of a predefined set of features. Recent work by Cohen et al. [4] demonstrates that Gaussian
mixture models can be used to recover features from human classification data without specifying
a fixed set of possible features. The GRIFT model, described in the remainder of this paper, has
the same goals as the previous work, but removes several limitations of the Gaussian mixture model
approach, including the need to only use stimuli the subjects classified with high confidence and
the bias that the signals can exert on the recovered features. GRIFT achieves these and other im-
provements by generatively modeling the entire classification process with a graphical model. Fur-
thermore, the similarity between single-feature GRIFT models and the classification image process,
described in more detail below, make GRIFT a natural successor to the traditional approach.

3 GRIFT model

GRIFT models classification as the result of combining N conditionally independent feature detec-
tors, F' = {F1, Fy,...,Fy}. Each feature detector is binary valued (1 indicates detection), as is
the classification, C' (1 indicates one class and 2 the other). The stimulus, S, is an array of con-
tinuously valued pixels representing the input image. The stimulus only influences C' through the
feature detectors, therefore the joint probability of a stimulus and classification pair is

N
P(C,S)=>" (P(O|F)P(S) HP(F“S‘)) :

F

Figure 1 represents the causal relationship between these variables (C, F', and S) with a Bayesian
network. The network also includes nodes representing model parameters (w, G, and \), whose role
will be described below. The boxed region in the figure indicates the parts of the model that are

replicated when N > 1 — each feature detector is represented by an independent copy of those
variables and parameters.

The distribution of the stimulus, P(.S), is under the control of the experimenter. The algorithm for
fitting the model to data only assumes that the stimuli are independent and identically distributed
across trials. The conditional distribution of each feature detector’s value, P(F;|.S), is modeled with
a logistic regression function on the pixel values of S. Logistic regression is desirable because it is a
probabilistic linear classifier. Humans can successfully classify images in the presence of extremely
high additive noise, which suggests the use of averaging and contrast, linear computations which



are known to play important roles in human visual perception [9]. Just as the classification image
used a random threshold to represent uncertainty in the output of its single linear classifier, logistic
regression also allows GRIFT to represent uncertainty in the output of each of its feature detectors.
The conditional distribution of C' is represented by logistic regression on the feature outputs.

Each F;’s distribution has two parameters, a weight vector w; and a threshold j3;, such that

S|
P(F; =1|S,wi, 8) = (1 +exp(B; + »_wi;S;)) 7",

Jj=1

where |S| is the number of pixels in a stimulus. Similarly, the conditional distribution of C' is
determined by A = {Xo, A1,..., An} where

N
P(C=1|F,)) = (1+exp(ho+ Y NFi) "
i=1
Detecting a feature with negative \; increases the probability that the subject will respond “class 1,”
those with positive \; are associated with “class 2” responses.

A GRIFT model with N features applied to the classification of images each containing |.S| pixels
has N(|S| + 2) + 1 parameters. This large number of parameters, coupled with the fact that the
F variables are unobservable, makes fitting the model to data very challenging. Therefore, GRIFT
defines prior distributions on its parameters. These priors reflect reasonable assumptions about the
parameter values and, if they are wrong, can be overturned if enough contrary data is available. The
prior on each of the \; parameters for which ¢ > 0 is a mixture of two normal distributions,
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This prior reflects the assumption that each feature detector should have a significant impact on the
classification, but no single detector should make it deterministic — a single-feature model with
Ao = 0 and Ay = —2 has an 88% chance of choosing class 1 if the feature is active. The Ag
parameter has an improper non-informative prior, P()\g) = 1, indicating no preference for any
particular value [5] because the best )\ is largely determined by the other A;s and the distributions
of F' and S. For analogous reasons, P(3;) = 1.

P(\) = ) +exp(—

The w; parameters, which each have dimensionality equal to the stimulus, present the biggest infer-
ential challenge. As mentioned previously, human visual processing is sensitive to contrasts between
image regions. If one image region is assigned positive w;;s and another is assigned negative w;;s,
the feature detector will be sensitive to the contrast between them. This contrast between regions re-
quires all the pixels within each region to share similar w;; values. To encourage this local structure,
the w; parameters have Markov random field prior distributions:
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where A is the set of neighboring pixel locations. The first factor encourages weight values to be
near the -1 to 1 range, while the second encourages the assignment of similar weights to neighboring
pixels. Fitting the model to data does not require the normalization of this distribution.

The Bayesian joint probability distribution of all the parameters and variables is

N
P(C, F,S,w,B,)) = P(C|F,\)P(S)P(Xo) | [ P(Fi|S,wi, B:) P(wi) P(B:)P(Ni). (1)

i=1
4 GRIFT algorithm

The goal of the algorithm is to find the parameters that satisfy the prior distributions and best ac-
count for the (S, C') samples gathered from a human subject. Mathematically, this goal corresponds
to finding the mode of P(w, 3, A\|S, C), where S and C refer to all of the observed samples. The



algorithm is derived using the expectation-maximization (EM) method [3], a widely used optimiza-
tion technique for dealing with unobserved variables, in this case F', the feature detector outputs for
all the trials. In order to determine the most probable parameter assignments, the algorithm chooses
random initial parameters 6* = (w*, 5*, A*) and then finds the 6 that maximizes

Q(016*) = > P(F|S,C,0%)log P(C,F,S|) + log P(6).
F

Q(0]6*) is the expected log posterior probability of the parameters computed by using the current 8*
to estimate the distribution of F, the unobserved feature detector activations. The 6 that maximizes
@ then becomes 6 for the next iteration, and the process is repeated until convergence.

The presence of both the P(C, F, S|0) and P(6) terms encourages the algorithm to find parameters
that explain the data and match the assumptions encoded in the parameter prior distributions. As the
amount of available data increases, the influence of the priors decreases, so it is possible to discover
features that are contrary to prior belief given enough evidence.

Using the conditional independences from the Bayes net:

N
Q(016") o« Y P(F[S,C,0%) <logP(C|F,/\)+ZlogP(Fi|S,wi,ﬂi)>
F N i=1
+3 (log P(w;) +log P(X\;))

i=1

dropping the log P(S) term, which is independent of the parameters, and the log P()\¢) and
log P(8;) terms, which are 0. As mentioned before, the normalization terms for the log P(w;)
elements can be ignored during optimization — the log makes them additive constants to ). The
functional form of every additive term is described in Section 3, and P(F|S, C, #*) can be calculated
using the model’s joint probability function (Equation 1).

Each iteration of EM requires maximizing (), but it is not possible to compute the maximizing 6 in
closed form. Fortunately, it is relatively easy to search for the best 6. Because () is separable into
many additive components, it is possible to efficiently compute its gradient with respect to each of
the elements of § and use this information to find a locally maximum 6 assignment using the scaled
conjugate gradient algorithm [2]. Even a locally maximum value of # usually provides good EM
results — P(w, 3, A|S, C) is still guaranteed to improve after every iteration.

The result of any EM procedure is only guaranteed to be a locally optimal answer, and finding the
globally optimal 6 is made more challenging by the large number of parameters. GRIFT adopts
the standard solution of running EM many times, each instance starting with a random 6*, and then
accepting the 6 from the run which produced the most probable parameters. For this model and the
data presented in the following sections, 20-30 random restarts were sufficient.

S Experiments

The GRIFT model was fit to data from 3 experiments. In each experiment, human participants
classified stimuli into two classes. Each class contained one or more target stimuli. In each trial,
the participant saw a stimulus (a sample from S) that consisted of a randomly chosen target with
high levels of independent identically distributed noise added to each pixel. The noise samples were
drawn from a truncated normal distribution to ensure that the stimulus pixel values remained within
the display’s output range. Figure 1 shows the classes and targets from each experiment and a sample
stimulus from each class. In the four-square experiment four participants were asked to distinguish
between two artificial stimulus classes, one in which there were bright squares in the upper-left
or upper-right corners and one in which there were bright squares in the lower-left or lower-right
corners. In the light-dark experiment three participants were asked to distinguish between three
strips that each had two light blobs and three strips that each had only one light blob. Finally, in the
faces experiment three participants were asked to distinguish between two faces. The four-square
data were collected by [7] and were also analyzed in [4]. The other data are newly gathered. Each
data set consists of approximately 4000 trials from each subject. To maintain their interest in the
task, participants were given auditory feedback after each trial that indicated success or failure.
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Figure 2: The most probable w parameters found for the four-square experiments for different values
of N and the mutual information between these feature detectors and the observed classifications.

Fitting GRIFT models is not especially sensitive to the random initialization procedure used to start
each EM instance. The A* parameters were initialized by normal random samples and then half
were negated so the features would tend to start evenly assigned to the two classes, except for \j,
which was initialized to 0. In the four-square experiments, the w* parameters were initialized by
a mixture of normal distributions and in the light-dark experiments they were initialized from a
uniform distribution. In the faces experiments the w* were initialized by adding normal noise to the
optimal linear classifier separating the two targets. Because of the large number of pixels in the faces
stimuli, the other initialization procedures frequently produced initial assignments with extremely
low probabilities, which led to numerical precision problems. In the four-square experiments, the
(* were initialized randomly. In the other experiments, the intent was to set them to the optimal
threshold for distinguishing the classes using the initial w* as a linear classifier, but a programming
error set them to the negation of that value. In most cases, the results were insensitive to the choice
of initialization method.

In the four-square experiment, the noise levels were continually adjusted to keep the participants’
performance at approximately 71% using the stair-casing algorithm [8]. This performance level is
high enough to keep the participants engaged in the task, but allows for sufficient noise to explore
their responses in a large volume of the stimulus space. After an initial adaptation period, the
noise level remains relatively constant across trials, so the inter-trial dependence introduced by the
stair-casing can be safely ignored. Two simulated observers were created to validate GRIFT on
the four-square task. Each used a GRIFT model with pre-specified parameters to probabilistically
classify four-square data at a fixed noise level, which was chosen to produce approximately 70%
correct performance. The corners observer used four feature detectors, one for each bright corner,
whereas the top-v.-bottom observer contrasted the brightness of the top and bottom pixels.

The result of using GRIFT to recover the feature detectors are displayed in Figure 2. Only the
w parameters are displayed because they are the most informative. Dark pixels indicate negative
weights and bright pixels correspond to positive weights. The presence of dark and light regions in a
feature detector indicates the computation of contrasts between those areas. The sign of the weights
is not significant — given a fixed number of features, there are typically several equivalent sets of
feature detectors that only differ from each other in the signs of their w terms and in the associated
A and ( values.

Because the optimal number of features for human subjects is unknown, GRIFT models with 1-4
features were fit to the data from each subject. The correct number of features could be determined
by holding out a test set or by performing cross-validation. Simulation demonstrated that a reliable
test set would need to contain nearly all of the gathered samples, and computational expense made
cross-validation impractical with our current MATLAB implementation. Instead, after recovering
the parameters, we estimated the mutual information between the unobserved F' variables and the
observed classifications C'. Mutual information measures how well the feature detector outputs can



predict the subject’s classification decision. Unlike the log likelihood of the observations, which is
dependent on the choice to model C' with a logistic regression function, mutual information does
not assume a particular relationship between F' and C' and does not necessarily increase with V.
Plotting the mutual information as [V increases can indicate if new detectors are making a substantial
contribution or are overfitting the data. On the simulated observers’ data, for which the true values of
N were known, mutual information was a more accurate model selection indicator than traditional
statistics such as the Bayesian or Akaike information criteria [3].

Fitting GRIFT to the simulated observers demonstrated that if the model is accurate, the correct
features can be recovered reliably. The top-v.-bottom observer showed no substantial increase in
mutual information as the number of features increased from 1 to 4. Each set of recovered feature
detectors included a top-bottom contrast detector and other detectors with noisy w;s that did not
contribute much to predicting C. Although the observer truly used two detectors, one top-brighter
detector and one bottom-brighter detector, the recovery of only one top-bottom contrast detector is
a success because one contrast detector plus a suitable )\ term is logically equivalent to the original
two-feature model. The corners observer showed a substantial increase in mutual information as N
increased from 1 to 4 and the w values clearly indicate four corner-sensitive feature detectors. The
corners data was also tested with a five-feature GRIFT model (w not shown) which produced four
corner detectors and one feature with noisy w;. Its gain in mutual information was smaller than that
observed on any of the previous steps. Note the corner areas in the w;s recovered from the corners
data are sometimes black and sometimes white. Recall that these are not image pixel values that the
detectors are attempting to match, but positive and negative weights indicating that the brightness in
the corner region is being contrasted to the brightness of the rest of the image.

Even though targets consisted of four bright-corner stimuli, recovering the parameters from the top-
v.-bottom observer never produced w values indicating corner-specific feature detectors. An impor-
tant advantages of GRIFT over previous methods such as [4] is that targets will not “contaminate”
the recovered detectors. The simulations demonstrate that the recovered detectors are determined by
the classification strategy, not by the structure of the targets and classes.

The data of the four human participants revealed some interesting differences. Participants EA and
RS were naive, while AC and JG were not. The largest disparity was between EA and JG. EA’s
data indicated no consistent pattern of mutual information increase after two features, and the two-
feature model appears to contain two top-bottom contrast detectors. Therefore, it is reasonable to
conclude that EA was not explicitly detecting the corners. At the other extreme is participant JG,
whose data shows four very clear corner detectors and a steady increase in mutual information up to
four features. Therefore, it seems very likely that this participant was matching corners and probably
should be tested with a five-feature model to gain additional insight. AC and RS’s data suggest three
corner detectors and a top-bottom contrast detector. GRIFT’s output indicates qualitative differences
in the classification strategies used by the four human participants.

Across all participants, the best one-feature model was based on the contrast between the top of the
image and the bottom. This is extremely similar to the result produced by a classification image of
the data, reinforcing the strong similarity between one-feature GRIFT and that approach.

In the light-dark and faces experiments, stair-casing was used the adjust the noise level to the 71%
performance level at the beginning of each session and then the noise level was fixed for the remain-
ing trials to improve the independence of the samples. Participants were paid and promised a $10
reward for achieving the highest score on the task.

Participants P1, P2, and P3 classified the light-dark stimuli. P1 and P2 achieved at or above the ex-
pected performance level (82% and 73% accuracy), while P3’s performance was near chance (55%).
Because the noise levels were fixed after the first 101 trials, a participant with good luck at the end
of that period could experience very high noise levels for the remainder of the experiment, leading
to poor performance. All three participants appear to have used different classification methods,
providing a very informative contrast. The results of fitting the GRIFT model are in Figure 3.

The flat mutual information graph and the presence of a feature detector thresholding the overall
brightness for each value of IV indicate that P1 pursued a one-feature, linear-classifier strategy. P2,
on the other hand, clearly employed a multi-feature, non-linear strategy. For N = 1 and N = 2, the
most interpretable feature detector is an overall brightness detector, which disappears when N = 3
and the best fit model consists of three detectors looking for specific patterns, one for each position a
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Figure 3: The most probable w parameters found for the light-dark and faces experiments for differ-
ent N and the mutual information between these feature detectors and the observed classifications.

bright or dark spot can appear. Then when N = 4 the overall brightness detector reappears, added to
the three spot detectors. Apparently the spot detectors are only effective if they are all present. With
only three available detectors, the overall brightness detector is excluded, but the optimal assignment
includes all four detectors. This is the best-fit model because increasing to N = 5 keeps the mutual
information constant and adds a detector that is active for every stimulus. Always active detectors
function as constant additions to Ay, therefore this is equivalent to the N = 4 solution.

The GRIFT models of participant P3 do not show a substantial increase in mutual information as the
number of features rises. This lack of increase leads to the conclusion that the one-feature model is
probably the best fit, and since performance was extremely low, it can be assumed that the subject
was reduced to near random guessing much of the time.

The clear distinction between the results for all three subjects demonstrates the effectiveness of
GRIFT and the mutual information measure in distinguishing between classification strategies.

The faces presented the largest computational challenges. The targets were two unfiltered faces
from Gold et al.’s data set [6], down-sampled to 128x128. After the experiment, the stimuli were
down-sampled further to 32x32 and the background surrounding the faces was removed by cropping,
reducing the stimuli to 26x17. These steps made the algorithm computationally feasible, and reduced
the number of parameters so they would be sufficiently constrained by the samples.

The results for three participants (P4, PS5, and P6) are in Figure 3. Participants P4 and P5’s data were
clearly best fit by one-feature GRIFT models. Increasing the number of features simply caused the
algorithm to add features that were never or always active. Never active features cannot affect the
classification, and, as explained previously, always active features are also superfluous. P4’s one-
feature model clearly places significant weight near the eyebrows, nose, and other facial features.
P5’s one-feature weights are much noisier and harder to interpret. This might be related to P5’s poor
performance on the task — only 53% accuracy compared to P4’s 72% accuracy. Perhaps the noise
level was too high and P5 was guessing rather than using image information much of the time.

Participant P6’s data did produce a two-feature GRIFT model, albeit one that is difficult to interpret
and which only caused a small rise in mutual information. Instead of recovering independent part
detectors, such as a nose detector and an eye detector, GRIFT extracted two subtly different holistic
feature detectors. Given P6’s poor performance (58% accuracy) these features may, like P5’s results,
be indicative of a guessing strategy that was not strongly influenced by the image information.

The results on faces support the hypothesis that face classification is holistic and configural, rather
than the result of part classifications, especially when individual feature detection is difficult [11].



Across these experiments, the data collected were compatible with the original classification image
method. In fact, the four-square human data were originally analyzed using that algorithm. One of
the advantages of GRIFT is that it can reanalyze old data to reveal new information. In the one-
feature case, GRIFT enables the use of prior probabilities on the parameters, which may improve
performance when data is too scarce for the classification image approach. Most importantly, fitting
multi-feature GRIFT models can reveal previously hidden non-linear classification strategies.

6 Conclusion

This paper has described the GRIFT model for determining the features used in human image classi-
fication. GRIFT is an advance over previous methods that assume a single linear classifier on pixels
because it describes classification as the combination of multiple independently detected features. It
provides a probabilistic model of human visual classification that accounts for data and incorporates
prior beliefs about the features. The feature detectors it finds are associated with the classification
strategy employed by the observer and are not the result of structure in the classes’ target images.

GRIFT’s value has been demonstrated by modeling the performance of humans on the four-square,
light-dark, and faces classification tasks and by successfully recovering the parameters of computer
simulated observers in the four-square task. Its inability to find multiple local features when analyz-
ing human performance on the faces task agrees with previous results.

One of the strengths of the graphical model approach is that it allows easy replacement of model
components. An expert can easily change the prior distributions on the parameters to reflect knowl-
edge gained in previous experiments. For example, it might be desirable to encourage the formation
of edge detectors. New resolution-independent feature parameterizations can be introduced, as can
transformation parameters to make the features translationally and rotationally invariant. If the fea-
tures have explicitly parameterized locations and orientations, the model could be extended to model
their joint relative positions, which might provide more information about domains such as face clas-
sification. The success of this version of GRIFT provides a firm foundation for these improvements.
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