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Abstract

We propose to investigate test statistics for testing homogeneity based on kernel
Fisher discriminant analysis. Asymptotic null distributions under null hypothesis
are derived, and consistency against fixed alternatives is assessed. Finally, exper-
imental evidence of the performance of the proposed approach on both artificial
and real datasets is provided.

1 Introduction

An important problem in statistics and machine learning consists in testing whether the distributions
of two random variables are identical under the alternative that they may differ in some ways. More
precisely, Iet{X}l), o ,Xr(fl)} and{Xf), .. ,Xr(i)} be independent random variables taking val-

ues in the input spadg, d), with common distribution®; andP, respectively. The problem con-

sists in testing the null hypothesdik, : P, = P, against the alternative 4 : P; # P,. This problem

arises in many applications, ranging from computational anatomy [10] to process monitoring [7]. We
shall allow the input space to be quite general, including for example finite-dimensional Euclidean
spaces or more sophisticated structures such as strings or graphs (see [17]) arising in applications
such as bioinformatics [4].

Traditional approaches to this problem are based on distribution functions and use a certain distance
between the empirical distributions obtained from the two samples. The most popular procedures
are the two-sample Kolmogorov-Smirnov tests or the Cramer-Von Mises tests, that have been the
standard for addressing these issues (at least when the dimension of the input space is small, and
most often wherX = R). Although these tests are popular due to their simplicity, they are known

to be insensitive to certain characteristics of the distribution, such as densities containing high-
frequency components or local features such as bumps. The low-power of the traditional density
based statistics can be improved on using test statistics based on kernel density estimators [2] and
[1] and wavelet estimators [6]. Recent work [11] has shown that one could difference in means in
RKHSs in order to consistently test for homogeneity. In this paper, we show that taking into account
the covariance structure in the RKHS allows to obtain simple limiting distributions.

The paper is organized as follows: in Section 2 and Section 3, we state the main definitions and we
construct the test statistics. In Section 4, we give the asymptotic distribution of our test statistic under
the null hypothesis, and investigate, the consistency and the power of the test for fixed alternatives. In



Section 5 we provide experimental evidence of the performanour test statistic on both artificial
and real datasets. Detailed proofs are presented in the last sections.

2 Mean and covariance in reproducing kernel Hilbert spaces

We first highlight the main assumptions we make in the paper on the reproducing kernel, then intro-
duce operator-theoretic tools for working with distributions in infinite-dimensional spaces.

2.1 Reproducing kernel Hilbert spaces

Let (X, d) be a separable metric space, and denoté’tihe associated-algebra. LetX be X-
valued random variable, with probability measitethe corresponding expectation is denold
Consider a Hilbert spacgt, (-, -),,) of functions fromX to R. The Hilbert spacét is an RKHS if
at eachr € X, the point evaluation operatér, : H — R, which mapsf € Hto f(z) € R, is a
bounded linear functional. To each point X, there corresponds an elemértr) € H (we call®
the feature map) such theb(z), f),, = f(x) forall f € H, and(®(x), ®(y)),, = k(z,y), where

k: X x X — Ris a positive definite kernel. We denote by||,, = (f, f)1/2 the associated norm.

It is assumed in the remainder tifdtis a separable Hilbert space. Note that this is always the case

if X is a separable metric space and if the kernel is continuous (see [18]). Throughout this paper, we
make the following two assumptions on the kernel:

(A1) The kernelk is bounded, that if[o = sup(, ,)exxx k(7,y) < o0

(A2) For all probability measureB on (X, X'), the RKHS associated with(-, -) is dense in
L2(P).

The asymptotic normality of our test statistics is valid without assumption (A2), while consistency
results against fixed alternatives does need (A2). Assumption (A2) is true for translation-invariant
kernels [8], and in particular for the Gaussian kernelRn[18]. Note that we do not require the
compactness of as in [18],

2.2 Mean element and covariance operator

We shall need some operator-theoretic tools to define mean elements and covariance operators in
RKHS. Alinear operatol is said to be bounded if there is a numbésuch that| 7' f||,, < C'|| 1|5,
for all f € H. The operator-norm df’ is then defined as the infimum of such numb@tghat is

TN = supy gy, <1 1T fll5 (see [9]).

We recall below some basic facts about first and second-order moments of RKHS-valued random
variables. If[ k1/2(z, z)P(dx) < oo, the mean element: is defined for all functiong’ € H as the
unique element ifH satisfying,

<w,H—Pf?/ﬁm ()

If furthermore [ k(x, z)P(dz) < oo, then the covariance operafos is defined as the unique linear
operator ontd satisfying for allf, g € H,

def

vxwﬂ—/u—wm—mwv @)

Note that when assumption (A2) is satisfied, then the map ffom wp is injective. The operator
Yp is a self-adjoint nonnegative trace-class operator. In the sequel, the dependepeadip in
P is omitted whenever there is no risk of confusion.

Given a sampld X1, ..., X, }, the empirical estimates respectively of the mean element and the
covariance operator are then defined using empirical moments and lead to:

p=ntY k(X)) 2 ‘*}jk Xi, ) @k(Xi, ) —p® fi. ®)
i=1



The operatol is a self-adjoint nonnegative trace-class operators. Hence, it can de diagonalized in
an orthonormal basis, with a spectrum composed of a strictly decreasing seqyendetending

to zero and potentially a null spagé(X) composed of functiong in H such that/{ f —Pf}?dP =

0 [5], i.e., functions which are constant in the supporPof

The null space may be reduced to the null element (in particular for the Gaussian kernel), or may
be infinite-dimensional. Similarly, there may be infinitely many strictly positive eigenvalues (true
nonparametric case) or finitely many (underlying finite dimensional problems).

3 KFDA-based test statistic

In the feature space, the two-sample homogeneity test procedure can be formulated as follows. Given
{Xfl), . ,Xr(fl)} and{XfQ), . ,Xﬁi)} from distributionsP; andP,, two independent identically
distributed samples respectively frdh andP5, having mean and covariance operators respectively
given by (u1, 1) and(us, X2), we wish to test the null hypothesigy, 111 = p2 and¥; = X,

against the alternative hypothesls,, ;i1 # puo.

In this paper, we tackle the problem by using a (regularized) kernelized version of the Fisher dis-

criminant analysis. Denote Byy, def (n1/n)X1+(ng/n)E, the pooled covariance operator, where

n n1 + ng, corresponding to the within-class covariance matrix in the finite-dimensional setting

(see[14]. Let us denofép def (ning/n?)(u2 — p1) ® (u2 — 1) the between-class covariance oper-

ator. Fora = 1, 2, denote by(ji,, 2, ) respectively the empirical estimates of the mean element and
def

the covariance operator, defined as previously stated in (3). DaRpte: (nl/n)il + (ng/n)ig
the empirical pooled covariance estimator, ahgl def (nina/n?)(fiz — fi1) @ (fia — f11) the em-
pirical between-class covariance operator. {-gt},,>0 be a sequence of strictly positive numbers.
The maximum Fisher discriminant ratio serves as a basis of our test statistics:

nmax <f72Bf>H e H(iW +%LI)7%S

Jen <f, (Sw +%I)f>H n

wherel denotes the identity operator. Note that if the input space is EuclideguX = RY, the

kernel is lineark(x,y) = ="y and~, = 0, this quantity matches the so-called Hotellin@'s-
statistic in the two-sample case [15]. Moreover, in practice it may be computed thanks to the kernel
trick, adapted to the kernel Fisher discriminant analysis and outlined in [17, Chapter 6]. We shall
make the following assumptions respectivelyXonand,

(4)

2
)
H

(B1) Foru = 1,2, the eigenvalue$), (X,)},>1 satisfyd 2 | )\,1,/2(2,”) < 0.
(B2) Foru = 1,2, there are infinitely many strictly positive eigenvalyes,(2,,) },>1 of £,,.

The statistical analysis conducted in Section 4 shall demonstratg, as 0 at an appropriate

rate, the need to respectively recenter and rescale (a standard statistical transformation known as
studentization) the maximum Fisher discriminant ratio, in order to get a theoretically well-calibrated
test statistic. These roles, recentering and rescaling, will be played respectivélydhy . ~) and
d2(Zw, ), where for a given compact opera®mwith decreasing eigenvalues (S), the quantity

d,(X,~) is defined for ally > 1 as

00 1/r
dy(S,7) < {Z(Ap - WA;;} . (5)

p=1
4 Theoretical results

We consider in the sequel the following studentized test statistic:

- A2 A
N (G 3D 72|~ di (B, 7)
To(vm) = ; . 6
) V2dy(Zw, ) ©

ninz
n
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In this paper, we first consider the asymptotic behaviof,plunder the null hypothesis, and then
against a fixed alternative. This will establish that our nonparametric test procedure is consistent in
power.

4.1 Asymptotic normality under null hypothesis

In this section, we derive the distribution of the test statistics under the null hypothesiB; = P
of homogeneityi.e. u; = ue andd; = X5 = 3. As~,, — 0tends to zero,

Theorem 1. Assume (A1) and (B1). #, = P, = P and ify,, 4+ v, 'n~1/? — 0, then

() 2 N(0,1) 7

The proof is postponed to Section 7. Under the assumptions of Theorem 1, the sequence of tests that
rejects the null hypothesis whéh(%) > 2z1_a, Wherez; _, is the(1 — «)-quantile of the standard

normal distribution, is asymptotically level Note that the limiting distribution does not depend on

the kernel nor on the regularization parameter.

4.2 Power consistency

We study the power of the test based Bi(v,,) under alternative hypotheses. The minimal re-
guirement is to to prove that this sequence of tests is consistent in power. A sequence of tests of
constant levek is said to beconsistent in poweif the probability of accepting the null hypothesis

of homogeneity goes to zero as the sample size goes to infinity uricedalternative.

The following proposition shows that the limit is finite, strictly positive and independent of the kernel
otherwise (see [8] for similar results for canonical correlation analysis). The following result gives
some useful insights o‘vﬁzv}}/zéu , i.e.the population counterpart #(2;1,1/2 + %I)—WSH on

H H
which our test statistics is based upon.

Proposition 2. Assume (A1) and (A2). 4f, +~,, 'n~'/? — 0, then for any probability distributions

]Pl and]P)Q,
"271/25”2 _ 1 (1 _/ P1p2 du) (/ P1D2 dp>_1
W H o p1p2 pP1P1 + p2p2 P1P1 + p2p2 '

wherev is any probability measure such th&t and P, are absolutely continuous w.r.tz and p;
andp, are the densities df; andP, with respect ta.

2
The normHE;VméH is finite when thqz—divergencefpl‘l(pz — p1)%dp is finite. It is equal to
H
zero if they2-divergence is null, that is, if and only; = Ps.
By combining the two previous propositions, we therefore obtain the following consistency Theo-
rem.

Theorem 3. Assume (Al) and (A2). L&; and P, be two distributions ove(X, X'), such that
Py # Py, If 7y, + 7, 'n"/2 — 0, then

~

PHA(TH('}/) > 21-a) — 00. ®)

5 Experiments

In this section, we investigate the experimental performances of our test statistic KFDA, and com-
pare it in terms of power against other nonparametric test statistics.

5.1 Atrtificial data

We shall focus here on a particularly simple setting, in order analyze the major issues arising in
applying our approach in practice. Indeed, we consider the periodic smoothing spline kernel (see



y= |10t | 1074 | 1077 | 10710
KFDA | 0.01+00032 | 0.11+£00062 | 0.98+£00031 | 0.99+00001
MMD | 0.014+00023 | id. id. id.

Table 1: Evolution of power of KFDA and MMD respectively, agjoes ta).

[19] for a detailed derivation), for which explicit formulae are available for the eigenvalues of the
corresponding covariance operator when the underlying distribution is uniform. This allows us to
alleviate the issue of estimating the spectrum of the covariance operator, and weigh up the practical
impact of the regularization on the power of our test statistic.

Periodic smoothing spline kernel ConsiderX as the two-dimensional circle identified with the
interval [0, 1] (with periodicity conditions). We consider the strictly positive sequefGe =
(27v)~2™ and the following norm:

(f.c0) (f.ev)? +{f 50)°
1513, = Sty 5 Mol i)

v>0

wherec, (t) = V2 cos 2rvt ands, (t) = /2sin 27wt for v > 1 andcey(t) = 1x. This is always an
RKHS norm associated with the following kernel

_1\ym—1
K(s,t) = ((;imBgm((s )= |s—t])

whereBs,,, is the2m-th Bernoulli polynomial. We havés(x) = 22 — z + 1/6.

We consider the following testing problem
Ho: p1=p2
Ha: p2#p2
with p; the uniform density (i.e., the density with respect to the Lebesgue measure is egyal to

and densitieps = p1(co + .25 % ¢4). The covariance operatdl(p, ) has eigenvectors), c,, s, with
eigenvalue9 for ¢y and K, for others.

Comparison with MMD  We conducted experimental comparison in terms of powenyfes 2

andn = 10* ande = 0.5. All quantities involving the eigenvalues of the covariance operator were
computed from their counterparts instead of being estimated. The sampling!framas performed

by inverting the cumulative distribution function. The table below displays the results, averaged
over 10 Monte-Carlo runs.

5.2 Speaker verification

We conducted experiments in a speaker verification task [3], on a subset of 8 female speakers using
data from the NIST 2004 Speaker Recognition Evaluation. We refer the reader to [16] for instance
for details on the pre-processing of data. The figure shows averaged results over all couples of speak-
ers. For each couple of speaker, at each run we 360k samples of each speaker and launched our
KFDA-test to decide whether samples come from the same speaker or not, and computed the type
Il error by comparing the prediction to ground truth. We averaged the result®@auns for each

couple, and all couples of speaker. The level was sat+$00.05, since the empirical level seemed

to match the prescribed for this value of the level as we noticed in previous subsection. We per-
formed the same experiments for the Maximum Mean Discrepancy and the Tajvidi-Hall test statistic
(TH, [13]). We summed up the results by plotting the ROC-curve for all competing methods. Our
method reaches good empirical power for a small value of the prescribed leveb (= 90% for

a = 0.05%). Maximum Mean Discrepancy also yields good empirical performance on this task.

6 Conclusion

We proposed a well-calibrated test statistic, built on kernel Fisher discriminant analysis, for which
we proved that the asymptotic limit distribution under null hypothesis is standard normal distribu-
tion. Our test statistic can be readily computed from Gram matrices once a kernel is defined, and
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Figure 1: Comparison of ROC curves in a speaker verificatisk ta

allows us to perform nonparametric hypothesis testing for homogeneity for high-dimensional data.
The KFDA-test statistic yields competitive performance for speaker identification.

7 Sketch of proof of asymptotic normality under null hypothesis

Outline. The proof of the asymptotic normality of the test statistics under null hypothesis follows
four steps. As a first step, we derive an asymptotic approximation of the test statistigstas

—In=1/2 - 0, where the only remaining stochastic termv isThe test statistics is then spanned
onto the eigenbasis af, and decomposed into two termis, andC,,. The second step allows to
prove the asymptotic negligibility oB,,, while the third step establishes the asymptotic normality
of C,, by a martingale central limit theorem (MCLT). O

Step 1:fn(%) = Tn(’yn) +op(1). First, we may prove, using perturbation results of covariance
operators, that, as, + v, 'n~/2 — 0, we have

L /) @) - )
T.(vn) = ﬂdg(Z 7 +op(1). 9)

O

For ease of notation, in the following, we shall often olitn quantities involving it. Hence, from
oW oNn,\,, Ay, da,p, stand forh, (X), A\, (2), d2(X, vy, ). Define

 def (%)1/2 (ep(Xi(l)) - E[%Uq”)]) 1<i<ng,
T () (X2 Bl (X)) mt1<i<al

nan i—nq

(10)

We now give formulas for the moments ¥, ,, ; }1<i<n p>1, Often used in the proof. Straightfor-
ward calculations give

n
ZE[Yn7p7iYn,q,i] = \2AV36, (11)
=1

while the Cauchy-Schwarz inequality and the reproducing property give
Cov(Y;2, 0 Y2 i) < Cn2klso A/ 2AL/2 (12)

n,p,i’ *n,q,i
DenoteS,, , def > Y, .. Using Eq. (11), our test statistics now writes/as— (\/idgyn)ilAn
with

def 10172

A2 >
A (0 ) Y2 =y = 30 O ) T {2, —BS2, = Ba 20,
1

n

(13)



whereB,, and C,, are defined as follows

defZZ{Y%W EY2, .} (14)

p=1i=1
o] n i—1

- Z p Tt )~ Z Yo p,i Z Yopi ¢ - (15)
p=1 i=1 j=1

Step 2:B,, = op(1). The proof consists in computing the variance of this term. Since the variables
Y, p.i andY,, . ; are independent if # j, thenVar(B,,) = >_""_, v, ;, where

-dﬁ*Vr<Z< + )" {W—E[Y%p,l}>

p=1
= Z ()\P + ’yn)il()‘q + ’Yn) ICOV(Ynzp 79 Yan z) .
p,q=1

2
Using Eqg. (12), we geb_; v, < Cn1y,2 (ZOO_ )\11/2> where the RHS above is indeed

p=1
1/2

negligible, since by assumption we hayg'n~'/> — 0 and}> >, ;" < cc. O

Step 3:d,, Lo, N N(0,1/2). We use the central limit theorem (MCLT) for triangular arrays of
martingale differences (see e.g. [12, Theorem 3.2]).=Fdr . .., n, denote

dﬁfd2nz)\ +’Yn 1Y,P,M n,p,i—1 where anzdefzy7pj’ (16)

j=1
and let?,, ; = a(Yn,m,p €{1,...,n},j €{0,...,i}). Note that, by constructiot,, ; is a mar-
tingale incrementi.e. E[&, ;| Fni—1] = 0. The first step in the proof of the CLT is to establish
that

=Y E[&,]Fuia] —1/2. (17)
i=1
The second step of the proof is to establish the negligibility condition. We use [12, Theorem
3.2], which requ|res to establish thatax;<;<y, [£,,4] .0 (smallness) andE(max;<;<p gm)
is bounded inn (tightness), wherg,, ; is defined in (16). We will establish the two conditions
simultaneously by checking that

E (fg&x I3 ) =o(1). (18)
Splitting the sums?, between diagonal term,,, and off-diagonal term&’,,, we have
_dZiZ)‘ +’Yn 22 n,p,i— 1]E npz]v (19)
En = d2_7721 ()‘p =+ ’Vn)_l(/\q + FYn)_l Z Mn,p,i—an,q,i—lE[Y n,p,i }/n,q l] . (20)
P#q =1

Consider first the diagonal terms,,. We first compute its mean. Note thEf
S E[ nm] Using Eqg. (11) we get

npi]

=1

00 n t—1

Z/\ +ryn 2ZZEYQ7P7 npl]
p=1 i=1 j=1

1 & " 1
,52)\ T ZE 2 il —Z]EQ[Y,LQM] = 5B, {1+0(m™ )} .




Therefore E[D,,] = 1/2 + o(1). Next, we may prove thab,, — E[D,,] = op(1) is negligible, by
checking thaVar[D,,] = o(1). We finally consideZ,, defined in (20), and prove th#&t, = op(1)
using Eq. (11). This concludes the proof of Eq. (17).

We finally show Eq. (18). Sinck;, ;| < n=1/2|k|5.* P-a.s we may bound
1< Od=tp—1/2 -1 o
ax |6l < Cdgyn E(A,, )7 max Mol (21)
-

Then, the Doob inequality implies th&#/2[max; <;<,, [M, 1|2 < EV2[MZ, 1] < ON/* .
Plugging this bound in (21), the Minkowski inequality

E/2 (él%xn&%,i) <C {dz_,:n%:ln_lm Z)‘;/Z} )

p=1
and the proof is concluded using the fact that- v, 'n~'/2 — 0 and Assumption (B1). O
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