Fixing Max-Product: Convergent Message Passing
Algorithms for MAP LP-Relaxations

Amir Globerson  Tommi Jaakkola
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139
gamr,tomm @sail.mt.edu

Abstract

We present a novel message passing algorithm for approximating the MAP prob-
lem in graphical models. The algorithm is similar in structure to max-product but
unlike max-product it always converges, and can be proven to find the exact MAP
solution in various settings. The algorithm is derived via block coordinate descent
in a dual of the LP relaxation of MAP, but does not require any tunable parameters
such as step size or tree weights. We also describe a generalization of the method
to cluster based potentials. The new method is tested on synthetic and real-world
problems, and compares favorably with previous approaches.

Graphical models are an effective approach for modeling complex objects via local interactions. In
such models, a distribution over a set of variables is assumed to factor according to cliques of a graph
with potentials assigned to each clique. Finding the assignment with highest probability in these
models is key to using them in practice, and is often referred to as the MAP (maximum aposteriori)
assignment problem. In the general case the problem is NP hard, with complexity exponential in the
tree-width of the underlying graph.

Linear programming (LP) relaxations have proven very useful in approximating the MAP problem,
and often yield satisfactory empirical results. These approaches relax the constraint that the solution
is integral, and generally yield non-integral solutions. However, when the LP solution is integral,

it is guaranteed to be the exact MAP. For some classes of problems the LP relaxation is provably
correct. These include the minimum cut problem and maximum weight matching in bi-partite graphs
[8]. Although LP relaxations can be solved using standard LP solvers, this may be computationally
intensive for large problems [13]. The key problem with generic LP solvers is that they do not use
the graph structure explicitly and thus may be sub-optimal in terms of computational efficiency.

The max-product method [7] is a message passing algorithm that is often used to approximate the
MAP problem. In contrast to generic LP solvers, it makes direct use of the graph structure in
constructing and passing messages, and is also very simple to implement. The relation between
max-product and the LP relaxation has remained largely elusive, although there are some notable
exceptions: For tree-structured graphs, max-product and LP both yield the exact MAP. A recent
result [1] showed that for maximum weight matching on bi-partite graphs max-product and LP also
yield the exact MAP [1]. Finally, Tree-Reweighted max-product (TRMP) algorithms [5, 10] were
shown to converge to the LP solution for binaryvariables, as shown in [6].

In this work, we propose the Max Product Linear Programming algorithm (MPLP) - a very simple
variation on max-product that is guaranteed to converge, and has several advantageous properties.
MPLP is derived from the dual of the LP relaxation, and is equivalent to block coordinate descent in
the dual. Although this results in monotone improvement of the dual objective, global convergence
is not always guaranteed since coordinate descent may get stuck in suboptimal points. This can
be remedied using various approaches, but in practice we have found MPLP to converge to the LP



solution in a majority of the cases we studied. To derive MPlePuse a special form of the dual

LP, which involves the introduction of redundant primal variables and constraints. We show how
the dual variables corresponding to these constraints turn out to eetbsagem the algorithm.

We evaluate the method on Potts models and protein design problems, and show that it compares
favorably with max-product (which often does not converge for these problems) and TRMP.

1 The Max-Product and MPLP Algorithms

The max-product algorithm [7] is one of the most often used methods for solving MAP problems.
Although it is neither guaranteed to converge to the correct solution, or in fact converge at all, it
provides satisfactory results in some cases. Here we present two algorithms: EMPLP (edge based
MPLP) and NMPLP (node based MPLP), which are structurally very similar to max-product, but
have several key advantages:

e After each iteration, the messages yield an upper bound on the MAP value, and the se-
quence of bounds is monotone decreasing and convergent. The messages also have a limit
point that is a fixed point of the update rule.

e No additional parameters (e.g., tree weights as in [6]) are required.
o If the fixed point beliefs have a unique maximizer then they correspond to the exact MAP.

e For binary variables, MPLP can be used to obtain the solution to an LP relaxation of the
MAP problem. Thus, when this LP relaxation is exact and variables are binary, MPLP will
find the MAP solution. Moreover, for any variable whose beliefs are not tied, the MAP
assignment can be found (i.e., the solution is partially decodable).

Pseudo code for the algorithms (and for max-product) is given in Fig. 1. As we show in the next
sections, MPLP is essentially a block coordinate descent algorithm in the dual of a MAP LP re-
laxation. Every update of the MPLP messages corresponds to exact minimization of a set of dual
variables. For EMPLP minimization is over the set of variables corresponding to an edge, and for
NMPLP it is over the set of variables corresponding to all the edges a given node appears in (i.e., a
star). The properties of MPLP result from its relation to the LP dual. In what follows we describe
the derivation of the MPLP algorithms and prove their properties.

2 The MAP Problem and its LP Relaxation

We consider functions over variablesz = {z1,...,x,} defined as follows. Given a gragh =
(V, E) with n vertices, and potentials; (z;, z;) for all edgesj € E, define the functioh
ijeEE

The MAP problem is defined as finding an assignmepjt that maximizes the functioyfi(x; ).
Below we describe the standard LP relaxation for this problem. DenofgByz;, z;)}:jc g distri-
butions over variables corresponding to edges £ and{u;(x;)}:cyv distributions corresponding

to nodes € V. We will useu to denote a given set of distributions over all edges and nodes. The
setM 1 (G) is defined as the set of where pairwise and singleton distributions are consistent

My (G) = {u>0 Do Hig (Biy w5) = py(@5) o Dog. pag (@i, &5) = palas) Vij € B, xi, x; }

inui(xi)zl VieV
Now consider the following linear program:
MAPLPR : put* =arg max pu-6. (2)

HEML(G)
wherep-0 is shorthand fop-6 = >~ Z%mj 0i;(xi, xj)pij(xi, x;). Itis easy to show (seee.g.,
[10]) that the optimum of MAPLPR yields an upper bound on the MAP valuei’&. 6 > f(xar).
Furthermore, when the optimal;(x;) have only integral values, the assignment that maximizes

wi(z;) yields the correct MAP assignment. In what follows we show how the MPLP algorithms can
be derived from the dual of MAPLPR.

We note that some authors also add a 8071, 6:(x:) to f(a; @). However, these terms can be included
in the pairwise function8;; (x;, z;), so we ignore them for simplicity.




3 The LP Relaxation Dual

Since MAPLPR is an LP, it has an equivalent convex dual. In App. A we derive a special dual of
MAPLPR using a different representation.®f , (G) with redundant variables. The advantage of
this dual is that it allows the derivation of simple message passing algorithms. The dual is described
in the following proposition.

Proposition 1 The following optimization problem is a convex dual of MAPLPR

DMAPLPR:

min d>max Y. max S (xk, x;) 3)
i TiokeN(i) Tk

s.t. Bji(xj, i) + Bij(xi, x5) = 0i5(xi, 75) ,

where the dual variables arg;; (z;, z;) for all i5, ji € E and values of; andx;.

The dual has an intuitive interpretation in terms of re-parameterizations. Considetathe
shaped graphz; consisting of node and all its neighborsV(i). Assume the potential on
edgeki (for k € N(i)) is Bri(xk,z;). The value of the MAP assignment for this model is
max Y. max [ (zk, ;). Thisis exactly the term in the objective of DMAPLPR. Thus the dual

i geN@) Tk
corresponds to individually decoding star graphs around all noddis where the potentials on the
graph edges should sum to the original potential. It is easy to see that this will always result in an
upper bound on the MAP value. The somewhat surprising result of the duality is that there exists a
3 assignment such thatar decodingields the optimal value of MAPLPR.

4 Block Coordinate Descent in the Dual

To obtain a convergent algorithm we use a simple block coordinate descent strategy. At every
iteration, fix all variables except a subset, and optimize over this subset. It turns out that this can
be done in closed form for the cases we consider. We begin by deriving the EMPLP algorithm.
Consider fixing all the3 variables except those corresponding to some egge E (i.e., 8;; and

B;i), and minimizing DMAPLPR over the non-fixed variables. Only two terms in the DMAPLPR
objective depend of;; and3;;. We can write those as

f(Bij, Bji) = max A () + max ﬁjz‘(%‘,xi)} + max |:/\j_i(xj) +max fij (i, ;)| (4)

X4

where we defined; ”’ (z;) = Z%N(i)\j Aki(x;) andAg; (z;) = maxy, Oki(Tk, z;) asin App. A.
Note that the functiorf (3;;, 8;;) depends on the oth@rvalues only througl;\j_i(xj) andX; 7 (z;).
This implies that the optimization can be done solely in terma;pfz;) and there is no need to
store theg values explicitly. The optimaB;;, 3;; are obtained by minimizing (3;;, 3;;) subject

to there-parameterizatiorwonstraint3;; (z;, z;) + Bi;(x:, x;) = 0;;(x;, z;). The following propo-
sition characterizes the minimum ¢fg3;;, 6,;). In fact, as mentioned above, we do not need to
characterize the optimah; (z;, z;) itself, but only the newA values.

Proposition 2 Maximizing the functiorf(3;;, 5;:) yields the following\;;(x;) (and the equivalent
expression fon; (z;))

1 1 .
Aji(xi) = —3Ni M) + 5 max (A7 (25) + 05 (i, 25)]

Zj J

The proposition is proved in App. B. Theupdates above result in the EMPLP algorithm, described
in Fig. 1. Note that since thg optimization affects both; (x;) and\;;(z;), both thesenessages
need to be updated simultaneously.

We proceed to derive the NMPLP algorithm. For a given nodel/, we consider all its neighbors

J € N(i), and wish to optimize over the variablgs (z;, z;) for ji,ij € E (i.e., all the edgesin a

star centered on), while the other variables are fixed. One way of doing so is to use the EMPLP
algorithm for the edges in the star, and iterate it until convergence. We now show that the result of



Inputs: A graphG = (V, E), potential function®;; (z;, z;) for each edge;j € E.
Initialization: Initialize messages to any value.
Algorithm:

e [terate until a stopping criterion is satisfied:
— Max-product: Iterate over messages and updateshifts the max to zero)

mji(z;)— max [mfi(ﬁvj) + 0ij (@i, :Cj)] — G
J
— EMPLP: For eachj € E, update);;(z;) and \;;(z;) simultaneously (the update
for \;;(z;) is the same withi and; exchanged)
1. 1 .
Nji(wi)m = GA7 () + 5 max [ A7 (@) + 03 (22, 2)|

2 2 e

— NMPLP: Iterate over nodesc V and update aly;;(x;) wherej € N (i)

2
%y‘(l’j)ﬁmﬁx Oij (i, x5) — Vi (i) + NO+1 ke%:(i) Yri (T4)

e Calculate node “beliefs” Séf(z;) to be the sum of incoming messages into nodeV’
(e.g., for NMPLP sebi(xi) = 35 ns) Vi (%0))-

Output: Return assignment defined as:; = arg maxgz, b(£;).

Figure 1: The max-product, EMPLP and NMPLP algorithms. Max-product, EMPLP and NMPLP use mes-
sagesmi;, Ai; and-;; respectively. We use the notation; *(z;) = >, ¢y ;)\ Mks (25)-

this optimization can be found in closed form. The assumption aBidnging fixed outside the star
implies that\;* (x;) is fixed. Define:v;i(z;) = maxy, [0i;(xi,z;) + A;"(x;)]. Simple algebra
yields the following relation betweeki 7 (x;) andy; ;) for k € N(i)

; 2
N (@) = =) + e i(2 S)

keN (i)
Plugging this into the definition of;; (x;) we obtain the NMPLP update in Fig. 1. The messages
for both algorithms can be initialized to any value since it can be shown that after one iteration they
will correspond to valig3 values.

5 Convergence Properties

The MPLP algorithm decreases the dual objective (i.e., an upper bound on the MAP value) at every
iteration, and thus its dual objective values form a convergent sequence. Using arguments similar to
[5] it can be shown that MPLP has a limit point that is a fixed point of its updates. This in itself does
not guarantee convergence to the dual optimum since coordinate descent algorithms may get stuck
at a point that is not a global optimum. There are ways of overcoming this difficulty, for example by
smoothing the objective [4] or using techniques as in [2] (see p. 636). We leave such extensions for
further work. In this section we provide several results about the properties of the MPLP fixed points
and their relation to the corresponding LP. First, we claim that if all beliefs have unique maximathen
theexactMAP assignment is obtained.

Proposition 3 If the fixed point of MPLP has;(z;) such that for alli the functionb;(z;) has a
unique maximizet}, thenz* is the solution to the MAP problem and the LP relaxation is exact.

Since the dual objective is always greater than or equal to the MAP value, it suffices to show that
there exists a dual feasible point whose objective valy&ig). Denote bys*, A* the value of the
corresponding dual parameters at the fixed point of MPLP. Then the dual objective satisfies

domax >0 Nlwi) =31 > maxf(onai) =D Y Fulaa) = f(@)

kEN (i) i kEN(:) i keN(5)



To see why the second equality holds, note that;) = max,, o, P (%) + Bji(zj, z;) and

(2

bj(z}) = maxy, o; /\j_i(a:j) + fi;(zi, z;). By the equalization property in Eq. 9 the arguments of
the two max operations are equal. From the unique maximum assumption it follows thatare

the unique maximizers of the above. It follows ti¥af, 3;; are also maximized by;, .

In the general case, the MPLP fixed point may not correspond to a primal optimum because of the
local optima problem with coordinate descent. However, when the variables are binary, fixed points
do correspond to primal solutions, as the following proposition states.

Proposition 4 Whenz; are binary, the MPLP fixed point can be used to obtain the primal optimum.

The claim can be shown by constructing a primal optimal soluytibnFor tiedb;, sety;(z;) t0 0.5

and for untiedh;, ety (z7) to 1. If b;, b; are not tied we set}; (z;, z}) = 1. If b; is not tied bub;

is, we setu;; (7, z;) = 0.5. If b;, b; are tied thers;;, 3;; can be shown to be maximized at either
r}, o = (0,0),(1,1) orzy,x} = (0,1),(1,0). We then set;; to be0.5 at one of these assignment
pairs. The resultinge* is clearly primal feasible. Settingf = b} we obtain that the dual variables
(6%, A*, *) and primalp* satisfy complementary slackness for the LP in Eq. 7 and thergfoie
primal optimal. The binary optimality result implies partial decodability, since [6] shows that the
LP is partially decodable for binary variables.

6 Beyond pairwise potentials: Generalized MPLP

In the previous sections we considered maximizing functions which factor according to the edges of
the graph. A more general setting considers clusters ., ¢, C {1,...,n} (the set of clusters is
denoted by’), and a functiory (x; 0) = > _6.(z.) defined via potentials over clustetgz.). The

MAP problem in this case also has an LP relaxation (see e.g. [11]). To define the LP we introduce
the following definitions:S = {cNé: ¢,é € C, cNé # 0} is the set of intersection between clusters
andS(c) = {s € §: s C c} is the set of overlap sets for cluste¥We now consider marginals over

the variables it € C ands € S and require that cluster marginagreeon their overlap. Denote

this set byM 1, (C). The LP relaxation is then to maximize- 6 subject tou € M, (C).

As in Sec. 4, we can derive message passing updates that result in monotone decrease of the dual
LP of the above relaxation. The derivation is similar and we omit the details. The key observation

is that one needs to introdu¢&(c)| copies of each marginal.(z.) (instead of the two copies

in the pairwise case). Next, as in the EMPLP derivation we assuma ate fixed except those
corresponding to some clusterThe resulting messages axg.,;(x;) from a cluster to all of its
intersection sets € S(c¢). The update on these messages turns out to be:

1 Yz LInaux Z (x5 x
/\c—>s(x8) = - (1 - M) )‘s ( S) + |S(C)| Zeys Ae?)\ /\S ( S) +90( c)

where for a giver € C all A._,s should be updated simultaneously foe S(c), andA; “(z;) is
defined as the sum of messages intbat are not fronz. We refer to this algorithm as Generalized
EMPLP (GEMPLP). It is possible to derive an algorithm similar to NMPLP that updates several
clusters simultaneously, but its structure is more involved and we do not address it here.

7 Related Work

Weiss et al. [11] recently studied the fixed points of a classak-product likealgorithms. Their
analysis focused on properties of fixed points rather than convergence guarantees. Specifically, they
showed that if the counting nhumbers used in a generalized max-product algorithm satisfy certain
properties, then its fixed points will be the exact MAP if the beliefs have unique maxima, and for
binary variables the solution can be partially decodable. Both these properties are obtained for the
MPLP fixed points, and in fact we can show that MPLP satisfies the conditions in [11], so that
we obtain these properties as corollaries of [11]. We stress however, that [11] does not address
convergence of algorithms, but rather properties of their fixed points, if they converge.

MPLP is similar in some aspects to Kolmogorov’'s TRW-S algorithm [5]. TRW-S is also a monotone
coordinate descent method in a dual of the LP relaxation and its fixed points also have similar



guarantees to those of MPLP [6]. Furthermore, convergeneddcal optimum may occur, as it

does for MPLP. One advantage of MPLP lies in the simplicity of its updates and the fact that it is
parameter free. The other is its simple generalization to potentials over clusters of nodes (Sec. 6).
Recently, several new dual LP algorithms have been introduced, which are more closely related to
our formalism. Werner [12] presented a class of algorithms which also improve the dual LP at every
iteration. The simplest of those is the max-sum-diffusion algorithm, which is similar to our EMPLP
algorithm, although the updates are different from ours. Independently, Josireslof#] presented

a class of algorithms that improve duals of the MAP-LP using coordinate descent. They decompose
the model into tractable parts by replicating variables and enforce replication constraints within the
Lagrangian dual. Our basic formulation in Eqg. 3 could be derived from their perspective. However,
the updates in the algorithm and the analysis differ. Johe$al. also presented a method for
overcoming the local optimum problem, by smoothing the objective so that it is strictly convex.
Such an approach could also be used within our algorithms. Vontobel and Koetter [9] recently
introduced a coordinate descent algorithm for decoding LDPC codes. Their method is specifically
tailored for this case, and uses updates that are similar to our edge based updates.

Finally, the concept of dual coordinate descent may be used in approximating marginals as well. In
[3] we use such an approach to optimize a variational bound on the partition function. The derivation
uses some of the ideas used in the MPLP dual, but importantly does not find the minimum for each
coordinate. Instead,gradient likestep is taken at every iteration to decrease the dual objective.

8 Experiments

We compared NMPLP to three other message passing algorftiiree-Reweighted max-product
(TRMP) [10]2 standard max-product (MP), and GEMPLP. For MP and TRMP we used the standard
approach of damping messages using a facter f0.5. We ran all algorithms for a maximum of
2000 iterations, and used thgt-timemeasure to compare their speed of convergence. This measure
is defined as follows: At every iteration the beliefs can be used to obtain an assignmiht/alue

f(x). We define théit-timeas the first iteration at which the maximum valuef¢k) is achieved.

We first experimented with &0 x 10 grid graph, with5 values per state. The functigifz) was

a Potts model:f(z) = > ,;cp 0 Z(vi = 25) + > ey 0;(z;).°> The values for¥,;; and0;(z;)

were randomly drawn fronj—cy, ¢;] and [—cp, cr| respectively, and we used values @fand

cr in the range rang@.1, 2.35] (with intervals 0f0.25), resulting in100 different models. The
clusters for GEMPLP were the faces of the graph [14]. To see if NMPLP converges to the LP
solution we also used an LP solver to solve the LP relaxation. We found that the the normalized
difference between NMPLP and LP objective was at m@st® (median10~7), suggesting that
NMPLP typically converged to the LP solution. Fig. 2 (top row) shows the results for the three
algorithms. It can be seen that while all non-cluster based algorithms obtain sjifulavalues,
NMPLP has bettehit-time(in the median) than TRMP and MP, and MP does not converge in many
cases (see caption). GEMPLP converges more slowly than NMPLP, but obtains mucly tefter
values. In fact, i9% of the cases the normalized difference between the GEMPLP objective and
the f(x) value was less thar)—?, suggesting that the exact MAP solution was found.

We next applied the algorithms to the real world problems of protein design. In [13], Yanover
et al. show how these problems can be formalized in terms of finding a MAP in an appropriately
constructed graphical modelWe used all algorithms except GNMPLP (since there is no natural
choice for clusters in this case) to approximate the MAP solution oThmodels used in [13].

In these models the number of states per variab®e-is158, and there are up t680 variables per
model. Fig. 2 (bottom) shows results for all the design problems. In this caséd tilpf the MP

runs converged, and NMPLP was better than TRMP in ternfstdfime and comparable irf (x)

value. The performance of MP was good on the runs where it converged.

2As expected, NMPLP was faster than EMPLP so only NMPLP results are given.

3The edge weights for TRMP corresponded to a uniform distribution over all spanning trees.

“This is clearly a post-hoc measure since it can only be obtained after the algorithm has exceeded its maxi-
mum number of iterations. However, it is a reasonable algorithm-independent measure of convergence.

The potentiab; (z;) may be folded into the pairwise potential to yield a model as in Eq. 1.

®Data available from http://jmir.csail.mit.edu/papers/volume7/yanover06a/Rddesign Dataset.tgz
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Figure 2: Evaluation of message passing algorithms on Potts models and protein design prodehs.
Convergence time results for the Potts models (a) and protein design problems (c). The box-plots (horiz. red
line indicates median) show the difference betweenhii¢ime for the other algorithms and NMPLEb,d):

Value of integer solutions for the Potts models (b) and protein design problems (d). The box-plots show the
normalized difference between the valuefgfc) for NMPLP and the other algorithms. All figures are such

that better MPLP performance yields positi¥eaxis values. Max-product converged 8% of the cases for

the Potts models, and dri% of the protein problems. Only convergent max-product runs are shown.

9 Conclusion

We have presented a convergent algorithm for MAP approximation that is based on block coordi-
nate descent of the MAP-LP relaxation dual. The algorithm can also be extended to cluster based
functions, which result empirically in improved MAP estimates. This is in line with the observa-
tions in [14] that generalized belief propagation algorithms can result in significant performance
improvements. However generalized max-product algorithms [14] are not guaranteed to converge
whereas GMPLP is. Furthermore, the GMPLP algorithm does not require a region graph and only
involves intersection between pairs of clusters. In conclusion, MPLP has the advantage of resolving
the convergence problems of max-product while retaining its simplicity, and offering the theoretical
guarantees of LP relaxations. We thus believe it should be useful in a wide array of applications.

A Derivation of the dual

Before deriving the dual, we first express the constrainf\det( &) in a slightly different way. The
definition of M (G) in Sec. 2 uses a single distributign; (z;,x;) for everyij € E. In what
follows, we usawo copies of this pairwise distribution for every edge, which we depgtér;, z;)
andf;;(z;, x;), and we add the constraint that these two copies both equatitiieal 1.;;(x;, ;).

For this extended set of pairwise marginals, we consider the following set of constraints which
is clearly equivalent toM,(G). On the rightmost column we give the dual variables that will
correspond to each constraint (we omit non-negativity constraints).

fiij (i, x5) = pij (s, x5)  Vij € E,xi,xj | Bij (2, ;)
,L_Lji(xj,xz) = pij(xi,zj)  Vij € E,xi,x; | Bii(xy, xi)

2op, Fij (B0 w5) = pj(wj)  Vij € B, x; Aij(z4) (6)
> s, Byi(Eg, @) = pixi)  Vji€ E,a; Aji()

We denote the set dfu, iz) satisfying these constraints byt (G). We can now state an LP that

is equivalent to MAPLPR, only with an extended set of variables and constraints. The equivalent
problem is to maximizes - € subject to(u, i) € My (G) (note that the objective uses theginal

e copy). LP duality transformation of the extended problem yields the following LP

min ). 0;

st Nij(xj) — Bij(zi,x5) > 0 Vij, ji € B, x;, x; @
Bij (@i, x5) + Bji(xj, i) = 05 (i, x5) Vij € Bz, x;
= 2 ken() i) +0; =20 VieV,x;

We next simplify the above LP by eliminating some of its constraints and variables. Since each
variable§; appears in only one constraint, and the objective minimizeis follows that §; =
max,, ZkeN(i) Aii(z;) and the constraints with; can be discarded. Similarly, sineg; (x;) ap-
pears in a single constraint, we have that foi gl E, ji € E, x;, x; A\ij(2z;) = maxy, Bi;(xq, ;)
and the constraints witk;; (z;), A;; (z;) can also be discarded. Using the eliminaiednd; (x;)



variables, we obtain that the LP in Eq. 7 is equivalent to thddq. 3. Note that the objective in
Eq. 3is convex since it is a sum of point-wise maxima of convex functions.

B Proof of Proposition 2
We wish to minimizef in Eq. 4 subject to the constraint that + 5;; = 0;;. Rewrite f as

f(Bij, Bji) = max A (1) + Bilas, xi)} + max (A () + Bij (2, ;)] (8)
The sum of the two arguments in the max is7(z;) + )\;i(l'j) + 0i5(x, ;)
(because of the constraints o). Thus the minimum must be greater than
1 max,, 4, {/\;j(:ci) + /\j’i(:z:j) + Hij(a:i,xj)}. One assignment t@ that achieves this mini-
mum is obtained by requiring an equalization conditfon:
—i —j 1 —j —i

Ayt (5) & Big (i ay) = A7 () + By, i) = 3 (eij (i, 25) + N7 (22) + A (ffj)) ©)
which impliesg;;(z;, z;) = 3 (91-3- (i, 25) + N7 (i) — )\;i(:cj)) and a similar expression fak;;.
The resulting\;; (z;) = max,, 8;;(x;, z;) are then the ones in Prop. 2.
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