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Abstract

Semi-supervised methods use unlabeled data in addition to labeled data to con-
struct predictors. While existing semi-supervised methods have shown some
promising empirical performance, their development has been based largely based
on heuristics. In this paper we study semi-supervised learning from the viewpoint
of minimax theory. Our first result shows that some common methods based on
regularization using graph Laplacians do not lead to faster minimax rates of con-
vergence. Thus, the estimators that use the unlabeled data do not have smaller
risk than the estimators that use only labeled data. We then develop several new
approaches that provably lead to improved performance. The statistical tools of
minimax analysis are thus used to offer some new perspective on the problem of
semi-supervised learning.

1 Introduction

Suppose that we have labeled dafa = {(X1, Y1),...(Xn, Yn)} and unlabeled datd =
{Xns1, ... XN} whereN > nandX; € RP. Ordinary regression and classification techniques
use/ to predictY from X. Semi-supervised methods also use the unlabeled.flatan attempt

to improve the predictions. To justify these procedures, it is common to invoke one or both of the
following assumptions:

Manifold Assumption (M): The distribution ofX lives on a low dimensional manifold.

Semi-Supervised Smoothness Assumption (SSS): The regression functiom(x) =
EY | X = x is very smooth where the densip(x) of X is large. In particular, if there
is a path connecting(; and X on which p(x) is large, therl; andY; should be similar
with high probability.

While these assumptions are somewhat intuitive, and synthetic examples can easily be constructed to
demonstrate good performance of various techniques, there has been very little theoretical analysis
of semi-supervised learning that rigorously shows how the assumptions lead to improved perfor-
mance of the estimators.

In this paper we provide a statistical analysis of semi-supervised methods for regression, and pro-
pose some new techniques that provably lead to better inferences, under appropriate assumptions. In
particular, we explore precise formulations of SSS, which is motivated by the intuition that high den-
sity level sets correspond to clusters of similar objects, but as stated above is quite vague. To the best
of our knowledge, no papers have made the assumption precise and then explored its consequences
in terms of rates of convergence, with the exception of one of the first papers on semi-supervised
learning, by Castelli and Cover (1996), which evaluated a simple mixture model, and the recent
paper of Rigollet (2006) in the context of classification. This situation is striking, given the level

of activity in this area within the machine learning community; for example, the recent survey of
semi-supervised learning by Zhu (2006) contains 163 references.



Among our findings are:

1. Under the manifold assumption M, the semi-supervised smoothness assumption SSS is
superfluous. This point was made heuristically by Bickel and Li (2006), but we show
that in fact ordinary regression methods are automatically adaptive if the distributdn of
concentrates on a manifold.

2. Without the manifold assumption M, the semi-supervised smoothness assumption SSS as
usually defined is too weak, and current methods don't lead to improved inferences. In
particular, methods that use regularization based on graph Laplacians do not achieve faster
rates of convergence.

3. Assuming specific conditions that relateand p, we develop new semi-supervised meth-
ods that lead to improved estimation. In particular, we propose estimators that reduce bias
by estimating the Hessian of the regression function, improve the choice of bandwidths
using unlabeled data, and estimate the regression function on level sets.

The focus of the paper is on a theoretical analysis of semi-supervised regression techniques, rather
than the development of practical new algorithms and techniques. While we emphasize regression,
most of our results have analogues for classification. Our intent is to bring the statistical perspective
of minimax analysis to bear on the problem, in order to study the interplay between the labeled
sample size and the unlabeled sample size, and between the regression function and the data density.
By studying simplified versions of the problem, our analysis suggests how precise formulations of
assumptions M and SSS can be made and exploited to lead to improved estimators.

2 Preiminaries

The data ar€X1, Y1, R1), ..., (XN, Yn, Ry) whereR, € {0, 1} and we observ¥; only if R = 1.
The labeled data aré = {(Xj, Yj) R = 1} and the unlabeled data ae= {(X;,Y;) R = 0}.
For convenience, assume that data are labeled sdRthat 1 fori = 1,...,nandR, = O for
i=n+1,...,N. Thus, the labeled sample sizenisand the unlabeled sample sizalis= N — n.

Let p(x) be the density oK and letm(x) = E(Y | X = x) denote the regression function. Assume
thatR 1L Y | X (missing at random) and th& | X; ~ Bernoulli(z (X;)). Finally, lety = P(R =

1) = [z (x)p(x)dx. For simplicity we assume that(x) = x for all x. The missing at random
assumptiorR L Y | X is crucial, although this point is rarely emphasized in the machine learning
literature.

It is clear that without some further conditions, the unlabeled data are useless. The key assumption
we need is that there is some correspondence between the shape of the regressionnfusietion
the shape of the data densjy

We will use minimax theory to judge the quality of an estimator. Redenote a class of regression
functions and letF denote a class of density functions. In the classical setting, we observe labeled

data(X1, Y2), ..., (Xn, Yn). The pointwise minimax risk, or mean squared error (MSE), is defined
by
Ro(x) =inf  sup E(fih(x) — m(x))? 1)
M meR, peF

where the infimum is over all estimators. The global minimax risk is defined by

Ry=inf sup E / (Mn(X) — M(x))%dx. 2)

M meR, peF

A typical assumption is thak is the Sobolev space of order two, meaning essentiallyrthas
smooth second derivatives. In this case we hdRge =< n=4/“+D) The minimax rate is achieved

by kernel estimators and local polynomial estimators. In particular, for kernel estimators if we use
a product kernel with common bandwidth for each variable, choosirtg, ~ n~1/(4+P) yields an

1\We writean = bn to mean thagn /by, is bounded away from 0 and infinity for large We have suppressed
some technicalities such as moment assumptions-eryY — m(X).



estimator with the minimax rate. The difficulty is that theer&, = n=%/(*+D) js extremely slow
whenD is large.

In more detail, leC > 0 and letB be a positive definite matrix, and define

R = [m ’m(x) —m(xo) — (X — xo)TVm(xo)) < %(x —X0) " B(X — Xo) ] (3)

F = [p p(x) > b >0, [p(x1) — p(x2)| < clIxg — le|‘£]. 4)

Fan (1993) shows that the local linear estimator is asymptotically minimax for this class. This esti-
mator is given byfin(x) = ap where(ag, a1) minimizesy ;' ; (Yi —ap—a/ (Xi —x))?K (H ~1/2(X; —
X)), whereK is a symmetric kernel anHd is a matrix of bandwidths.
The asymptotic MSE of the local linear estimaiiofx) using the labeled data is
1 2 1 o2
R(H) = ( S p3(K)tr H —_—
(H) (Zﬂz( )r(Hm(X) )) + TR 0

whereHm(x) is the Hessian om at x, u2(K) = [ K2(u)du andyg is a constant. The optimal
bandwidth matrixH,. is given by

2/(D+4)

MY i s !

=z m) (6)
#5(K)nDp(x)

andR(H,) = O(n~*@+D)) This result is important to what follows, because it suggests that if the
Hessiarfn, of the regression function is related to the Hesgignof the data density, one may be
able to estimate the optimal bandwidth matrix from unlabeled data in order to reduce the risk.

+o(tr(H)) 5)

3 TheManifold Assumption

It is common in the literature to invoke both M and SSS. But if M holds, SSS is not needed. This
is argued by Bickel and Li (2006) who say, “We can unwittingly take advantage of low dimensional
structure without knowing it.”

SupposeX € RP has support on a manifolé with dimensiond < D. Let M, be the local linear
estimator with diagonal bandwidth matrit = h?l. Then Bickel and Li show that the bias and
variance are

J2(X)

b(x) = h®J(x)(1+0p(1)) and v(x) =~ (1+0p (1)) )

for some functions); andJ,. Choosingh =< n—1/4+9 yields a risk of orden—4/+9 which is the
optimal rate for data that to lie on a manifold of dimensibn

To use the above result we would need to kmbvBickel and Li argue heuristically that the following
procedure will lead to a reasonable bandwidth. First, estirdatsing the procedure in Levina
and Bickel (2005). Now leB = {11/nY/@+4  15/nl/@+9} pe a set of bandwidths, scaling

the asymptotic orden—/@+4 by different constants. Finally, choose the bandwidte B that
minimizes a local cross-validation score.

We now show that, in fact, one can skip the step of estimatinget Ey, ..., E, be independent
Bernoulli (6 = %) random variables. Split the data into two groups, sothat {i E; = 0} and
1 ={i Ei =1}. LetH = {(n"Y@t9 1 < d < D}. Constructiy, for h € H using the data
in lg, and estimate the risk from by settingﬁ(h) = |Iqt e, (Yi = Mh(Xi ))2. Finally, leth
minimize R(h) and seth = M. For simplicity, let us assume that bothand X; are bounded by a
finite constanB.

Theorem 1. Suppose that andli| < B and|Xj| < B for alli andj. Assume the conditions in
Bickel and Li (2006). Suppose that the data denpity) is supported on a manifold of dimension
d > 4. Then we have that

_ ~ 1
E(M(x) — m(x))%> = O (m) . (8)



The notationO allows for logarithmic factors im.

Proof. The risk is, up to a constarR(h) = E(Y — m(X))?, where(X,Y) is a new pair
andY = m(X) + €. Note that(Y — Mn(X))? = Y2 — 2YMn(X) + M2(X), soR(h) = E(Y?) —
2E(Y M (X)) + M2(X). Letny = |11]. Then,

~ 1 2 R 1 e
R = =3 Y2 = = 3 Vifn(Xi) + — > MR(X)). )
lieI1 lieI1 1iel1
By conditioning on the data ity and applying Bernstein’s inequality, we have
P (max|§(h) — R(h)| > e) < D P(IRh) = R(M)| > ¢) < De e’ (10)
heH hert

for somec > 0. Settinge, = +/Clogn/n for suitably largeC, we conclude that

~ Clogn
P R(h) — R(h 0. 11
(m{XI() Mr>— )—> (11)
Let h, minimize R(h) overH. Then, except on a set of probability tending to 0,
~ ~ Clogn -~ Clogn
RR) < RE)+ /=200 < R+, =2 (12)
Clogn 1 Clogn < 1
R(h,) +2,/ . _o(m)u,/ . _O(n4/(4+d)) (13)

where we used the assumptidn > 4 in the last equality. Ifd = 4 then O(/logn/n) =
O(n=#/¢4+d):if d > 4 thenO(/Togn/n) = o (n¥“+d). O

IN

We conclude that ordinary regression methods are automatically adaptive, and achieve the low-
dimensional minimax rate if the distribution &f concentrates on a manifold; there is no need for
semi-supervised methods in this case. Similar results apply to classification.

4 Kernel Regression with Laplacian Regularization

In practice, it is unlikely that the distribution &€ would be supported exactly on a low-dimensional
manifold. Nevertheless, the shape of the data dermity might provide information about the
regression functiom(x), in which case the unlabeled data are informative.

Several recent methods for semi-supervised learning attempt to exploit the smoothness assumption
SSS using regularization operators defined with respect to graph Laplacians (Zhu et al., 2003; Zhou
et al., 2004; Belkin et al., 2005). The technique of Zhu et al. (2003) is based on Gaussian random
fields and harmonic functions defined with respect to discrete Laplace operators. To express this
method in statistical terms, recall that standard kernel regression corresponds to the locally constant
estimator

>l Kn(Xi, X) Y,
zin:l Kh(X| b X)
where Ky, is a symmetric kernel depending on bandwidth paramdtertn the semi-supervised

approach of Zhu et al. (2003), the locally constant estinfage) is formed using not only the
labeled data, but also using the estimates at the unlabeled points. Suppose thattldatagtoints

Mn(x) = arg n??x‘? ; Kn(Xi, X)(Y; — m(x))? = (14)

(X1, Y1), ..., (Xn, Yp) are labeled, and the next= N — n points are unlabeleXn1, ..., Xptu.
The semi-supervised regression estimate is th@X1), M(X2), ..., M(Xy)) given by
N N
m = argmin > > Kn(Xi, Xj) (M(X;) = m(X;))? (15)
i=1j=1



where the minimization is carried out subject to the constrai(Xj) = Y;, i = 1,...,n. Thus,
the estimates are coupled, unlike the standard kernel regression estimate (14) where the estimate at
each point can be formed independently, given the labeled data.

The estimator can be written in closed form as a linear smoagther C™1B Y = G Y where
M = (M(Xny1), ..., M(Xnyu)) T is the vector of estimates over the unlabeled test pointsyaad
(Y1,...,Yn) ' isvector of labeled values. TH&l —n) x (N —n) matrix C and the(N —n) x n matrix
B denote blocks of the combinatorial Laplacian on the data graph corresponding to the labeled and

unlabeled data:
_ (A BT
A= (B C) (16)

where the Laplacialh = Ajj has entries
A — Dk Kn(Xi, Xp) ifi =]
N —Kn(Xi, Xj)  otherwise.

This expresses theffective kernel Gn terms of geometric objects such as heat kernels for the
discrete diffusion equations (Smola and Kondor, 2003).

17

This estimator assumes the noise is zero, sm¢X;) = Y; fori = 1,...,n. To work in the
standard modeY = m(X) + ¢, the natural extension of the harmonic function approachdsi-

fold regularization(Belkin et al., 2005; Sindhwani et al., 2005; Tsang and Kwok, 2006). Here the
estimator is chosen to minimize the regularized empirical risk functional

N n N N
2 2
Ry(M)=2>"> Ku(Xi. Xj) (Yj =m(XD)"+y > > Ku(Xi, X)) (m(Xj) —m(Xi))" (18)
i=1j=1 i=1j=1
whereH is a matrix of bandwidths ann (Xi, Xj) = K(H7Y2(X; — Xj)). Wheny = 0 the
standard kernel smoother is obtained. The regularization term is

N N
2
Jm) = D> Ka(Xi, Xj) (X)) —m(X;))” =2m’ Am (19)
i=1j=1
whereA is the combinatorial Laplacian associated with. This regularization term is motivated
by the semi-supervised smoothness assumption—it favors funetidaswhich m(X;) is close to
m(X;j) whenX; andX; are similar, according to the kernel function. The name manifold regulariza-

tion is justified by the fact tha%j(m) - fM | Vm(x)||2dax, the energy ofn over the manifold.

While this regularizer has primarily been used for SVM classifiers (Belkin et al., 2005), it can be
used much more generally. For an appropriate choice, ofinimizing the functional (18) can be
expected to give essentially the same results as the harmonic function approach that minimizes (15).

Theorem 2. Suppose thaD > 2. Letmy, minimize (18), and letAp y be the differential
operator defined by

Vp(X)THV f(x)

20
P00 (20)

Apnpf(x) = %trace(Hf(x)H)Jr

Then the asymptotic MSE @iy , (X) is
2

c ciuo? Coi +7) y 1
M_n(#+V)p(X)|H|l/2+( S (- L) Ap’Hm(X)) ol (21

wherey = P(R = 1).

Note that the bias of the standard kernel estimator, in the notation of this theordatx)is=
C2A p HM(X), and the variance i€ (x) = ¢1/np(x)|H |1/2. Thus, this result agrees with the standard
supervised MSE in the special case= 0. It follows from this theorem thal = M + o(tr(H))
where M is the usual MSE for a kernel estimator. Therefore, the minimurMafas the same
leading order irH as the minimum oM.

The proof is given in the full version of the paper. The implication of this theorem is that the
estimator that uses Laplacian regularization has the same rate of convergence as the usual kernel
estimator, and thus the unlabeled data have not improved the estimator asymptotically.



5 Semi-Supervised Methods With Improved Rates

The previous result is negative, in the sense that it shows unlabeled data do not help to improve the
rate of convergence. This is because the bias and variance of a manifold regularized kernel esti-
mator are of the same order ih as the bias and variance of standard kernel regression. We now
demonstrate how improved rates of convergence can be obtained by formulating and exploiting ap-
propriate SSS assumptions. We describe three different approaches: semi-supervised bias reduction,
improved bandwidth selection, and averaging over level sets.

5.1 Semi-Supervised Bias Reduction

We first show a positive result by formulating an SSS assumption that links the shapte tfie
shape ofn by positing a relationship between the Hessignof m and the Hessial , of p. Under
this SSS assumption, we can improve the rate of convergence by reducing the bias.

To illustrate the idea, takp(x) known (i.e.,N = oco) and suppose théi{m(x) = Hp(x). Define

_ . 1
M () = Mn(X) = 5 p3(K)tr(Hm(OH) (22)
wheremp (x) is the local linear estimator.

Theorem 3. The risk offin(x) is O (n=8/B+D)),

Proof. First note that the variance of the estimafiay, conditional on X4, ..., X, is
Var(Mp(X)| X1, ..., Xp) = Var(Mp(x)| X1, ..., Xn). Now, the term%y%(K)tr(Hm(x)H) is pre-
cisely the bias of the local linear estimator, under the SSS assumpticH lia} = Hm(x). Thus,
the first order bias term has been removed. The result now follows from the fact that the next term
in the bias of the local linear estimator is of ord@¢tr(H)%). O

By assuming 2&erivatives are matched, we get the raté*+40/(4+4(4D) Whenp is estimated
from the data, the risk will be inflated by —4/¢4+P) assuming standard smoothness assumptions
on p. This term will not dominate the improved rate (4+40/(4+4(4D) a5 Jong asN > n’. The
assumption that{m, = Hp can be replaced by the more realistic assumptionat= g(p; 5)

for some parameterized family of functiogs$; ). Semiparametric methods can then be used to
estimates. This approach is taken in the following section.

5.2 Improved Bandwidth Selection

Let H be the estimated bandwidth using the labeled data. We will now show how a bandwidth
H* can be estimated using the labeled and unlabeled data together, such that, under appropriate
assumptions,

_ R(H*) — R(H*

Ilmsup| (H) — RHOI

n-»oo |R(H) — R(H*)|
Therefore, the unlabeled data allow us to construct an estimator that gets closer to the oracle risk.

The improvement is weaker than the bias adjustment method. But it has the virtue that the optimal
local linear rate is maintained even if the proposed model linkifgto p is incorrect.

=0, whereH* = arg rﬂinR(H). (23)

We begin in one dimension to make the ideas clear.Mygtdenote the local linear estimator with
bandwidthH € R, H > 0. To use the unlabeled data, note that the optimal (global) bandwidth
is H* = (c2B/(4ncA))Y/5 where A = [m”(x)?dx andB = [dx/p(x). Let p(x) be the kernel
density estimator op usingXz, ..., Xy and bandwidtth = O(N~1/5). We assume

(SSS) m’(x) = Gy (p) for some functiorG depending on finitely many parametérs

— _ = \1/5 ~ — —~
Now let m”(x) = Ggz(P), and defineH* = (%) where A = f(m”(x))zdx andB =
J dx/P(x).



Theorem 4. Suppose that’(x) — m”(x) = Op(N~#) whereg > Z. LetN = N(n) - oo as
n — oco. If N/nY/* - oo, then

IR(H") = RHI _

li — = 24
Irrln—>sogp IR(H) — R(H*)| (24)
Proof. Therisk is
_ 4 1 2 Cz dX 1
R(H) = ¢ H /(m (X)) dx+—nH/—p(X)+o(—nH). (25)

The oracle bandwidth isi* = cz/n%/®> and thenR(H*) = O(n~#/5). Now let H be the bandwidth
estimated by cross-validation. Then, sifiR¢H*) = 0 andH* = O(n~1/%), we have

T g2 R
R = TR £ 00A - K (26)
0 H*\2 .
= 029 1 oA - HePd), @)

From Girard (1998)H — H* = Op(n~3/19). Hence,R(H) — R(H*) = Op(n~1). Also, P(x) —

—

p(x) = O(N~2/5), Sincem’(x) — m”(x) = Op(N %),

] * * N_2/5 N_ﬂ

The first term iop (n=3/19) sinceN > n%/4. The second term isp (n~3/19) sincep > 2/5. Thus
R(H*) — R(H*) = op(1/n) and the result follows. O

The proof in the multidimensional case is essentially the same as in the one dimensional case, except
that we use the multivariate version of Girard’s result, namly— H = Op (n—(P+2)/0+4))
This leads to the following result.

Theorem 5. LetN = N(n). If N/nP/4 - 00,0 — 0 = Op(N~#) for somep > ;25 then

Iimsule(H:)_ RHDI _
n»oo |R(H)— R(H*)|

(29)

5.3 Averaging over Level Sets

Recall that SSS is motivated by the intuition that high density level sets should correspond to clusters
of similar objects. Another approach to quantifying SSS is to make this cluster assumption explicit.
Rigollet (2006) shows one way to do this in classification. Here we focus on regression.

Suppose that = {x p(x) > A} can be decomposed into a finite number of connected, compact,
convex set€y, ..., Cqg wherel is chosen so thdt® has negligible probability. FoN large we can
replaceL with L = {x P(x) > A} with small loss in accuracy, whef@is an estimate op using

the unlabeled data; see Rigollet (2006) for details. kjet= STI(X e Cj) and forx € C;j

define N
21 Yil (Xi € Cj)
Ki '
Thus, M(x) simply averages the labels of the data that fall in the set to wkibelongs. If the

regression function is slowly varying in over this set, the risk should be small. A similar estimator
is considered by Cortes and Mohri (2006), but they do not provide estimates of the risk.

m(x) =

(30)

Theorem 6. The risk ofm(x) for x € L N Cj is bounded by

1 2.2
0 (n_n,) +0 (s%7) (31)
whered; = SURcc; IVm(x)|, ¢; = diamete(Cj) andzj = P(X € Cj).

7



Proof. Since thek; are Binomialkj = nzj + o(1) almost surely. Thus, the varianceratx)
is O(1/(nz)). The mean, giveiXy, ..., Xy, is

1 1
2 M) =m0+ > (X)) = m(x). (32)

I XjeCj I XjeCj

Now m(X;) —m(x) = (X] —x)TVm(u;) for someu; betweerx andX;. Hence|m(X;) —m(x)| <
X5 — x| SURcc; [Vm(x)|| and so the bias is bounded &y¢j. O

This result reveals an interesting bias-variance tradeoff. Makiemaller decreases the variance
and increases the bias. Suppose the two terms are balanted at. Then we will beat the usual
rate of convergence ifj (1,) > n~P/(4+D),

6 Conclusion

Semi-supervised methods have been very successful in many problems. Our results suggest that the
standard explanations for this success are not correct. We have indicated some new approaches to
understanding and exploiting the relationship between the labeled and unlabeled data. Of course, we
make no claim that these are the only ways of incorporating unlabeled data. But our results indicate
that decoupling the manifold assumption and the semi-supervised smoothness assumption is crucial
to clarifying the problem.
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