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Abstract

The expectation maximization (EM) algorithm is a widely used maximum likeli-
hood estimation procedure for statistical models when the values of some of the
variables in the model are not observed. Very often, however, our aim is primar-
ily to find a model that assigns values to the latent variables that have intended
meaning for our data and maximizing expected likelihood only sometimes ac-
complishes this. Unfortunately, it is typically difficult to add even simple a-priori
information about latent variables in graphical models without making the models
overly complex or intractable. In this paper, we present an efficient, principled
way to inject rich constraints on the posteriors of latent variables into the EM
algorithm. Our method can be used to learn tractable graphical models that sat-
isfy additional, otherwise intractable constraints. Focusing on clustering and the
alignment problem for statistical machine translation, we show that simple, in-
tuitive posterior constraints can greatly improve the performance over standard
baselines and be competitive with more complex, intractable models.

1 Introduction

In unsupervised problems where observed data has sequential, recursive, spatial, relational, or other
kinds of structure, we often employ statistical models with latent variables to tease apart the under-
lying dependencies and induce meaningful semantic parts. Part-of-speech and grammar induction,
word and phrase alignment for statistical machine translation in natural language processing are ex-
amples of such aims. Generative models (graphical models, grammars, etc.) estimated via EM [6]
are one of the primary tools for such tasks. The EM algorithm attempts to maximize the likeli-
hood of the observed data marginalizing over the hidden variables. A pernicious problem with most
models is that the data likelihood is not convex in the model parameters and EM can get stuck in
local optima with very different latent variable posteriors. Another problem is that data likelihood
may not guide the model towards the intended meaning for the latent variables, instead focusing
on explaining irrelevant but common correlations in the data. Very indirect methods such as clever
initialization and feature design (as well as ad-hoc procedural modifications) are often used to affect
the posteriors of latent variables in a desired manner.

By allowing to specify prior information directly about posteriors of hidden variables, we can help
avoid these difficulties. A somewhat similar in spirit approach is evident in work on multivariate
information bottleneck [8], where extra conditional independence assumptions between latent vari-
ables can be imposed to control their “meaning”. Similarly, in many semisupervised approaches,
assumptions about smoothness or other properties of the posteriors are often used as regulariza-
tion [18, 13, 4]. In [17], deterministic annealing was used to to explicitly control a particular feature
of the posteriors of a grammar induction model. In this paper, we present an approach that effec-
tively incorporates rich constraints on posterior distributions of a graphical model into a simple and
efficient EM scheme. An important advantage of our approach is that the E-step remains tractable in
a large class of problems even though incorporating the desired constraints directly into the model
would make it intractable. We test our approach on synthetic clustering data as well as statistical
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word alignment and show that we can significantly improve the performance of simple, tractable
models, as evaluated on hand-annotated alignments for two pairs of languages, by introducing intu-
itive constraints such as limited fertility and the agreement of two models. Our method is attractive
in its simplicity and efficiency and is competitive with more complex, intractable models.

2 Expectation Maximization and posterior constraints

We are interested in estimating the parameters θ of a model pθ(x, z) over observed variables X
taking values x ∈ X and latent variables Z taking values z ∈ Z . We are often even more interested
in the induced posterior distribution over the latent variables, pθ(z | x), as we ascribe domain-
specific semantics to these variables. We typically represent pθ(x, z) as a directed or undirected
graphical model (although the discussion below also applies to context free grammars and other
probabilistic models). We assume that computing the joint and the marginals is tractable and that
the model factors across cliques as follows: pθ(x, z) ∝

∏
α φθ(xα, zα), where φθ(xα, zα) are

clique potentials or conditional probability distributions.

Given a sample S = {x1, . . . ,xn}, EM maximizes the average log likelihood function LS(θ) via
an auxiliary lower bound F (q, θ) (cf. [14]):

LS(θ) = ES [log pθ(x)] = ES

[
log
∑
z

pθ(x, z)

]
= ES

[
log
∑
z

q(z | x)
pθ(x, z)
q(z | x)

]
(1)

≥ ES

[∑
z

q(z | x) log
pθ(x, z)
q(z | x)

]
= F (q, θ), (2)

where ES [f(x)] = 1
n

∑
i f(xi) denotes the sample average and q(z | x) is non-negative and sums

to 1 over z for each x. The lower bound above is a simple consequence of Jensen’s inequality for
the log function. It can be shown that the lower bound can be made tight for a given value of θ
by maximizing over q and under mild continuity conditions on pθ(x, z), local maxima (q∗, θ∗) of
F (q, θ) correspond to local maxima θ∗ of LS(θ) [14].

Standard EM iteration performs coordinate ascent on F (q, θ) as follows:
E : qt+1(z | x) = arg max

q(z|x)

F (q, θt) = arg min
q(z|x)

KL(q(z | x) || pθt(z | x)) = pθt(z | x); (3)

M : θt+1 = arg max
θ

F (qt+1, θ) = arg max
θ

ES

[∑
z

qt+1(z | x) log pθ(x, z)

]
, (4)

where KL(q||p) = Eq[log q(·)
p(·) ] is Kullback-Leibler divergence. The E step computes the posteriors

of the latent variables given the observed variables and current parameters. The M step uses q to
“fill in” the values of latent variables z and estimate parameters θ as if the data was complete. This
step is particularly easy for exponential models, where θ is a simple function of the (expected)
sufficient statistics. This modular split into two intuitive and straightforward steps accounts for the
vast popularity of EM. In the following, we build on this simple scheme while incorporating desired
constraints on the posteriors over latent variables.

2.1 Constraining the posteriors

Our goal is to allow for finer-level control over posteriors, bypassing the likelihood function. We
propose an intuitive way to modify EM to accomplish this and discuss the implications of the new
procedure below in terms of the objective it attempts to optimize. We can express our desired
constraints on the posteriors as the requirement that pθ(z | x) ∈ Q(x). For example, in dependency
grammar induction, constraining the average length of dependency attachments is desired [17]; in
statistical word alignment, the constraint might involve the expected degree of each node in the
alignment [3]. Instead of restricting p directly, which might not be feasible, we can penalize the
distance of p to the constraint set Q. As it turns out, we can accomplish this by restricting q to
be constrained to Q instead. This results in a very simple modification to the E step of EM, by
constraining the set of q over which F (q, θ) is optimized (M step is unchanged):

E : qt+1(z | x) = arg max
q(z|x)∈Q(x)

F (q, θt) = arg min
q(z|x)∈Q(x)

KL(q(z | x) || pθt(z | x)) (5)
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Note that in variational EM, the setQ(x) is usually a simpler inner bound (as in mean field) or outer
bound (as in loopy belief propagation) on the intractable original space of posteriors [9]. The situa-
tion here is the opposite: we assume the original posterior space is tractable but we add constraints
to enforce intended semantics not captured by the simple model. Of course to make this practical,
the set Q(x) needs to be well-behaved. We assume that Q(x) is convex and non-empty for every x
so that the problem in Eq. (5) becomes a strictly convex minimization over a non-empty convex set,
guaranteed to have a unique minimizer [1]. A natural and general way to specify constraints on q is
by bounding expectations of given functions: Eq[f(x, z)] ≤ b (equality can be achieved by adding
Eq[−f(x, z)] ≤ −b). Stacking functions f() into a vector f() and constants b into a vector b, the
minimization problem in Eq. (5) becomes:

arg min
q

KL(q(z | x) || pθt(z | x)) s.t. Eq[f(x, z)] ≤ b. (6)

In the next section, we discuss how to solve this optimization problem (also called I-projection in
information geometry), but before we move on, it is interesting to consider what this new procedure
in Eq. (5) converges to. The new scheme alternately maximizes F (q, θ), but over a subspace of the
original space of q, hence using a looser lower-bound than original EM. We are no longer guaranteed
that the local maxima of the constrained problem are local maxima of the log-likelihood. However,
we can characterize the objective maximized at local maxima as log-likelihood penalized by average
KL divergence of posteriors from Q:

Proposition 2.1 The local maxima of F (q, θ) such that q(z | x) ∈ Q(x),∀x ∈ S are local maxima
of

ES [log pθ(x)]−ES [KL(Q(x) || pθ(z | x)],

where KL(Q(x) || pθ(z | x) = minq(z|x))∈Q(x) KL(q(z | x) || pθ(z | x)).

Proof: By adding and subtracting ES [
∑

z q(z | x) log pθ(z | x)] from F (q, θ), we get:

F (q, θ) = ES

"X
z

q(z | x) log
pθ(x, z)

q(z | x)

#
(7)

= ES

"X
z

q(z | x) log
pθ(x, z)

pθ(z | x)

#
−ES

"X
z

q(z | x) log
q(z | x)

pθ(z | x)

#
(8)

= ES

"X
z

q(z | x) log pθ(x)

#
−ES [KL(q(z | x)||pθ(z | x)] (9)

= ES [log pθ(x)]−ES [KL(q(z | x) || pθ(z | x)]. (10)

Since the first term does not depend on q, the second term is minimized by q∗(z | x) =
minq(z|x))∈Q(x) KL(q(z | x) || pθ(z | x)) at local maxima.

This proposition implies that our procedure trades off likelihood and distance to the desired posterior
subspace (modulo getting stuck in local maxima) and provides an effective method of controlling
the posteriors.

2.2 Computing I-projections onto Q(x)

The KL-projection onto Q(x) in Eq. (6) is easily solved via the dual (cf. [5, 1]):

arg max
λ≥0

(
λ>b− log

∑
z

pθt(z | x) exp{λ>f(x, z)}

)
(11)

Define qλ(z | x) ∝ pθt(z | x) exp{λ>f(x, z)}, then at the dual optimum λ∗, the primal solution is
given by qλ∗(z | x).

Such projections become particularly efficient when we assume the constraint functions decom-
pose the same way as the graphical model: f(x, z) =

∑
α f(xα, zα). Then qλ(z | x) ∝∏

α φθt(xα, zα) exp{λ>f(xα, zα)}, which factorizes the same way as pθ(x, z). In case the con-
straint functions do not decompose over the model cliques but require additional cliques, the re-
sulting qλ will factorize over the union of the original cliques and the constraint function cliques,
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Initial Configuration Output of EM Output of Constrained EM

Figure 1: Synthetic data results. The dataset consists of 9 points drawn as dots and there are three
clusters represented by ovals centered at their mean with dimensions proportional to their standard
deviation. The EM algorithm clusters each column of points together, but if we introduce the con-
straint that each column should have at least one of the clusters, we get the clustering to the right.

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
0 · · · · · · · · · 0 · · · · · · · · · 0 · · · · · · · · · it
1 · · · · · · · · · 1 · · · · · · · · · 1 · · · · · · · · · was
2 · · • · · · · · · 2 · · • · · · · · · 2 · · • · · · · · · an
3 · · · · • · · · · 3 • · · • • · · · · 3 • · · · • · · · · animated
4 · · · · · • · · · 4 · · · · · • · · · 4 · · · · · • · · · ,
5 · · • · · · • · · 5 · · · · · · • · · 5 · · · · · · • · · very
6 • · · • • • · • · 6 · · · · · · · • · 6 · · · · · · · • · convivial
7 • · · · · · · · · 7 • · · · · · · · · 7 • · · · · · · · · game
8 · · · · · · · · • 8 · · · · · · · · • 8 · · · · · · · · • .

jugaban

de una
manera

animada

y muy
cordial

. jugaban

de una
manera

animada

y muy
cordial

. jugaban

de una
manera

animada

y muy
cordial

.

Figure 2: An example of the output of HMM trained on 100k the EPPS data. Left: Baseline model.
Middle: Substochastic constraints. Right Agreement constraints.

potentially making inference more expensive. In our experiments, we used constraint functions that
decompose with the original model. Note that even in this case, the graphical model pθ(x, z) can not
in general satisfy the expectation constraints for every setting of θ and x. Instead, the constrained
EM procedure is tuning θ to the distribution of x to satisfy these constraints in expectation.

The dual of the projection problem can be solved using a variety of optimization methods; perhaps
the simplest of them is projected gradient (since λ is non-negative, we need to simply truncate
negative values as we perform gradient ascent). The gradient of the objective in Eq. (11) is given
by: b − Eqλ

[f(x, z)] = b −
∑

α Eqλ(zα|x)[f(xα, zα)]. Every gradient computation thus involves
computing marginals of qλ(z | x), which is of the same complexity as computing marginals of
pθ(z | x) if no new cliques are added by the constraint functions. In practice, we do not need to
solve the dual to a very high precision in every round of EM, so several (about 5-10) gradient steps
suffice. When the number of constraints is small, alternating projections are also a good option.

3 Clustering

A simple but common problem that employs EM is clustering a group of points using a mixture
of Gaussians. In practice, the data points and Gaussian clusters have some meaning not captured
by the model. For example, the data points could correspond to descriptors of image parts and the
clusters could be “words” used for later processing of the image. In that case, we often have special
knowledge about the clusters that we expect to see that is difficult to express in the original model.
For example, we might know that within each image two features that are of different scales should
not be clustered together. As another example, we might know that each image has at least one copy
of each cluster. Both of these constraints are easy to capture and implement in our framework. Let
zij = 1 represent the event that data point i is assigned to cluster j. If we want to ensure that data
point i is not assigned to the same cluster as data point i′ then we need to enforce the constraint
E [zij + zi′j ] ≤ 1,∀j. To ensure the constraint that each cluster has at least one data point assigned
to it from an instance I we need to enforce the constraint E

[∑
i∈I zij

]
≤ 1,∀j. We implemented

this constraint in a mixture of Gaussians clustering algorithm. Figure 1 compares clustering of
synthetic data using unconstrained EM as well as our method with the constraint that each column
of data points has at least one copy of each cluster in expectation.

4



4 Statistical word alignment

Statistical word alignment, used primarily for machine translation, is a task where the latent variables
are intended to have a meaning: whether a word in one language translates into a word in another
language in the context of the given sentence pair. The input to an alignment systems is a sentence
aligned bilingual corpus, consisting of pairs of sentences in two languages. Figure 2 shows three
machine-generated alignments of a sentence pair. The black dots represent the machine alignments
and the shading represents the human annotation. Darkly shaded squares with a border represent a
sure alignments that the system is required to produce while lightly shaded squares without a border
represent possible alignments that the system is optionally allowed to produce.

We denote one language the “source” language and use s for its sentences and one language the
“target” language and use t for its sentences. It will also be useful to talk about an alignment for
a particular sentence pair as a binary matrix z, with zij = 1 representing “source word i generates
target word j.” The generative models we consider generate target word j from only one source
word, and so an alignment is only valid from the point of view of the model when

∑
i zij = 1, so

we can equivalently represent an alignment as an array a of indices, with aj = i⇔ zij = 1.

Figure 2 shows three alignments performed by a baseline model as well as our two modifications. We
see that the rare word “convivial” acts as a garbage collector[2], aligning to words that do not have
a simple translation in the target sentence. Both of the constraints we suggest repair this problem to
different degrees. We now introduce the baseline models and the constraints we impose on them.

4.1 Baseline models

We consider three models below: IBM Model 1, IBM Model 2 [3] and the HMM model proposed
by [20]. The three models can be expressed as:

p(t,a | s) =
∏
j

pd(aj |j, aj−1)pt(tj |saj
), (12)

with the three models differing in their definition of the distortion probability pd(aj |j, aj−1). Model
1 assumes that the positions of the words are not important and assigns uniform distortion prob-
ability. Model 2 allows a dependence on the positions pd(aj |j, aj−1) = pd(aj |j) and the HMM
model assumes that the only the distance between the current and previous source word are impor-
tant pd(aj |j, aj−1) = pd(aj |aj − aj−1). All the models are augmented by adding a special “null”
word to the source sentence. The likelihood of the corpus, marginalized over possible alignments is
concave for Model 1, but not for the other models [3].

4.1.1 Substochastic Constraints

A common error for our baseline models is to use rare source words as garbage collectors [2]. The
models align target words that do not match any of the source words to rare source words rather
than to the null word. While this results in higher data likelihood, the resulting alignments are not
desirable, since they cannot be interpreted as translations. Figure 2 shows an example. One might
consider augmenting the models to disallow this, for example by restricting that the alignments are
at most one-to-one. Unfortunately computing the normalization for such a model is a ]P complete
problem [19]. Our approach is to instead constrain the posterior distribution over alignments during
the E-step. More concretely we enforce the constraint Eq[zij ] ≤ 1. Another way of thinking of this
constraint is that we require the expected fertility of each source word to be at most one. For our
hand-aligned corpora Hansards [15] and EPPS [11, 10], the average fertility is around 1 and 1.2,
respectively, with standard deviation of 0.01. We will see that these constraints improve alignment
accuracy.

4.1.2 Agreement Constraints

Another weakness of our baseline models is that they are asymmetric. Usually, a model is trained
in each direction and then they are heuristically combined. [12] introduce an objective to train the
two models concurrently and encourage them to agree. Unfortunately their objective leads to an
intractable E-step and they are forced to use a heuristic approximation. In our framework, we can
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Hansards 447 sentences EPPS 400 sentences
Language Max Avg. Fertility Avg. F. Language Max Avg. Fertility Avg. F.
English 30 15.7 6 1.02 English 90 29 218 1.20
French 30 17.4 3 1.00 Spanish 99 31.2 165 1.17

Table 1: Test Corpus statistics. Max and Avg. refer to sentence length. Fertility is the number of
words that occur at least twice and have on average at least 1.5 sure alignment when they have any.
Avg. F. is the average word fertility. All average fertilities have a standard deviation of 0.01.

also enforce agreement in expectation without approximating. Denote one direction the “forward”
direction and the other the “backward” direction. Denote the forward model−→p with hidden variables
−→z ∈

−→
Z and backward model←−p with hidden variables←−z ∈

←−
Z and note −→p (←−z ) = 0 and←−p (−→z ) =

0. Define a mixture p(z) = 1
2
−→p (z)+ 1

2
←−p (z) for z ∈

←−
Z ∪
−→
Z . The constraints that enforce agreement

in this setup are Eq[f(x, z)] = 0 with

fij(x, z) =

 1 z ∈
−→
Z and zij = 1

−1 z ∈
←−
Z and zij = 1

0 otherwise
.

5 Evaluation

We evaluated our augmented models on two corpora: the Hansards corpus [15] of English/French
and the Europarl corpus [10] with EPPS annotation [11]. Table 1 presents some statistics for the
two corpora. Notably, Hansards is a much easier corpus than EPPS. Hansards test sentences are
on average only half as long as those of EPPS and only 21% of alignments in Hansards are sure
and hence required compared with 69% for EPPS. Additionally, more words in EPPS are aligned
to multiple words in the other language. Since our models cannot model this “fertility” we expect
their performance to be worse on EPPS data. Despite these differences, the corpora are also similar
in some ways. Both are alignments of a Romance language to English and the average distance of
an alignment to the diagonal is around 2 for both corpora.

The error metrics we use are precision, recall and alignment error rate (AER), which is a weighted
combination of precision and recall. Although AER is the standard metric in word alignment is
has been shown [7] that it has a weak correlation with the standard MT metric, Bleu, when the
alignments are used in a phrase-based translation system. [7] suggest weighted F-Measure1 as an
alternative that correlates well with Bleu, so we also report precision and recall numbers.

Following prior work [16], we initialize Model 1 translation table with uniform probabilities over
word pairs that occur together in same sentence. Model 2 and Model HMM were initialized with the
translation probabilities from Model 1 and with uniform distortion probabilities. All models were
trained for 5 iterations. We used a maximum length cutoff for training sentences of 40. For the
Hansards corpus this leaves 87.3% of the sentences, while for EPPS this leaves 74.5%. Following
common practice, we included the unlabeled test and development data during training. We report
results for the model with English as the “source” language when using posterior decoding [12].

Figures 3 shows alignment results for the baselines models as well as the models with additional
constraints. We show precision, recall and AER for the HMM model as well as precision and recall
for Model 2. We note that both constraints improve all measures of performance for all dataset sizes,
with most improvement for smaller dataset sizes.

We performed additional experiments to verify that our model is not unfairly aided by the standard
but arbitrary choice of 5 iterations of EM. Figure 4 shows AER and data likelihood as a function
of the number of EM iterations. We see that the performance gap between the model with and
without agreement constraints is preserved as the number of EM iterations increases. Note also that
likelihood increases monotonically for all the models and that the baseline model always achieves
higher likelihood as expected.

1defined as ( α
Precision

+ 1−α
Recall

)−1 with 0.1 ≤ α ≤ 0.4 showing good correlation with Bleu [7].
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Figure 3: Effect of posterior constraints on learning curves for IBM Model 2 and HMM. From left
to right: Precision/Recall for IBM Model 2, Precision/Recall for HMM Model and AER for HMM
Model. Top: Hansards Bottom: EPPS. Both types of constraints improve all accuracy measures
across both datasets and models.
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Figure 4: Data likelihood and AER vs. EM iteration using HMM on 100k Hansards.

6 Conclusions

In this paper we described a general and principled way to introduce prior knowledge to guide the
EM algorithm. Intuitively, we can view our method as a way to exert flexible control during the
execution of EM. More formally, our method can be viewed as a regularization of the expectations
of the hidden variables during EM. Alternatively, it can be viewed as an augmentation of the EM
objective function with KL divergence from a set of feasible models. We implemented our method
on two different problems: probabilistic clustering using mixtures of Gaussians and statistical word
alignment and tested it on synthetic and real data. We observed improved performance by introduc-
ing simple and intuitive prior knowledge into the learning process. Our method is widely applicable
to other problems where the EM algorithm is used but prior knowledge about the problem is hard to
introduce directly into the model.
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