
Ultrafast Monte Carlo for Kernel Estimators
and Generalized Statistical Summations

Michael P. Holmes, Alexander G. Gray, and Charles Lee Isbell, Jr.
College Of Computing

Georgia Institute of Technology
Atlanta, GA 30327

{mph, agray, isbell}@cc.gatech.edu

Abstract

Machine learning contains many computational bottlenecks in the form of nested
summations over datasets. Kernel estimators and other methods are burdened
by these expensive computations. Exact evaluation is typically O(n2) or higher,
which severely limits application to large datasets. We present a multi-stage strat-
ified Monte Carlo method for approximating such summations with probabilistic
relative error control. The essential idea is fast approximation by sampling in trees.
This method differs from many previous scalability techniques (such as standard
multi-tree methods) in that its error is stochastic, but we derive conditions for
error control and demonstrate that they work. Further, we give a theoretical sam-
ple complexity for the method that is independent of dataset size, and show that
this appears to hold in experiments, where speedups reach as high as 1014, many
orders of magnitude beyond the previous state of the art.

1 Introduction

Many machine learning methods have computational bottlenecks in the form of nested summations
that become intractable for large datasets. We are particularly motivated by the nonparametric kernel
estimators (e.g. kernel density estimation), but a variety of other methods require computations of
similar form. In this work we formalize the general class of nested summations and present a new
multi-stage Monte Carlo method for approximating any problem in the class with rigorous relative
error control. Key to the efficiency of this method is the use of tree-based data stratification, i.e.
sampling in trees. We derive error guarantees and sample complexity bounds, with the intriguing
result that runtime depends not on dataset size but on statistical features such as variance and kurto-
sis, which can be controlled through stratification. We also present experiments that validate these
theoretical results and demonstrate tremendous speedup over the prior state of the art.
Previous approaches to algorithmic acceleration of this kind fall into roughly two groups: 1) methods
that run non-accelerated algorithms on subsets of the data, typically without error bounds, and 2)
multi-tree methods with deterministic error bounds. The former are of less interest due to the lack
of error control, while the latter are good when exact error control is required, but have built-in
overconservatism that limits speedup, and are difficult to extend to new problems. Our Monte Carlo
approach offers much larger speedup and a generality that makes it simple to adapt to new problems,
while retaining strong error control. While there are non-summative problems to which the standard
multi-tree methodology is applicable and our Monte Carlo method is not, our method appears to
give greater speedup by many orders of magnitude on problems where both methods can be used.
In summary, this work makes the following contributions: formulation of the class of generalized
nested data summations; derivation of recursive Monte Carlo algorithms with rigorous error guar-
antees for this class of computation; derivation of sample complexity bounds showing no explicit

1

dependence on dataset size; variance-driven tree-based stratified sampling of datasets, which allows
Monte Carlo approximation to be effective with small sample sizes; application to kernel regres-
sion and kernel conditional density estimation; empirical demonstration of speedups as high as 1014

on datasets with points numbering in the millions. It is the combination of all these elements that
enables our method to perform so far beyond the previous state of the art.

2 Problem definition and previous work

We first illustrate the problem class by giving expressions for the least-squares cross-validation
scores used to optimize bandwidths in kernel regression (KR), kernel density estimation (KDE), and
kernel conditional density estimation (KCDE):

SKR =
1

n

X

i

yi −

P

j 6=i Kh(||xi − xj ||)yj
P

j 6=i Kh(||xi − xj ||)

!

2

SKDE =
1

n

X

i

„

1

(n− 1)2

X

j 6=i

X

k 6=i

Z

Kh(||x− xj ||)Kh(||x− xk||)dx−
2

(n− 1)

X

j 6=i

Kh(||xi − xj ||)

«

SKCDE =
1

n

X

i

„

P

j 6=i

P

k 6=i Kh2
(||xi − xj ||)Kh2

(||xi − xk||)
R

Kh1
(y − yj)Kh1

(y − yk)dy
P

j 6=i

P

k 6=i Kh2
(||xi − xj ||)Kh2

(||xi − xk||)

− 2

P

j 6=i Kh2
(||xi − xj ||)Kh1

(yi − yj)
P

j 6=i Kh2
(||xi − xj ||)

«

.

These nested sums have quadratic and cubic computation times that are intractable for large datasets.
We would like a method for quickly approximating these and similar computations in a simple and
general way. We begin by formulating an inductive generalization of the problem class:

B (Xc) →
∑

i∈I(Xc)

f (Xc,Xi) (1)

G (Xc) → B (Xc) |
∑

i∈I(Xc)

f (Xc, G1 (Xc,Xi) , G2 (Xc,Xi) , . . .) . (2)

B represents the base case, in which a tuple of constant arguments Xc may be specified and a tuple
of variable arguments Xi is indexed by a set I , which may be a function of Xc. For instance, in
the innermost leave-one-out summations of SKR, Xc is the single point xi while I(Xc) indexes all
single points other than xi. Note that |I| is the number of terms in a summation of type B, and
therefore represents the base time complexity. Whenever I consists of all k-tuples or leave-one-out
k-tuples, the base complexity is O(nk), where n is the size of the dataset.
The inductive case G is either: 1) the base case B, or 2) a sum where the arguments to the summand
function are Xc and a series of nested instances of type G. In SKR the outermost summation is
an example of this. The base complexity here is |I| multiplied by the maximum base complexity
among the nested instances, e.g. if, as in SKR, I is all single points and the most expensive inner G
is O(n), then the overall base complexity is O(n2).
Previous work. Past efforts at scaling this class of computation have fallen into roughly two groups.
First are methods where data is simply subsampled before running a non-accelerated algorithm.
Stochastic gradient descent and its variants (e.g. [1]) are prototypical here. While these approaches
can have asymptotic convergence, there are no error guarantees for finite sample sizes. This is not
show-stopping in practice, but the lack of quality assurance is a critical shortcoming. Our approach
also exploits the speedup that comes from sampling, but provides a rigorous relative error guarantee
and is able to automatically determine the necessary sample size to provide that guarantee.
The other main class of acceleration methods consists of those employing “higher order divide and
conquer” or multi-tree techniques that give either exact answers or deterministic error bounds (e.g.
[2, 3, 4]). These approaches apply to a broad class of “generalized n-body problems” (GNPs), and
feature the use of multiple spatial partitioning structures such as kd-trees or ball trees to decompose
and reuse portions of computational work. While the class of GNPs has yet to be formally defined,
the generalized summations we address are clearly related and have at least partial overlap.

2

The standard multi-tree methodology has three significant drawbacks. First, although it gives deter-
ministic error bounds, the bounds are usually quite loose, resulting in overconservatism that prevents
aggressive approximation that could give greater speed. Second, creating a new multi-tree method
to accelerate a given algorithm requires complex custom derivation of error bounds and pruning
rules. Third, the standard multi-tree approach is conjectured to reduce O(np) computations at best
to O(nlog p). This still leaves an intractable computation for p as small as 4.
In [5], the first of these concerns began to be addressed by employing sample-based bounds within
a multi-tree error propagation framework. The present work builds on that idea by moving to a
fully Monte Carlo scheme where multiple trees are used for variance-reducing stratification. Error
is rigorously controlled and driven by sample variance, allowing the Monte Carlo approach to make
aggressive approximations and avoid the overconservatism of deterministic multi-tree methods. This
yields greater speedups by many orders of magnitude. Further, our Monte Carlo approach handles
the class of nested summations in full generality, making it easy to specialize to new problems.
Lastly, the computational complexity of our method is not directly dependent on dataset size, which
means it can address high degrees of nesting that would make the standard multi-tree approach
intractable. The main tradeoff is that Monte Carlo error bounds are probabilistic, though the bound
probability is a parameter to the algorithm. Thus, we believe the Monte Carlo approach is superior
for all situations that can tolerate minor stochasticity in the approximated output.

3 Single-stage Monte Carlo

We first derive a Monte Carlo approximation for the base case of a single-stage, flat summation, i.e.
Equation 1. The basic results for this simple case (up to and including Algorithm 1 and Theorem 1)
mirror the standard development of Monte Carlo as in [6] or [7], with some modification to accom-
modate our particular problem setup. We then move beyond to present novel sample complexity
bounds and extend the single-stage results to the multi-stage and multi-stage stratified cases. These
extensions allow us to efficiently bring Monte Carlo principles to bear on the entire class of gen-
eralized summations, while yielding insights into the dependence of computational complexity on
sample statistics and how tree-based methods can improve those statistics.
To begin, note that the summation B (Xc) can be written as nE[fi] = nµf , where n = |I| and the
expectation is taken over a discrete distribution Pf that puts mass 1

n on each term fi = f(Xc,Xi).
Our goal is to produce an estimate B̂ that has low relative error with high probability. More precisely,
for a specified ε and α, we want |B̂ − B| ≤ ε|B| with probability at least 1 − α. This is equivalent
to estimating µf by µ̂f such that |µ̂f −µf | ≤ ε|µf |. Let µ̂f be the sample mean of m samples taken
from Pf . From the Central Limit Theorem, we have asymptotically µ̂f N(µf , σ̂2

f/m), where σ̂2
f

is the sample variance, from which we can construct the standard confidence interval: |µ̂f − µf | ≤
zα/2σ̂f/

√
m with probability 1 − α. When µ̂f satisfies this bound, our relative error condition is

implied by zα/2σ̂f/
√

m ≤ ε|µf |, and we also have |µf | ≥ |µ̂f | − zα/2σ̂f/
√

m. Combining these,
we can ensure our target relative error by requiring that zα/2σ̂f/

√
m ≤ ε(|µ̂f | − zα/2σ̂f/

√
m),

which rearranges to:

m ≥ z2
α/2

(1 + ε)2

ε2
σ̂2

f

µ̂2
f

. (3)

Equation 3 gives an empirically testable condition that guarantees the target relative error level
with probability 1 − α, given that µ̂f has reached its asymptotic distribution N(µf , σ̂2

f/m). This
suggests an iterative sampling procedure in which m starts at a value mmin chosen to make the
normal approximation valid, and then is increased until the condition of Equation 3 is met. This
procedure is summarized in Algorithm 1, and we state its error guarantee as a theorem.
Theorem 1. Given mmin large enough to put µ̂f in its asymptotic normal regime, with probability
at least 1 − α Algorithm 1 approximates the summation S with relative error no greater than ε .

Proof. We have already established that Equation 3 is a sufficient condition for ε relative error with
probability 1 − α. Algorithm 1 simply increases the sample size until this condition is met.

Sample Complexity. Because we are interested in fast approximations, Algorithm 1 is only useful if
it terminates with m significantly smaller than the number of terms in the full summation. Equation 3

3

Algorithm 1 Iterative Monte Carlo approximation for flat summations.
MC-Approx(S, Xc, ε, α, mmin)

samples← ∅, mneeded ← mmin

repeat
addSamples(samples, mneeded, S,Xc)
m, µ̂f , σ̂2

f ← calcStats(samples)

mthresh ← z2

α/2
(1 + ε)2σ̂2

f/ε2µ̂2

f

mneeded ← mthresh −m
until m ≥ mthresh

return |S.I|µ̂f

addSamples(samples, mneeded, S, Xc)
for i = 1 to mneeded

Xi ← rand(S.I)
samples← samples ∪ S.f(Xc,Xi)

end for

calcStats(samples)
m← count(samples)
µ̂f ← avg(samples)
σ̂2

f ← var(samples)

return m, µ̂f , σ̂2

f

gives an empirical test indicating when m is large enough for sampling to terminate; we now provide
an upper bound, in terms of the distributional properties of the full set of fi, for the value of m at
which Equation 3 will be satisfied.
Theorem 2. Given mmin large enough to put µ̂f and σ̂f in their asymptotic normal regimes, with

probability at least 1 − 2α Algorithm 1 terminates with m ≤ O
(σ2

f

µ2

f

+
σf

|µf |
√

µ4f

σ4

f

− 1
)
.

Proof. The termination condition is driven by σ̂2
f/µ̂2

f , so we proceed by bounding this ratio.
First, with probability 1 − α we have a lower bound on the absolute value of the sample mean:
|µ̂f | ≥ |µf | − zα/2σ̂f/

√
m. Next, because the sample variance is asymptotically distributed as

N(σ2
f , (µ4f − σ4

f)/m), where µ4f is the fourth central moment, we can apply the delta method
to infer that σ̂f converges in distribution to N(σf , (µ4f − σ4

f)/4σ2
fm). Using the normal-based

confidence interval, this gives the following 1 − α upper bound for the sample standard deviation:
σ̂f ≤ σf + zα/2

√
µ4f − σ4

f/(2σf
√

m). We now combine these bounds, but since we only know
that each bound individually covers at least a 1 − α fraction of outcomes, we can only guarantee
they will jointly hold with probability at least 1 − 2α, giving the following 1 − 2α bound:

σ̂f

|µ̂f |
≤

σf + zα/2

√
µ4f−σ4

f

2σf

√
m

|µf | − zα/2
σf√
m

.

Combining this with Equation 3 and solving for m shows that, with probability at least 1 − 2α, the
algorithm will terminate with m no larger than:

z2

α/2

2

(1 + 2ε)2

ε2
σf

|µf |

"

σf

|µf |
+

ε(1 + ε)

(1 + 2ε)2

r

µ4f

σ4

f

− 1 +

r

σf

|µf |

s

σf

|µf |
+

2ε(1 + ε)

(1 + 2ε)2

r

µ4f

σ4

f

− 1

#

. (4)

Three aspects of this bound are salient. First, computation time is liberated from dataset size. This
is because the sample complexity depends only on the distributional features (σ2

f , µf , and µ4f) of
the summation terms, and not on the number of terms. For i.i.d. datasets in particular, these distri-
butional features are convergent, which means the sample or computational complexity converges
to a constant while speedup becomes unbounded as the dataset size goes to infinity.
Second, the bound has sensible dependence on σf/|µf | and µ4f/σ4

f . The former is a standard
dispersion measure known as the coefficient of variation, and the latter is the kurtosis. Algorithm 1
therefore gives greatest speedup for summations whose terms have low dispersion and low kurtosis.
The intuition is that sampling is most efficient when values are concentrated tightly in a few clusters,
making it easy to get a representative sample set. This motivates the additional speedup we later gain
by stratifying the dataset into low-variance regions.
Finally, the sample complexity bound indicates whether Algorithm 1 will actually give speedup for
any particular problem. For a given summation, let the speedup be defined as the total number of
terms n divided by the number of terms evaluated by the approximation. For a desired speedup τ ,
we need n ≥ τmbound, where mbound is the expression in Equation 4. This is the fundamental
characterization of whether speedup will be attained.

4

Algorithm 2 Iterative Monte Carlo approximation for nested summations.
MC-Approx: as in Algorithm 1
calcStats: as in Algorithm 1

addSamples(samples, mneeded, S, Xc)
for i = 1 to mneeded

Xi ← rand(S.I(Xc))
mcArgs← map(MC-Approx(∗, Xc ◦ Xi, . . .), 〈S.Gj〉)
samples← samples ∪ S.f(Xc, mcArgs)

end for

4 Multi-stage Monte Carlo

We now turn to the inductive case of nested summations, i.e. Equation 2. The approach we take
is to apply the single-stage Monte Carlo algorithm over the terms fi as before, but with recursive
invocation to obtain approximations for the arguments Gj . Algorithm 2 specifies this procedure.
Theorem 3. Given mmin large enough to put µ̂f in its asymptotic normal regime, with probability
at least 1 − α Algorithm 2 approximates the summation S with relative error no greater than ε .

Proof. We begin by noting that the proof of correctness for Algorithm 1 rests on 1) the ability to
sample from a distribution Pf whose expectation is µf = 1

n

∑
i fi, and 2) the ability to invoke the

CLT on the sample mean µ̂f in terms of the sample variance σ̂2
f . Given these properties, Equation 3

follows as a sufficient condition for relative error no greater than ε with probability at least 1−α. We
therefore need only establish that Algorithm 2 samples from a distribution having these properties.

For each sampled fi, let Ĝj be the recursive approximation for argument Gj . We assume Ĝj has
been drawn from a CLT-type normal distribution. Because the Ĝj are recursively approximated, this
is an inductive hypothesis, with the remainder of the proof showing that if the hypothesis holds for
the recursive invocations, it also holds for the outer invocation. The base case, where all recursions
must bottom out, is the type-B summation already shown to give CLT-governed answers (see proof
of Theorem 1). Let Ĝm = (Ĝ1, Ĝ2, . . .) be the vector of Ĝj values after each Ĝj has been estimated
from mj samples (

∑
mj = m), and let G be the vector of true Gj values. Since each component Ĝj

converges in distribution to N(Gj , σ
2
j /mj), Ĝm satisfies Ĝm N(G,Σm). We leave the detailed

entries of the covariance Σm unspecified, except to note that its jjth element is σ2
j /mj , and that its

off-diagonal elements may be non-zero if the Ĝj are generated in a correlated way (this can be used
as a variance reduction technique).

Given the asymptotic normality of Ĝm, the same arguments used to derive the multivariate delta
method can be used, with some modification, to show that fi(Ĝm) N(fi(G), Of (G)ΣmO

T
f (G)).

Thus, asymptotically, fi(Ĝm) is normally distributed around its true value with a variance that de-
pends on both the gradient of f and the covariance matrix of the approximated arguments in Ĝm.
This being the case, uniform sampling of the recursively estimated fi is equivalent to sampling from
a distribution P̃f that gives weight 1

n to a normal distribution centered on each fi. The expectation
over P̃f is µf , and since the algorithm uses a simple sample mean the CLT does apply. These are
the properties we need for correctness, and the applicability of the CLT combined with the proven
base case completes the inductive proof.

Note that the variance over P̃f works out to σ̃2
f = σ2

f + 1
n

∑
i∈I σ2

i , where σ2
i = Of (G)ΣmO

T
f (G).

In other words, the variance with recursive approximation is the exact variance σ2
f plus the average

of the variances σ2
i of the approximated fi. Likewise one could write an expression for the kurtosis

µ̃4f . Because we are still dealing with a sample mean, Theorem 2 still holds in the nested case.
Corollary 2.1. Given mmin large enough to put µ̂f and σ̂f in their asymptotic normal regimes,

with probability at least 1 − 2α Algorithm 2 terminates with m ≤ O
(σ̃2

f

µ2

f

+
σ̃f

|µf |

√
µ̃4f

σ̃4

f

− 1
)
.

It is important to point out that the 1 − α confidences and ε relative error bounds of the recursively
approximated arguments do not pass through to or compound in the overall estimator µ̂f : their
influence appears in the variance σ2

i of each sampled fi, which in turn contributes to the overall
variance σ̃2

f , and the error from σ̃2
f is independently controlled by the outermost sampling procedure.

5

Algorithm 3 Iterative Monte Carlo approximation for nested summations with stratification.
MC-Approx: as in Algorithm 1

calcStats(strata, samples)
m← count(samples)
µ̂fs ← stratAvg(strata, samples)
σ̂2

fs ← stratV ar(strata, samples)

return m, µ̂fs, σ̂2

fs

addSamples(strata, samples, mneeded, S, Xc)
needPerStrat = optAlloc(samples, strata, mneeded)
for s = 1 to strata.count

ms = needPerStrat[s]
for i = 1 to ms

Xi ← rand(S.I(Xc), strata[s])
mcArgs← map(MC-Approx(∗, Xc ◦ Xi, . . .), 〈S.Gj〉)
samples[s]← samples[s] ∪ S.f(Xc, mcArgs)

end for
end for

5 Variance Reduction

With Algorithm 2 we have coverage of the entire generalized summation problem class, and our
focus turns to maximizing efficiency. As noted above, Theorem 2 implies we need fewer samples
when the summation terms are tightly concentrated in a few clusters. We formalize this by spatially
partitioning the data to enable a stratified sampling scheme. Additionally, by use of correlated
sampling we induce covariance between recursively estimated summations whenever the overall
variance can be reduced by doing so. Adding these techniques to recursive Monte Carlo makes for
an extremely fast, accurate, and general approximation scheme.
Stratification. Stratification is a standard Monte Carlo principle whereby the values being sampled
are partitioned into subsets (strata) whose contributions are separately estimated and then combined.
The idea is that strata with higher variance can be sampled more heavily than those with lower
variance, thereby making more efficient use of samples than in uniform sampling. Application of
this principle requires the development of an effective partitioning scheme for each new domain of
interest. In the case of generalized summations, the values being sampled are the fi, which are not
known a priori and cannot be directly stratified. However, since f is generally a function with some
degree of continuity, its output is similar for similar values of its arguments. We therefore stratify the
argument space, i.e. the input datasets, by use of spatial partitioning structures. Though any spatial
partitioning could be used, in this work we use modified kd-trees that recursively split the data along
the dimension of highest variance. The approximation procedure runs as it did before, except that
the sampling and sample statistics are modified to make use of the trees. Trees are expanded up to
a user-specified number of nodes, prioritized by a heuristic of expanding nodes in order of largest
size times average per-dimensional standard deviation. This heuristic will later be justified by the
variance expression for the stratified sample mean. The approximation procedure is summarized in
Algorithm 3, and we now establish its error guarantee.
Theorem 4. Given mmin large enough to put µ̂f in its asymptotic normal regime, with probability
at least 1 − α Algorithm 3 approximates the summation S with relative error no greater than ε .

Proof. Identical to Theorem 3, but we need to establish that 1) the sample mean remains unbiased
under stratification, and 2) the CLT still holds under stratification. These turn out to be standard
properties of the stratified sample mean and its variance estimator (see [7]):

µ̂fs =
∑

j

pjµ̂j (5)

σ̂2(µ̂fs) =
σ̂2

fs

m
; σ̂2

fs , m
∑

j

p2
j

σ̂2
j

mj
=

∑

j

p2
j

qj
σ̂2

j , (6)

where j indexes the strata, µ̂j and σ̂2
j are the sample mean and variance of stratum j, pj is the

fraction of summation terms in stratum j, and qj is the fraction of samples drawn from stratum j.
Algorithm 3 modifies the addSamples subroutine to sample in stratified fashion, and computes the
stratified µ̂fs and σ̂2

fs instead of µ̂f and σ̂2
f in calcStats. Since these estimators satisfy the two

conditions necessary for the error guarantee, this establishes the theorem.

The true variance σ2(µ̂fs) is identical to Equation 6 but with the exact σ2
j substituted for σ̂2

j . In [7],
it is shown that σ2

fs ≤ σ2
f , i.e. stratification never increases variance, and that any refinement of a

6

stratification can only reduce σ2
fs. Although the sample allocation fractions qj can be chosen arbi-

trarily, σ2
fs is minimized when qj ∝ pjσj . With this optimal allocation, σ2

fs reduces to (
∑

j pjσj)
2.

This motivates our kd-tree expansion heuristic, as described above, which tries to first split the nodes
with highest pjσj , i.e. the nodes with highest contribution to the variance under optimal allocation.
While we never know the σj exactly, Algorithm 3 uses the sample estimates σ̂j at each stage to
approximate the optimal allocation (this is the optAlloc routine).
Finally, the Theorem 2 sample complexity still holds for the CLT-governed stratified sample mean.
Corollary 2.2. Given mmin large enough to put µ̂fs and σ̂fs in their asymptotic normal regimes,

with probability at least 1 − 2α Algorithm 3 terminates with m ≤ O
(σ2

fs

µ2

f

+
σfs

|µf |
√

µ4fs

σ4

fs

− 1
)
.

Correlated Sampling. The variance of recursively estimated fi, as expressed by Of (G)ΣmO
T
f (G),

depends on the full covariance matrix of the estimated arguments. If the gradient of f is such that the
variance of fi depends negatively (positively) on a covariance σjk, we can reduce the variance by
inducing positive (negative) covariance between Gj and Gk. Covariance can be induced by sharing
sampled points across the estimates of Gj and Gk, assuming they both use the same datasets. In
some cases the expression for fi’s variance is such that the effect of correlated sampling is data-
dependent; when this happens, it is easy to test and check whether correlation helps. All experiments
presented here were benefited by correlated sampling on top of stratification.

6 Experiments

We present experimental results in two phases. First, we compare stratified multi-stage Monte Carlo
approximations to exact evaluations on tractable datasets. We show that the error distributions con-
form closely to our asymptotic theory. Second, having verified accuracy to the extent possible,
we run our method on datasets containing millions of points in order to show 1) validation of the
theoretical prediction that runtime is roughly independent of dataset size, and 2) many orders of
magnitude speedup (as high as 1014) relative to exact computation. These results are presented for
two method-dataset pairs: kernel regression on a dataset containing 2 million 4-dimensional redshift
measurements used for quasar identification, and kernel conditional density estimation on an n-body
galaxy simulation dataset containing 3.5 million 3-dimensional locations. In the KR case, the fourth
dimension is regressed against the other three, while in KCDE the distribution of the third dimension
is predicted as a function of the first two. In both cases we are evaluating the cross-validated score
functions used for bandwidth optimization, i.e. SKR and SKCDE as described in Section 2.
Error Control. The objective of this first set of experiments is to validate the guarantee that relative
error will be less than or equal to ε with probability 1− α. We measured the distribution of error on
a series of random data subsets up to the highest size for which the exact computation was tractable.
For the O(n2) SKR, the limit was n = 10K, while for the O(n3) SKCDE it was n = 250. For each
dataset we randomly chose and evaluated 100 bandwidths with 1 − α = 0.95 and ε = 0.1. Figure 1
shows the full quantile spreads of the relative errors. The most salient feature is the relationship
of the 95% quantile line (dashed) to the threshold line at ε = 0.1 (solid). Full compliance with
asymptotic theory would require the dashed line never to be above the solid. This is basically the
case for KCDE,1 while the KR line never goes above 0.134. The approximation is therefore quite
good, and could be improved if desired by increasing mmin or the number of strata, but in this case
we chose to trade a slight increase in error for an increase in speed.
Speedup. Given the validation of the error guarantees, we now turn to computational performance.
As before, we ran on a series of random subsets of the data, this time with n ranging into the millions.
At each value of n, we randomly chose and evaluated 100 bandwidths, measuring the time for each
evaluation. Figure 2 presents the average evaluation time versus dataset size for both methods. The
most striking feature of these graphs is their flatness as n increases by orders of magnitude. This is
in accord with Theorem 2 and its corollaries, which predict sample and computational complexity
independent of dataset size. Speedups2 for KR range from 1.8 thousand at n = 50K to 2.8 million
at n = 2M. KCDE speedups range from 70 million at n = 50K to 1014 at n = 3.5M. This
performance is many orders of magnitude better than that of previous methods.

1The spike in the max quantile is due to a single outlier point.
2All speedups are relative to extrapolated runtimes based on the O() order of the exact computation.

7

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

0.15

0.2

0.25

dataset size

re
la

ti
ve

 e
rr

o
r

99%−max
90%−99%
75%−90%
50%−75%
25%−50%
10%−25%
1%−10%
min−1%
95%
error = 0.1

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

dataset size

re
la

ti
ve

 e
rr

o
r

99%−max
90%−99%
75%−90%
50%−75%
25%−50%
10%−25%
1%−10%
min−1%
95%
error = 0.1

Figure 1: Error distribution vs. dataset size for KR (left), and KCDE (right).

0 500,000 1,000,000 1,500,000 2,000,000
0

1000

2000

3000

4000

dataset size

av
g

. c
o

m
p

u
ta

ti
o

n
 t

im
e

(m
s)

0 1,000,000 2,000,000 3,000,000
−1000

0

1000

2000

3000

4000

5000

6000

dataset size

av
g

. c
o

m
p

u
ta

ti
o

n
 t

im
e

(m
s)

Figure 2: Runtime vs. dataset size for KR (left), and KCDE (right). Error bars are one standard deviation.

7 Conclusion

We have presented a multi-stage stratified Monte Carlo method for efficiently approximating a broad
class of generalized nested summations. Summations of this type lead to computational bottlenecks
in kernel estimators and elsewhere in machine learning. The theory derived for this Monte Carlo
approach predicts: 1) relative error no greater than ε with probability at least 1−α, for user-specified
ε and α, and 2) sample and computational complexity independent of dataset size. Our experimen-
tal results validate these theoretical guarantees on real datasets, where we accelerate kernel cross-
validation scores by as much as 1014 on millions of points. This is many orders of magnitude faster
than the previous state of the art. In addition to applications, future work will likely include au-
tomatic selection of stratification granularity, additional variance reduction techniques, and further
generalization to other computational bottlenecks such as linear algebraic operations.

References

[1] Nicol N. Schraudolph and Thore Graepel. Combining conjugate direction methods with stochastic approx-
imation of gradients. In Workshop on Artificial Intelligence and Statistics (AISTATS), 2003.

[2] Alexander G. Gray and Andrew W. Moore. N-body problems in statistical learning. In Advances in Neural
Information Processing Systems (NIPS) 13, 2000.

[3] Mike Klaas, Mark Briers, Nando de Freitas, and Arnaud Doucet. Fast particle smoothing: If I had a million
particles. In International Conference on Machine Learning (ICML), 2006.

[4] Ping Wang, Dongryeol Lee, Alexander Gray, and James M. Rehg. Fast mean shift with accurate and stable
convergence. In Workshop on Artificial Intelligence and Statistics (AISTATS), 2007.

[5] Michael P. Holmes, Alexander G. Gray, and Charles Lee Isbell Jr. Fast nonparametric conditional density
estimation. In Uncertainty in Artificial Intelligence (UAI), 2007.

[6] Reuven Y. Rubinstein. Simulation and the Monte Carlo Method. John Wiley & Sons, 1981.
[7] Paul Glasserman. Monte Carlo methods in financial engineering. Springer-Verlag, 2004.

8

