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Abstract

We propose to investigate test statistics for testing homogeneity based on kernel
Fisher discriminant analysis. Asymptotic null distributions under null hypothesis
are derived, and consistency against fixed alternatives is assessed. Finally, exper-
imental evidence of the performance of the proposed approach on both artificial
and real datasets is provided.

1 Introduction

An important problem in statistics and machine learning consists in testing whether the distributions
of two random variables are identical under the alternative that they may differ in some ways. More
precisely, let{X(1)

1 , . . . , X
(1)
n1

} and{X(2)
1 , . . . , X

(2)
n2

} be independent random variables taking val-
ues in the input space(X, d), with common distributionsP1 andP2, respectively. The problem con-
sists in testing the null hypothesisH0 : P1 = P2 against the alternativeHA : P1 6= P2. This problem
arises in many applications, ranging from computational anatomy [10] to process monitoring [7]. We
shall allow the input spaceX to be quite general, including for example finite-dimensional Euclidean
spaces or more sophisticated structures such as strings or graphs (see [17]) arising in applications
such as bioinformatics [4].

Traditional approaches to this problem are based on distribution functions and use a certain distance
between the empirical distributions obtained from the two samples. The most popular procedures
are the two-sample Kolmogorov-Smirnov tests or the Cramer-Von Mises tests, that have been the
standard for addressing these issues (at least when the dimension of the input space is small, and
most often whenX = R). Although these tests are popular due to their simplicity, they are known
to be insensitive to certain characteristics of the distribution, such as densities containing high-
frequency components or local features such as bumps. The low-power of the traditional density
based statistics can be improved on using test statistics based on kernel density estimators [2] and
[1] and wavelet estimators [6]. Recent work [11] has shown that one could difference in means in
RKHSs in order to consistently test for homogeneity. In this paper, we show that taking into account
the covariance structure in the RKHS allows to obtain simple limiting distributions.

The paper is organized as follows: in Section 2 and Section 3, we state the main definitions and we
construct the test statistics. In Section 4, we give the asymptotic distribution of our test statistic under
the null hypothesis, and investigate, the consistency and the power of the test for fixed alternatives. In

1



Section 5 we provide experimental evidence of the performance of our test statistic on both artificial
and real datasets. Detailed proofs are presented in the last sections.

2 Mean and covariance in reproducing kernel Hilbert spaces

We first highlight the main assumptions we make in the paper on the reproducing kernel, then intro-
duce operator-theoretic tools for working with distributions in infinite-dimensional spaces.

2.1 Reproducing kernel Hilbert spaces

Let (X, d) be a separable metric space, and denote byX the associatedσ-algebra. LetX be X-
valued random variable, with probability measureP; the corresponding expectation is denotedE.
Consider a Hilbert space(H, 〈·, ·〉H) of functions fromX to R. The Hilbert spaceH is an RKHS if
at eachx ∈ X, the point evaluation operatorδx : H → R, which mapsf ∈ H to f(x) ∈ R, is a
bounded linear functional. To each pointx ∈ X, there corresponds an elementΦ(x) ∈ H (we callΦ
the feature map) such that〈Φ(x), f〉H = f(x) for all f ∈ H, and〈Φ(x),Φ(y)〉H = k(x, y), where

k : X × X → R is a positive definite kernel. We denote by‖f‖H = 〈f, f〉1/2
H the associated norm.

It is assumed in the remainder thatH is a separable Hilbert space. Note that this is always the case
if X is a separable metric space and if the kernel is continuous (see [18]). Throughout this paper, we
make the following two assumptions on the kernel:

(A1) The kernelk is bounded, that is|k|∞ = sup(x,y)∈X×X
k(x, y) < ∞.

(A2) For all probability measuresP on (X,X ), the RKHS associated withk(·, ·) is dense in
L

2(P).

The asymptotic normality of our test statistics is valid without assumption (A2), while consistency
results against fixed alternatives does need (A2). Assumption (A2) is true for translation-invariant
kernels [8], and in particular for the Gaussian kernel onR

d [18]. Note that we do not require the
compactness ofX as in [18],

2.2 Mean element and covariance operator

We shall need some operator-theoretic tools to define mean elements and covariance operators in
RKHS. A linear operatorT is said to be bounded if there is a numberC such that‖Tf‖H ≤ C ‖f‖H
for all f ∈ H. The operator-norm ofT is then defined as the infimum of such numbersC, that is
‖T‖ = sup‖f‖

H
≤1 ‖Tf‖H (see [9]).

We recall below some basic facts about first and second-order moments of RKHS-valued random
variables. If

∫
k1/2(x, x)P(dx) < ∞, the mean elementµP is defined for all functionsf ∈ H as the

unique element inH satisfying,

〈µP, f〉H = Pf
def
=

∫
fdP . (1)

If furthermore
∫

k(x, x)P(dx) < ∞, then the covariance operatorΣP is defined as the unique linear
operator ontoH satisfying for allf, g ∈ H,

〈f,ΣPg〉H
def
=

∫
(f − Pf)(g − Pg)dP . (2)

Note that when assumption (A2) is satisfied, then the map fromP 7→ µP is injective. The operator
ΣP is a self-adjoint nonnegative trace-class operator. In the sequel, the dependence ofµP andΣP in
P is omitted whenever there is no risk of confusion.

Given a sample{X1, . . . , Xn}, the empirical estimates respectively of the mean element and the
covariance operator are then defined using empirical moments and lead to:

µ̂ = n−1
n∑

i=1

k(Xi, ·) , Σ̂ = n−1
n∑

i=1

k(Xi, ·) ⊗ k(Xi, ·) − µ̂ ⊗ µ̂ . (3)
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The operatorΣ is a self-adjoint nonnegative trace-class operators. Hence, it can de diagonalized in
an orthonormal basis, with a spectrum composed of a strictly decreasing sequenceλp > 0 tending
to zero and potentially a null spaceN (Σ) composed of functionsf in H such that

∫
{f −Pf}2dP =

0 [5], i.e., functions which are constant in the support ofP.

The null space may be reduced to the null element (in particular for the Gaussian kernel), or may
be infinite-dimensional. Similarly, there may be infinitely many strictly positive eigenvalues (true
nonparametric case) or finitely many (underlying finite dimensional problems).

3 KFDA-based test statistic

In the feature space, the two-sample homogeneity test procedure can be formulated as follows. Given
{X(1)

1 , . . . , X
(1)
n1

} and{X(2)
1 , . . . , X

(2)
n2

} from distributionsP1 andP2, two independent identically
distributed samples respectively fromP1 andP2, having mean and covariance operators respectively
given by(µ1,Σ1) and(µ2,Σ2), we wish to test the null hypothesisH0, µ1 = µ2 andΣ1 = Σ2,
against the alternative hypothesisHA, µ1 6= µ2.

In this paper, we tackle the problem by using a (regularized) kernelized version of the Fisher dis-

criminant analysis. Denote byΣW
def
= (n1/n)Σ1+(n2/n)Σ2 the pooled covariance operator, where

n
def
= n1 + n2, corresponding to the within-class covariance matrix in the finite-dimensional setting

(see [14]. Let us denoteΣB
def
= (n1n2/n2)(µ2−µ1)⊗(µ2−µ1) the between-class covariance oper-

ator. Fora = 1, 2, denote by(µ̂a, Σ̂a) respectively the empirical estimates of the mean element and

the covariance operator, defined as previously stated in (3). DenoteΣ̂W
def
= (n1/n)Σ̂1 + (n2/n)Σ̂2

the empirical pooled covariance estimator, andΣ̂B
def
= (n1n2/n2)(µ̂2 − µ̂1) ⊗ (µ̂2 − µ̂1) the em-

pirical between-class covariance operator. Let{γn}n≥0 be a sequence of strictly positive numbers.
The maximum Fisher discriminant ratio serves as a basis of our test statistics:

nmax
f∈H

〈
f, Σ̂Bf

〉

H〈
f, (Σ̂W + γnI)f

〉

H

=
n1n2

n

∥∥∥(Σ̂W + γnI)−
1

2 δ̂
∥∥∥

2

H
, (4)

whereI denotes the identity operator. Note that if the input space is Euclidean,e.g.X = R
d, the

kernel is lineark(x, y) = x⊤y andγn = 0, this quantity matches the so-called Hotelling’sT 2-
statistic in the two-sample case [15]. Moreover, in practice it may be computed thanks to the kernel
trick, adapted to the kernel Fisher discriminant analysis and outlined in [17, Chapter 6]. We shall
make the following assumptions respectively onΣ1 andΣ2

(B1) Foru = 1, 2, the eigenvalues{λp(Σu)}p≥1 satisfy
∑∞

p=1 λ
1/2
p (Σu) < ∞.

(B2) Foru = 1, 2, there are infinitely many strictly positive eigenvalues{λp(Σu)}p≥1 of Σu.

The statistical analysis conducted in Section 4 shall demonstrate, asγn → 0 at an appropriate
rate, the need to respectively recenter and rescale (a standard statistical transformation known as
studentization) the maximum Fisher discriminant ratio, in order to get a theoretically well-calibrated
test statistic. These roles, recentering and rescaling, will be played respectively byd1(ΣW , γ) and
d2(ΣW , γ), where for a given compact operatorΣ with decreasing eigenvaluesλp(S), the quantity
dr(Σ, γ) is defined for allq ≥ 1 as

dr(Σ, γ)
def
=

{
∞∑

p=1

(λp + γ)−rλr
p

}1/r

. (5)

4 Theoretical results

We consider in the sequel the following studentized test statistic:

T̂n(γn) =

n1n2

n

∥∥∥(Σ̂W + γnI)−1/2δ̂
∥∥∥

2

H
− d1(Σ̂W , γn)

√
2d2(Σ̂W , γn)

. (6)
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In this paper, we first consider the asymptotic behavior ofT̂n under the null hypothesis, and then
against a fixed alternative. This will establish that our nonparametric test procedure is consistent in
power.

4.1 Asymptotic normality under null hypothesis

In this section, we derive the distribution of the test statistics under the null hypothesisH0 : P1 = P2

of homogeneity,i.e.µ1 = µ2 andΣ1 = Σ2 = Σ. As γn → 0 tends to zero,

Theorem 1. Assume (A1) and (B1). IfP1 = P2 = P and ifγn + γ−1
n n−1/2 → 0, then

T̂n(γn)
D−→ N (0, 1) (7)

The proof is postponed to Section 7. Under the assumptions of Theorem 1, the sequence of tests that
rejects the null hypothesis when̂Tn(γn) ≥ z1−α, wherez1−α is the(1−α)-quantile of the standard
normal distribution, is asymptotically levelα. Note that the limiting distribution does not depend on
the kernel nor on the regularization parameter.

4.2 Power consistency

We study the power of the test based onT̂n(γn) under alternative hypotheses. The minimal re-
quirement is to to prove that this sequence of tests is consistent in power. A sequence of tests of
constant levelα is said to beconsistent in powerif the probability of accepting the null hypothesis
of homogeneity goes to zero as the sample size goes to infinity under afixedalternative.

The following proposition shows that the limit is finite, strictly positive and independent of the kernel
otherwise (see [8] for similar results for canonical correlation analysis). The following result gives

some useful insights on
∥∥∥Σ−1/2

W δ
∥∥∥
H

, i.e.the population counterpart of
∥∥∥(Σ̂−1/2

W + γnI)−1/2δ̂
∥∥∥
H

on

which our test statistics is based upon.

Proposition 2. Assume (A1) and (A2). Ifγn+γ−1
n n−1/2 → 0, then for any probability distributions

P1 andP2,

∥∥∥Σ−1/2
W δ

∥∥∥
2

H
=

1

ρ1ρ2

(
1 −

∫
p1p2

ρ1p1 + ρ2p2
dν

)(∫
p1p2

ρ1p1 + ρ2p2
dρ

)−1

,

whereν is any probability measure such thatP1 andP2 are absolutely continuous w.r.t.ν andp1

andp2 are the densities ofP1 andP2 with respect toν.

The norm
∥∥∥Σ−1/2

W δ
∥∥∥

2

H
is finite when theχ2-divergence

∫
p−1
1 (p2 − p1)

2dρ is finite. It is equal to

zero if theχ2-divergence is null, that is, if and only ifP1 = P2.

By combining the two previous propositions, we therefore obtain the following consistency Theo-
rem.

Theorem 3. Assume (A1) and (A2). LetP1 and P2 be two distributions over(X,X ), such that
P2 6= P1. If γn + γ−1

n n−1/2 → 0, then

PHA
(T̂n(γ) > z1−α) → ∞ . (8)

5 Experiments

In this section, we investigate the experimental performances of our test statistic KFDA, and com-
pare it in terms of power against other nonparametric test statistics.

5.1 Artificial data

We shall focus here on a particularly simple setting, in order analyze the major issues arising in
applying our approach in practice. Indeed, we consider the periodic smoothing spline kernel (see
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γ = 10−1 10−4 10−7 10−10

KFDA 0.01±0.0032 0.11±0.0062 0.98±0.0031 0.99±0.0001
MMD 0.01±0.0023 id. id. id.

Table 1: Evolution of power of KFDA and MMD respectively, asγ goes to0.

[19] for a detailed derivation), for which explicit formulae are available for the eigenvalues of the
corresponding covariance operator when the underlying distribution is uniform. This allows us to
alleviate the issue of estimating the spectrum of the covariance operator, and weigh up the practical
impact of the regularization on the power of our test statistic.

Periodic smoothing spline kernel ConsiderX as the two-dimensional circle identified with the
interval [0, 1] (with periodicity conditions). We consider the strictly positive sequenceKν =
(2πν)−2m and the following norm:

‖f‖2
H =

〈f, c0〉2
K0

+
∑

ν>0

〈f, cν〉2 + 〈f, sν〉2
Kν

wherecν(t) =
√

2 cos 2πνt andsν(t) =
√

2 sin 2πνt for ν ≥ 1 andc0(t) = 1X. This is always an
RKHS norm associated with the following kernel

K(s, t) =
(−1)m−1

(2m)!
B2m((s − t) − ⌊s − t⌋)

whereB2m is the2m-th Bernoulli polynomial. We haveB2(x) = x2 − x + 1/6.

We consider the following testing problem
H0 : p1 = p2

HA : p2 6= p2

with p1 the uniform density (i.e., the density with respect to the Lebesgue measure is equal toc0),
and densitiesp2 = p1(c0 + .25∗c4). The covariance operatorΣ(p1) has eigenvectorsc0, cν , sν with
eigenvalues0 for c0 andKν for others.

Comparison with MMD We conducted experimental comparison in terms of power, form = 2
andn = 104 andε = 0.5. All quantities involving the eigenvalues of the covariance operator were
computed from their counterparts instead of being estimated. The sampling frompn

2 was performed
by inverting the cumulative distribution function. The table below displays the results, averaged
over 10 Monte-Carlo runs.

5.2 Speaker verification

We conducted experiments in a speaker verification task [3], on a subset of 8 female speakers using
data from the NIST 2004 Speaker Recognition Evaluation. We refer the reader to [16] for instance
for details on the pre-processing of data. The figure shows averaged results over all couples of speak-
ers. For each couple of speaker, at each run we took3000 samples of each speaker and launched our
KFDA-test to decide whether samples come from the same speaker or not, and computed the type
II error by comparing the prediction to ground truth. We averaged the results for100 runs for each
couple, and all couples of speaker. The level was set toα = 0.05, since the empirical level seemed
to match the prescribed for this value of the level as we noticed in previous subsection. We per-
formed the same experiments for the Maximum Mean Discrepancy and the Tajvidi-Hall test statistic
(TH, [13]). We summed up the results by plotting the ROC-curve for all competing methods. Our
method reaches good empirical power for a small value of the prescribed level (1− β = 90% for
α = 0.05%). Maximum Mean Discrepancy also yields good empirical performance on this task.

6 Conclusion

We proposed a well-calibrated test statistic, built on kernel Fisher discriminant analysis, for which
we proved that the asymptotic limit distribution under null hypothesis is standard normal distribu-
tion. Our test statistic can be readily computed from Gram matrices once a kernel is defined, and
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Figure 1: Comparison of ROC curves in a speaker verification task

allows us to perform nonparametric hypothesis testing for homogeneity for high-dimensional data.
The KFDA-test statistic yields competitive performance for speaker identification.

7 Sketch of proof of asymptotic normality under null hypothesis

Outline. The proof of the asymptotic normality of the test statistics under null hypothesis follows
four steps. As a first step, we derive an asymptotic approximation of the test statistics asγn +

γ−1
n n−1/2 → 0 , where the only remaining stochastic term isδ̂. The test statistics is then spanned

onto the eigenbasis ofΣ, and decomposed into two termsBn andCn. The second step allows to
prove the asymptotic negligibility ofBn, while the third step establishes the asymptotic normality
of Cn by a martingale central limit theorem (MCLT).

Step 1:T̂n(γn) = T̃n(γn) + oP (1). First, we may prove, using perturbation results of covariance
operators, that, asγn + γ−1

n n−1/2 → 0 , we have

T̂n(γn) =
(n1n2/n)

∥∥∥(Σ + γI)
−1/2

δ̂
∥∥∥

2

H
− d1(Σ, γ)

√
2d2(Σ, γ)

+ oP (1) . (9)

For ease of notation, in the following, we shall often omitΣ in quantities involving it. Hence, from
now on,λp, λq, d2,n stand forλp(Σ), λq(Σ), d2(Σ, γn). Define

Yn,p,i
def
=






(
n2

n1n

)1/2 (
ep(X

(1)
i ) − E[ep(X

(1)
1 )]

)
1 ≤ i ≤ n1 ,

−
(

n1

n2n

)1/2 (
ep(X

(2)
i−n1

) − E[ep(X
(2)
1 )]

)
n1 + 1 ≤ i ≤ n .

(10)

We now give formulas for the moments of{Yn,p,i}1≤i≤n,p≥1, often used in the proof. Straightfor-
ward calculations give

n∑

i=1

E[Yn,p,iYn,q,i] = λ1/2
p λ1/2

q δp,q , (11)

while the Cauchy-Schwarz inequality and the reproducing property give

Cov(Y 2
n,p,i, Y

2
n,q,i) ≤ Cn−2|k|∞λ1/2

p λ1/2
q . (12)

DenoteSn,p
def
=
∑n

i=1 Yn,p,i. Using Eq. (11), our test statistics now writes asT̃n = (
√

2d2,n)−1An

with

An
def
=

n1n2

n

∥∥∥(Σ + γnI)−1/2δ̂
∥∥∥

2

− d1,n =
∞∑

p=1

(λp + γn)
−1 {

S2
n,p − ES2

n,p

}
= Bn + 2Cn .

(13)
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whereBn andCn are defined as follows

Bn
def
=

∞∑

p=1

n∑

i=1

{
Y 2

n,p,i − EY 2
n,p,i

}
, (14)

Cn
def
=

∞∑

p=1

(λp + γn)
−1

n∑

i=1

Yn,p,i






i−1∑

j=1

Yn,p,j




 . (15)

Step 2:Bn = oP (1). The proof consists in computing the variance of this term. Since the variables
Yn,p,i andYn,q,j are independent ifi 6= j, thenVar(Bn) =

∑n
i=1 vn,i, where

vn,i
def
= Var

(
∞∑

p=1

(λp + γn)−1{Y 2
n,p,i − E[Y 2

n,p,i]}
)

=

∞∑

p,q=1

(λp + γn)−1(λq + γn)−1Cov(Y 2
n,p,i, Y

2
n,q,i) .

Using Eq. (12), we get
∑n

i=1 vn,i ≤ Cn−1γ−2
n

(∑∞
p=1 λ

1/2
p

)2

where the RHS above is indeed

negligible, since by assumption we haveγ−1
n n−1/2 → 0 and

∑∞
p=1 λ

1/2
p < ∞.

Step 3:d−1
2,nCn

D−→ N(0, 1/2). We use the central limit theorem (MCLT) for triangular arrays of
martingale differences (see e.g. [12, Theorem 3.2]). For= 1, . . . , n, denote

ξn,i
def
= d−1

2,n

∞∑

p=1

(λp + γn)−1Yn,p,iMn,p,i−1 , where Mn,p,i
def
=

i∑

j=1

Yn,p,j , (16)

and letFn,i = σ (Yn,p,j , p ∈ {1, . . . , n}, j ∈ {0, . . . , i}). Note that, by construction,ξn,i is a mar-
tingale increment,i.e. E [ξn,i | Fn,i−1] = 0. The first step in the proof of the CLT is to establish
that

s2
n =

n∑

i=1

E
[
ξ2
n,i

∣∣Fn,i−1

] P−→ 1/2 . (17)

The second step of the proof is to establish the negligibility condition. We use [12, Theorem

3.2], which requires to establish thatmax1≤i≤n |ξn,i| P−→ 0 (smallness) andE(max1≤i≤n ξ2
n,i)

is bounded inn (tightness), whereξn,i is defined in (16). We will establish the two conditions
simultaneously by checking that

E

(
max

1≤i≤n
ξ2
n,i

)
= o(1) . (18)

Splitting the sums2
n, between diagonal termsDn, and off-diagonal termsEn, we have

Dn = d−2
2,n

∞∑

p=1

(λp + γn)−2
n∑

i=1

M2
n,p,i−1E[Y 2

n,p,i] , (19)

En = d−2
2,n

∑

p6=q

(λp + γn)−1(λq + γn)−1
n∑

i=1

Mn,p,i−1Mn,q,i−1E[Yn,p,iYn,q,i] . (20)

Consider first the diagonal termsEn. We first compute its mean. Note thatE[M2
n,p,i] =

∑i
j=1 E[Y 2

n,p,j ]. Using Eq. (11) we get

∞∑

p=1

(λp + γn)−2
n∑

i=1

i−1∑

j=1

E[Y 2
n,p,j ]E[Y 2

n,p,i]

=
1

2

∞∑

p=1

(λp + γn)−2






[
n∑

i=1

E[Y 2
n,p,i]

]2

−
n∑

i=1

E
2[Y 2

n,p,i]




 =
1

2
d2
2,n

{
1 + O(n−1)

}
.
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Therefore,E[Dn] = 1/2 + o(1). Next, we may prove thatDn − E[Dn] = oP (1) is negligible, by
checking thatVar[Dn] = o(1). We finally considerEn defined in (20), and prove thatEn = oP (1)
using Eq. (11). This concludes the proof of Eq. (17).

We finally show Eq. (18). Since|Yn,p,i| ≤ n−1/2|k|1/2
∞ P-a.s we may bound

max
1≤i≤n

|ξn,i| ≤ Cd−1
2,nn−1/2

∞∑

p=1

(λp + γn)−1 max
1≤i≤n

|Mn,p,i−1| . (21)

Then, the Doob inequality implies thatE
1/2[max1≤i≤n |Mn,p,i−1|2] ≤ E

1/2[M2
n,p,n−1] ≤ Cλ

1/2
p .

Plugging this bound in (21), the Minkowski inequality

E
1/2

(
max

1≤i≤n
ξ2
n,i

)
≤ C

{
d−1
2,nγ−1

n n−1/2
∞∑

p=1

λ1/2
p

}
,

and the proof is concluded using the fact thatγn + γ−1
n n−1/2 → 0 and Assumption (B1).
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[10] U. Grenander and M. Miller.Pattern Theory: from representation to inference. Oxford Univ. Press, 2007.

[11] A. Gretton, K. Borgwardt, M. Rasch, B. Schoelkopf, and A. Smola. A kernel method for the two-sample
problem. InAdv. NIPS, 2006.

[12] P. Hall and C. Heyde.Martingale Limit Theory and Its Application. Academic Press, 1980.

[13] P. Hall and N. Tajvidi. Permutation tests for equality of distributions in high-dimensional settings.
Biometrika, 89(2):359–374, 2002.

[14] T. Hastie, R. Tibshirani, and J. Friedman.The Elements of Statistical Learning. Springer Series in
Statistics. Springer, 2001.

[15] E. Lehmann and J. Romano.Testing Statistical Hypotheses (3rd ed.). Springer, 2005.

[16] J. Louradour, K. Daoudi, and F. Bach. Feature space mahalanobis sequence kernels: Application to svm
speaker verification.IEEE Transactions on Audio, Speech and Language Processing, 2007. To appear.

[17] J. Shawe-Taylor and N. Cristianini.Kernel Methods for Pattern Analysis. Cambridge Univ. Press, 2004.

[18] I. Steinwart, D. Hush, and C. Scovel. An explicit description of the reproducing kernel hilbert spaces of
gaussian RBF kernels.IEEE Transactions on Information Theory, 52:4635–4643, 2006.

[19] G. Wahba.Spline Models for Observational Data. SIAM, 1990.

8


