
Abstract

The peak location in a population of phase-tuned neurons has been shown to be a
more reliable estimator for disparity than the peak location in a population of
position-tuned neurons. Unfortunately, the disparity range covered by a phase-
tuned population is limited by phase wraparound. Thus, a single population can-
not cover the large range of disparities encountered in natural scenes unless the
scale of the receptive fields is chosen to be very large, which results in very low
resolution depth estimates. Here we describe a biologically plausible measure of
the confidence that the stimulus disparity is inside the range covered by a popula-
tion of phase-tuned neurons. Based upon this confidence measure, we propose an
algorithm for disparity estimation that uses many populations of high-resolution
phase-tuned neurons that are biased to different disparity ranges via position
shifts between the left and right eye receptive fields. The population with the
highest confidence is used to estimate the stimulus disparity. We show that this
algorithm outperforms a previously proposed coarse-to-fine algorithm for dispar-
ity estimation, which uses disparity estimates from coarse scales to select the
populations used at finer scales and can effectively detect occlusions.

1   Introduction 

Binocular disparity, the displacement between the image locations of an object between two eyes or
cameras, is an important depth cue. Mammalian brains appear to represent the stimulus disparity
using populations of disparity-tuned neurons in the visual cortex [1][2]. The binocular energy
model is a first order model that explains the responses of individual disparity-tuned neurons [3]. In
this model, the preferred disparity tuning of the neurons is determined by the phase and position
shifts between the left and right monocular receptive fields (RFs). 

Peak picking is a common disparity estimation strategy for these neurons([4]-[6]). In this strategy,
the disparity estimates are computed by the preferred disparity of the neuron with the largest
response among the neural population. Chen and Qian [4] have suggested that the peak location in
a population of phase-tuned disparity energy neurons is a more reliable estimate than the peak loca-
tion in a population of position-tuned neurons. 

It is difficult to estimate disparity from a single phase-tuned neuron population because its range of
preferred disparities is limited. Figure 1 shows the population response of phase-tuned neurons
(vertical cross section) for different stimulus disparities. If the stimulus disparity is confined to the
range of preferred disparities of this population, the peak location changes linearly with the stimu-
lus disparity. Thus, we can estimate the disparity from the peak. However, in natural viewing condi-
tion, the stimulus disparity ranges over ten times larger than the range of the preferred disparities of
the population [7]. The peak location no longer indicates the stimulus disparity, since the peaks still
occur even when the stimulus disparity is outside the range of neurons’ preferred disparities. The
false peaks arise from two sources: the phase wrap-around due to the sinusoidal modulation in the
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Gabor function modelling neuron’s receptive field (RF) profile, or unmatching edges entering the
neuron's RF [5].

Although a single population can cover a large disparity range, the large size of the required recep-
tive fields results in very low resolution depth estimates. To address this problem, Chen and Qian
[4] proposed a coarse-to-fine algorithm which refines the estimates computed from coarse scales
using populations tuned to finer scales.

Here we present an alternative way to estimate the stimulus disparity using a biologically plausible
confidence measure that indicates whether the stimulus disparity lies inside or outside the range of
preferred disparities in a population of phase tuned neurons. We motivate this measure by examin-
ing the empirical statistics of the model neuron responses on natural images. Finally, we demon-
strate the efficacy of using this measure to estimate the stimulus disparity. Our model generates
better estimates than the coarse-to-fine approach [4], and can detect occlusions. 

2   Features of the phase-tuned disparity population
In this section, we define different features of a population of phase-tuned neurons. These features
will be used to define the confidence measure. Figure 2a illustrates the binocular disparity energy
model of a phase-tuned neuron [3]. For simplicity, we assume 1D processing, which is equivalent
to considering one orientation in the 2D case. The response of a binocular simple cell is modelled
by summing of the outputs of linear monocular Gabor filters applied to both left and right images,
followed by a positive or negative half squaring nonlinearity. The response of a binocular complex
cell is the sum of the four simple cell responses. 

Formally, we define the left and right retinal images by  and , where  denotes the dis-
tance from the RF center. The disparity  is the difference between the locations of corresponding
points in the left and right images, i.e., an object that appears at point  in the left image
appears at point  in the right image. Pairs of monocular responses are generated by integrating
image intensities weighted by pairs of phase quadrature RF profiles, which are the real and imagi-
nary parts of a complex-valued Gabor function ( ):

(1)

where  and  are the spatial frequency and the phase of the left and right monocular RFs, and
 is a zero mean Gaussian with standard deviation , which is inversely proportional to the spa-

tial frequency bandwidth. The spatial frequency and the standard deviation of the left and right RFs
are identical, but the phases may differ (  and ). We can compactly express the pairs of left
and right monocular responses as the real and imaginary parts of  and

, where with a slight abuse of notation, we define

 and (2)

Fig. 1: Sample population responses of the phase-tuned disparity neurons for different disparities.
This was generated by presenting the left image of the “Cones” stereogram shown in Figure 5a to
both eyes but varying the disparity by keeping the left image fixed and shifting the right image. At
each point, the image intensity represents the response of a disparity neuron tuned to a fixed
preferred disparity (vertical axis) in response to a fixed stimulus disparity (horizontal axis). The
dashed vertical lines indicate the stimulus disparities that fall within the range of preferred
disparities of the population (  pixels).
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The response of the binocular complex cell (the disparity energy) is the squared modulus of the
sum of the monocular responses:

(3)

where the * superscript indicates the complex conjugation. The phase-shift between the right and
left neurons  controls the preferred disparity  of the binocular
complex cell [6].

If we fix the stimulus and allow  to vary between , the function  in (3) describes the
population response of phase-tuned neurons whose preferred disparities range between  and

. The population response can be completely specified by three features ,  and  [4][5].

(4)

where

(5)

Figure 2b shows the graphical interpretation of these features. The feature  is the average
response across the population. The feature  is the difference between the peak and average
responses. Note that , since . The feature  is the peak location
of the population response. Peak picking algorithms compute the estimates from the peak location,
i.e.  [6]. 

3   Feature Analysis 

In this section, we suggest a simple confidence measure that can be used to differentiate between
two classes of stimulus disparities: DIN and DOUT corresponding to stimulus disparities inside
( ) and outside ( ) the range of preferred disparities in the population.  

We find this confidence measure by analyzing the empirical joint densities of  and the ratio
 conditioned on the two disparity classes. Considering  and  is equivalent to consid-

ering  and . We ignore . Intuitively, the peak location  will be less effective in distin-

Fig. 2: (a) Binocular disparity energy model of a disparity neuron in the phase-shift mechanism.
The phase-shift  between the left and right monocular RFs determines the preferred
disparity of the neuron. The neuron shown is tuned to a negative disparity of . (b) The
population response of the phase-tuned neurons  centered at a retinal location with the
phase-shifts  can be characterized by three features  and .
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guishing between DIN and DOUT, since Figure 1 shows that the phase ranges between  and 
for both disparity classes. The ratio  is bounded between  and , since .

Because of the uncertainties in the natural scenes, the features  and  are random variables. In
making a decision based on random features, Bayesian classifiers minimize the classification error.
Bayesian classifiers compare the conditional probabilities of the two disparity classes (DIN and
DOUT) given the observed feature values. The decision can be specified by thresholding the Bayes
factor.

(6)

where the threshold  controls the location of the decision boundary in the feature space
 and depends upon the prior class probabilities  and . The function

 is the conditional density of the features given the class . 

To find the optimal decision boundary for the features  and , we estimated the joint class likeli-
hood  from data obtained using the “Cones” and the “Teddy” stereograms from Mid-
dlebury College [8][9], shown in Figure 5a. The stereograms are rectified, so that the
correspondences are located in the same horizontal scan-lines. Each image has 1500 x 1800 pixels.
We constructed a population of phase-tuned neurons at each pixel. The disparity neurons had the
same spatial frequency and standard deviation, and were selective to vertical orientations. The spa-
tial frequency was  radians per pixel and the standard deviation in the horizontal
direction was  pixels, corresponding to a spatial bandwidth of 1.8 octaves. The standard
deviation in the vertical direction was . The range of the preferred disparities (DIN) of the pop-
ulation is between  pixels. To reduce the variability in the classification, we also applied Gauss-
ian spatial pooling with the standard deviation  to the population [4][5]. The features  and 
computed from population were separated into two classes (DIN and DOUT) according to the
ground truth in Figure 5b. 

Figure 3a-b show the empirically estimated joint conditional densities for the two disparity classes.
They were computed by binning the features  and  with the bin sizes of 0.25 for  and 0.01 for

. Given the disparity within the range of preferred disparities (DIN), the joint density concen-
trates at small  and large . For the out-of-range disparities (DOUT), the joint density shifts to
both large  and small . Intuitively, a horizontal hyperplane, illustrated by the red dotted line in
Figure 3a-b, is an appropriate decision boundary to separate the DIN and DOUT data. This indi-
cates that the feature  can be an indicator to distinguish between the in-range and out-of-range
disparities. Mathematically, we can compute the optimal decision boundaries by applying different
thresholds to the Bayes factor in (6). Figure 3c shows the boundaries. They are basically flat except
at small .  

We also demonstrate the efficacy of thresholding  instead of using the optimal decision boundar-
ies to distinguish between in-range and out-of-range disparities. Given the prior class probability

Fig. 3: The empirical joint density of  and  given (a) DIN and (b) DOUT. Red indicates large
values. Blue indicates small values. (c) The optimal decision boundaries derived from the Bayes
factor. (d) The change in total probability of error  between using a flat boundary (thresholding

) versus the optimal boundary. 
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, we compute a threshold  that minimizes the total probability of classification
error: 

(7)

We then compare this total probability of error with the one computed using the optimal decision
boundaries derived in (6). Figure 3d shows the deviation in the total probability of error between
the two approaches versus . The deviation is small (on the order of ) suggesting that
thresholding  results in similar performance as using the optimal decision boundaries. Thus, 
can be used as a confidence measure for distinguishing DIN and DOUT. Moreover, this measure
can be computed by normalization, which is a common component in models for V1 neurons [11]. 

4   Hybrid position-phase model for disparity estimation with validation 
Our analysis above shows that  is a simple indicator to distinguish between in-range and out-of-
range disparities. In this section, we describe a model that uses this feature to estimate the stimulus
disparity with validation. 

Figure 4 shows the proposed model, which consists of populations of hybrid tuned disparity neu-
rons tuned to different phase-shifts  and position-shifts . For each population tuned to the
same position-shift but different phase-shifts (phase-tuned population), we compute the ratio

. The average activation  can be computed by pooling the responses of the
entire phase-tuned neurons. The feature  can be computed by subtracting the peak response

 of the phase tuned population with the average activation . The features  at dif-
ferent position-shifts are compared through a winner-take-all network to select the position-shift

 with the maximum . The disparity estimate is further refined by the peak location 
by 

(8)

In additional to estimate the stimulus disparity, we also validate the estimates by comparing 
with a threshold . Instead of choosing a fixed threshold, we vary the threshold to show that the
feature  can be an occlusion detector. 

4.1  Disparity estimation with confidence

We applied the proposed model to estimate the disparity of the “Cones” and the “Teddy” stereo-
grams, shown in Figure 5a. The spatial frequency and the spatial standard deviation of the neurons

Fig. 4: Proposed disparity estimator with the validation of disparity estimates. 
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were kept the same as the previous analysis. We also performed spatial pooling and orientation
pooling to improve the estimation. For spatial pooling, we applied a circularly symmetric Gaussian
function with standard deviation . For orientation pooling, we pooled the responses over five ori-
entations ranging from 30 to 150 degrees. The range of the position-shifts for the populations was
set to the largest disparity range,  pixels, according to the ground truth.

We also implemented the coarse-to-fine model as described in [4] for comparison. In this model, an
initial disparity estimate computed from a population of phase-tuned neurons at the coarsest scale is
successively refined by the populations of phase-tuned neurons at the finer scales. By choosing the
coarsest scale large enough, the disparity range covered by this method can be arbitrarily large. The
coarsest and the finest scales had the Gabor periods of 512 and 16 pixels. The Gabor periods of the
successive scales differed by a factor of . Neurons at the finest scale had the same RF parame-
ters as our model. Same spatial pooling and orientation pooling were applied on each scale. 

Figure 5d-e show the estimated disparity maps and the error maps of the two approaches. The error
maps show the regions where the disparity estimates exceed 1 pixel of error in the disparity. Both
models correctly recover the stimulus disparity at most locations with gradual disparity changes,
but tend to make errors at the depth boundaries. However, the proposed model generates more
accurate estimates. In the coarse-to-fine model, the percentage of pixels being incorrectly estimated
is 36.3%, while our proposed model is only 27.8%. 

Fig. 5: (a) The two natural stereograms used to evaluate the model performance. (b) The ground
truth disparity maps with respect to the left images, obtained by the structured light method. (c) The
ground truth occlusion maps. (d) The disparity maps and the error maps computed by the coarse-to-
fine approach. (e) The disparity maps and the error maps computed by the proposed model. The
detected invalid estimates are labelled in black in the disparity maps. 
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The coarse-to-fine model tends to make errors around the depth boundaries. This arises because the
assumption that the stimulus disparity is constant over the RF of the neuron is unlikely at very large
scales. At boundaries, the coarse-to-fine model generates poor initial estimates, which cannot be
corrected at the finer scales, because the actual stimulus disparities are outside the range considered
at the finer scales.

On the other hand, the proposed model can not only estimate the stimulus disparity, but also can
validate the estimates. In general, the responses of neurons selective to different position disparities
are not comparable, since they depend upon image contrast which varies at different spatial loca-
tions. However, the feature , which is computed by normalizing the response peak by the average
response, eliminates such dependency. Moreover, the invalid regions detected (the black regions on
the disparity maps) are in excellent agreement with the error labels.

4.2  Occlusion detection 

In addition to validating the disparity estimates, the feature  can also be used to detect occlusion.
Occlusion is one of the challenging problems in stereo vision. Occlusion occurs near the depth dis-
continuities where there is no correspondence between the left and right images. The disparity in
the occlusion regions is undefined. The occlusion regions for these stereograms are shown in
Figure 5c.

There are three possibilities for image pixels that are labelled as out of range (DOUT). They are
occluded pixels, pixels with valid disparities that are incorrectly estimated, and pixels with valid
disparity that are correctly estimated. Figure 6a shows the percentages of DOUT pixels that fall
into each possibility as the threshold  applied to  varies, e.g.,

(9)

These percentages sum to unity for any thresholds . For small thresholds, the detector mainly
identifies the occlusion regions. As the threshold increases, the detector also begins to detect incor-
rect disparity estimates. Figure 6b shows the percentages of pixels in each possibility that are clas-
sified as DOUT as a function of , e.g.,

(10)

For a large threshold (  close to unity), all estimates are labelled as DOUT, so the three percent-
ages approach 100%. The proposed detector is effective in identifying occlusion. At the threshold

, it identifies ~70% of the occluded pixels, ~20% of the pixels with incorrect estimates
with only ~10% misclassification.

Fig. 6: The percentages of occluded pixels (thick), pixels with incorrect disparity estimates (thin)
and pixels with correct estimates (dotted) identified as DOUT. (a) Percentages as a fraction of total
number of DOUT pixels. (b) Percentages as a fraction of number of pixels of each type. 
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5   Discussion
In this paper, we have proposed an algorithm to estimate stimulus disparities based on a confidence
measure computed from population of hybrid tuned disparity neurons. Although there have been
previously proposed models that estimate the stimulus disparity from populations of hybrid tuned
neurons [4][10], our model is the first that also provides a confidence measure for these estimates.
Our analysis suggests that pixels with low confidence are likely to be in occluded regions. The
detection of occlusion, an important problem in stereo vision, was not addressed in these previous
approaches.

The confidence measure used in the proposed algorithm can be computed using normalization,
which has been used to model the responses of V1 neurons [11]. Previous work has emphasized the
role of normalization in reducing the effect of image contrast or in ensuring that the neural
responses tuned to different stimulus dimensions are comparable [12]. Our results show that, in
addition to these roles, normalization also serves to make the magnitude of the neural responses
more representative of the confidence in validating the hypothesis that the input disparity is close to
the neurons preferred disparity. The classification performance using this normalized feature is
close to that using the statistical optimal boundaries. 

Aggregating the neural responses over locations, orientations and scales is a common technique to
improve the estimation performance. For the consistency with the coarse-to-fine approach, our
algorithm also applies spatial and orientation pooling before computing the confidence. An inter-
esting question, which we are now investigating, is whether individual confidence measures com-
puted from different locations or orientations can be combined systematically. 
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