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Abstract

We present a new class of models for high-dimensional nhonparametric regression
and classification called sparse additive models (SpAM). Our methods combine
ideas from sparse linear modeling and additive nonparametric regression. We de-
rive a method for fitting the models that is effective even when the number of
covariates is larger than the sample size. A statistical analysis of the properties of
SpAM is given together with empirical results on synthetic and real data, show-
ing that SpAM can be effective in fitting sparse nonparametric models in high
dimensional data.

1 Introduction

Substantial progress has been made recently on the problem of fitting high dimensional linear re-
gression models of the forM = XiTﬁ +¢,fori =1,...,n. HereY; is a real-valued responsk;

is a p-dimensional predictor ang is a mean zero error term. Finding an estimatg efhenp > n

that is both statistically well-behaved and computationally efficient has proved challenging; how-
ever, the lasso estimator (Tibshirani (1996)) has been remarkably successful. The lasso gstimator
minimizes thef1-penalized sums of squares

p
2 =X p)+ 2 1A (1)

j=1

with the £1 penalty||#]|1 encouraging sparse solutions, where many comporfﬁrﬂse zero. The

good empirical success of this estimator has been recently backed up by results confirming that it has
strong theoretical properties; see (Greenshtein and Ritov, 2004; Zhao and Yu, 2007; Meinshausen
and Yu, 2006; Wainwright, 2006).

The nonparametric regression modiek= m(X;)+¢;, wheremis a general smooth function, relaxes
the strong assumptions made by a linear model, but is much more challenging in high dimensions.
Hastie and Tibshirani (1999) introduced the class of additive models of the form

p
Yi =D mi(Xij) + e 2
j=1
which is less general, but can be more interpretable and easier to fit; in particular, an additive model

can be estimated using a coordinate descent Gauss-Seidel procedure called backfitting. An extension
of the additive model is the functional ANOVA model

Y = Z mj(Xij)+ij,k(Xij,Xik)+ Z mj ke (Xij, Xik, Xi¢) +---+¢€  (3)
1<j<p j<k j<k<t



which allows interactions among the variables. Unfortulyat@dditive models only have good
statistical and computational behavior when the number of varigbiesot large relative to the
sample sizen.

In this paper we introduce sparse additive models (SpAM) that extend the advantages of sparse linear
models to the additive, nonparametric setting. The underlying model is the same as in (2), but con-
straints are placed on the component functigng}: < j < to simultaneously encourage smoothness

of each component and sparsity across components; the penalty is similar to that used by the COSSO
of Lin and Zhang (2006). The SpAM estimation procedure we introduce allows the use of arbitrary
nonparametric smoothing techniques, and in the case where the underlying component functions are
linear, it reduces to the lasso. It naturally extends to classification problems using generalized addi-
tive models. The main results of the paper are (i) the formulation of a convex optimization problem
for estimating a sparse additive model, (ii) an efficient backfitting algorithm for constructing the
estimator, (iii) simulations showing the estimator has excellent behavior on some simulated and real
data, even whep is large, and (iv) a statistical analysis of the theoretical properties of the estimator
that support its good empirical performance.

2 The SpAM Optimization Problem

In this section we describe the key idea underlying SpAM. We first present a population version
of the procedure that intuitively suggests how sparsity is achieved. We then present an equivalent
convex optimization problem. In the following section we derive a backfitting procedure for solving
this optimization problem in the finite sample setting.

To motivate our approach, we first consider a formulation that scales each component fgpction
by a scalag;, and then imposes ah constraint org = (f1, .. ., ﬁp)T. Forj e{1,...,p}, letH;
denote the Hilbert space of measurable functiby;) of the single scalar variabbej, such that
E(fj(X;j)) = 0 andE(fj(X;)?) < oo, furnished with the inner product

<f,-, fj/>=E(fj(xj)f;(xj)). @)

Let H2% = 3 + Hp + ..., Hp denote the Hilbert space of functions ©fi, . . ., Xp) that have
an additive form: f (x) = zj fj(xj). The standard additive model optimization problem, in the
population setting, is

i E(Y P f (X 2 5
L (Y= XP fix)) (5)

andm(x) = E(Y | X = x) is the unknown regression function. Now consider the following modifi-
cation of this problem that imposes additional constraints:

2
' —SP piai(Xi
" ﬂEjoé?eHj EP(Y ZJ=1 Pigi (XJ)) (6a)
subject to Z 18il < L (6b)
=1
E(g%):l,j:l,...,p (GC)

noting thatgj is a function whileg is a vector. Intuitively, the constraint thatlies in the£;-ball

{B : 11Bll1 < L} encourages sparsity of the estimatidust as for the parametric lasso. Wheiis
sparse, the estimated additive functib(x) = ZJP:l fj(xj) = Zle £i9;j(xj) will also be sparse,
meaning that many of the component functidné) = $;gj(-) are identically zero. The constraints
(6¢) and (6¢) are imposed for identifiability; without (6¢), for example, one could always satisfy (6a)
by rescaling.

While this optimization problem makes plain the rélaegularization off to achieve sparsity, it has
the unfortunate drawback of not being convex. More specifically, while the optimization problem is
convex ing and{g;} separately, it is not convex ifiand{g; } jointly.



However, consider the following related optimization pesht

. p 2
Q min - E(Y- 20 H00) (7a)
p
subject to Z‘/E(sz(xj)) <L (7b)
=1
E(fj))=0, j=1,...,p. (7c)

This problem is convex ifif;}. Moreover, the solutions to problengB) and(Q) are equivalent:
({ﬁr} , {g]‘}) optimizes(P) implies{ fj* = ﬂj*gl?‘} optimizes(Q);

{17) optimizes(Q) implies ({57 = (11,7}, {a; = f7/1171,}) optimizes(P).

While optimization problen{Q) has the important virtue of being convex, the way it encourages
sparsity is not intuitive; the following observation provides some insight. Consider ti ceR*

defined byC = {(fu, fi2, f21, f22)T e R*: \/ffl + 5+ \/fzzl +f% < L}. Then the projec-

tion 712C onto the first two components is @p ball. However, the projectior13C onto the first

and third components is & ball. In this way, it can be seen that the constrging Ifif, <L

acts as af1 constraint across components to encourage sparsity, while it actstascanstraint

within components to encourage smoothness, as in a ridge regression penalty. It is thus crucial that
the norm|| f;||, appears in the constraint, and not its sqqpfgeui. For the purposes of sparsity,

this constraint could be replaced By, | f; ||q < L foranyq > 1. In case eacH; is linear,
(fj(xj), ..., T(Xnj)) = Bj(X1j, - .., Xnj), the optimization problem reduces to the lasso.

The use of scaling coefficients together with a nonnegative garrote penalty, similar to our problem
(P), is considered by Yuan (2007). However, the component functigrare fixed, so that the
procedure is not asymptotically consistent. The form of the optimization prob@ms similar

to that of the COSSO for smoothing spline ANOVA models (Lin and Zhang, 2006); however, our
method differs significantly from the COSSO, as discussed below. In particular, our method is
scalable and easy to implement even wipga much larger than.

3 A Backfitting Algorithm for SpAM

We now derive a coordinate descent algorithm for fitting a sparse additive model. We assume that
we observeY = m(X) + ¢, wheree is mean zero Gaussian noise. We write the Lagrangian for the
optimization problem(Q) as

1 2 P
Lt 2 p) = SE (Y ->P, f,-(x,-)) +2> JEFRX)) + > ujE(f)). ®)
=1 j

LetRj =Y — Zk# fk(Xk) be thejth residual. The stationary condition for minimizidgas a
function of fj, holding the other componentg fixed fork # j, is expressed in terms of the Frechet
derivativedL as

5£(f,i,,u;5fj)=]E[(fj—Rj—i—ivj)&fj]:O 9)

for anyofj e H;j satisfyingE(6fj) = 0, wherevj € ¢ /]E(sz) is an element of the subgradient,

satisfying, /Ev? < 1andoj = fj/ JE(f?) if E(f?) # 0. Therefore, conditioning oix;, the
stationary condition (9) implies

fi + 1oj = E(Rj | Xj). (10)
Letting P; = E[R; | X;] denote the projection of the residual oritg, the solution satisfies
A - 2
1+ fi = P if E(P))> 2 (11)
JE(f7)



Input: Data(X;j, Y;), regularization parameter
Initialize fj = £, for j =1,....p.
Iterate until convergence:
Foreachj =1,...,p:
Compute the residuaRj =Y — Zk# fr(Xk);
Estimate the projectioR; = E[R; | X;] by smoothing:P; = S R;;
Estimate the norrs; = ,/E[P;]? using, for example, (15) or (35);
Soft-threshold:f; = [1— /SiL Pi;

i
Center: fj « fj —mear(f)).

Output: Component functiond; and estimatom(X;) = Zj fi (Xij).

Figure 1: THE SPAM BACKFITTING ALGORITHM

and f; = 0 otherwise. Condition (11), in turn, implies

!
1+ \/]E(f-z) = \/E(P-Z) or \/E(sz) = \/E(sz) — A (12)
/E(ff)) : .

Thus, we arrive at the following multiplicative soft-thresholding updateffor

A
fi=11- Pj (13)
JE(P?)
+
where [-]; denotes the positive part. In the finite sample case, as in standard backfitting (Hastie and
Tibshirani, 1999), we estimate the projectiBfR; | Xj] by a smooth of the residuals:

Pi =SiR (14)
whereS; is a linear smoother, such as a local linear or kernel smootherS;j st an estimate of
/E[P?]. A simple but biased estimate is

1 -
§i = =Pz = /mear(P?). (15)

More accurate estimators are possible; an example is given in the appendix. We have thus derived
the SpAM backfitting algorithm given in Figure 1.

While the motivating optimization problerfQ) is similar to that considered in the COSSO (Lin

and Zhang, 2006) for smoothing splines, the SpAM backfitting algorithm decouples smoothing and
sparsity, through a combination of soft-thresholding and smoothing. In particular, SpAM backfitting
can be carried out with any nonparametric smoother; it is not restricted to splines. Moreover, by
iteratively estimating over the components and using soft thresholding, our procedure is simple to
implement and scales to high dimensions.

3.1 SpAM for Nonparametric Logistic Regression

The SpAM backfitting procedure can be extended to nonparametric logistic regression for classifi-
cation. The additive logistic model is

exp(sz:l f (Xj))
1+ep (2P fi(X)

P(Y = 1| X) = p(X; f) = (16)



whereY e {0,1}, and the population log-likelihood & f) = E[Yf(X) —log (1 + exp f (X))].
Recall that in the local scoring algorithm for generalized additive models (Hastie and Tibshirani,
1999) in the logistic case, one runs the backfitting procedure within Newton’s method. Here one
iteratively computes the transformed response for the current estigate
Yi — p(Xi; fo)
Zi = fo(Xi) + 17
= PO B @ — pOXs To) 4
and weightso(X;) = p(X; fo)(1 — p(Xi; fo), and carries out a weighted backfitting &, X)
with weightsw. The weighted smooth is given by
~  SiwRy)
P = L —1%. 18
] Sjw (18)
To incorporate the sparsity penalty, we first note that the Lagrangian is given by

p
L(F, 2, 1) =E[log(1+expf (X)) = YT ()] + 4> JEFAX)) + > wiE(f)  (19)
=1 j

and the stationary condition for component functigris E (p — Y | Xj) + Avj = 0 wherepj is an

element of the subgradiea{/E( sz). As in the unregularized case, this condition is nonlineaf ,in

and so we linearize the gradient of the log-likelihood arodindThis yields the linearized condition
E[w(X)(f(X) = 2)| Xj]| + 4vj = 0. WhenIE(ij) # 0, this implies the condition

_ A
(E(w|xj)+—m)

In the finite sample case, in terms of the smoothing majixhis becomes
Sj(wRy)

Sjw +z/ JE(f2)
If ISj(wRj)ll2 < 4, then f; = 0. Otherwise, this implicit, nonlinear equation féy cannot be
solved explicitly, so we propose to iterate until convergence:
Sj(wRy)
Sjw + Ay /1 fjll2
When . = 0, this yields the standard local scoring update (18). An example of logistic SpAM is
given in Section 5.

fi (X)) = E(wRj | Xj). (20)

f]

(21)

fi « (22)

4 Properties of SpAM

4.1 SpAM is Persistent

The notion of risk consistency, or persistence, was studied by Juditsky and Nemirovski (2000) and
Greenshtein and Ritov (2004) in the context of linear models.(Ketr) denote a new pair (inde-
pendent of the observed data) and define the predictive risk when predictwty f (X) by

R(f) = E(Y — (X)) (23)
Since we consider predictors of the forfix) = Zj Bigj(xj) we also write the risk aR(f, 9)
wheref = (f1,..., fp) andg = (g1, ..., gp). Following Greenshtein and Ritov (2004), we say
that an estimatom, is persistent relative to a class of function¥ty, if
R(fin) — R(M;) 5 0 (24)
wheremy = argmin;_ ¢ R(f) is the predictive oracle. Greenshtein and Ritov (2004) showed

that the lasso is persistent for the class of linear modéls= {f(x) = x'f : ||fll1 < Ln}if
L, = o((n/logn)/4). We show a similar result for SpAM.

Theorem 4.1. Suppose thap, < & for some¢ < 1. Then SpAM is persistent relative to the
class of additive modelstn = { () = XP_y 19 ()) © Il < Ln} if Ly = 0 (1G=5)/4).



4.2 SpAM is Sparsistent

In the case of linear regression, with (Xj) = [)’TXJ , Wainwright (2006) shows that under certain

conditions om, p, s = |supp(B)|, and the de3|gn matrlk, the lasso recovers the sparsity pattern
asymptotically; that is, the lasso estimaffy is sparsistent: P (supp(ﬂ) supp(ﬁn)) — 1. We
show a similar result for SpAM with the sparse backfitting procedure.

For the purpose of analysis, we use orthogonal function regression as the smoothing procedure. For

eachj =1, ..., plet y; be an orthogonal basis f@¢;. We truncate the basis to finite dimension
dn, and letd, — oo such thatd,/n — 0. Let'¥;j denote then x d matrix ¥ (i, k) = wjk(Xjj).
If Ac{1,...,p}, we denote by¥a then x d|A| matrix where for eaclh € A, ¥; appears as a

submatrix in the natural way. The SpAM optimization problem can then be written as
b1
TwTwy. 5.
rr};n—( ->P ,ﬁJ +An2‘1 ST B (25)
]:

where eaclg; is ad-dimensional vector. Le$ denote the true set of variablés : m; # 0}, with
s = |9, and letS® denote its complement. L&, = {j : fj # 0} denote the estimated set of
variables from the minimizeg,, of (25).

Theorem 4.2. Suppose tha¥ satisfies the conditions
Amax H\Ps ¥Ys) < Cmax<oo and Amin ﬁlys Ys) > Cmin>0 (26)

-1|2 < Cmin 1

(2¥3ws) (2ol ws) o ;;,

Let the regularization parametéf — 0 be chosen to satisfy

dn(logds + log(p — S))
Anv/Sdh — 0, i — 0, and iz

Then SpAM is sparsisten (S, = S) — 1.

forsomed <o <1 (27)

(28)

5 Experiments

In this section we present experimental results for SpAM applied to both synthetic and real data,
including regression and classification examples that illustrate the behavior of the algorithm in vari-
ous conditions. We first use simulated data to investigate the performance of the SpAM backfitting
algorithm, where the true sparsity pattern is known. We then apply SpAM to some real data. If not
explicitly stated otherwise, the data are always rescaled to liedkalianensional cube [a1]¢, and

a kernel smoother with Gaussian kernel is used. To tune the penalization pariamﬁense Lp
statistic, which is defined as

n

~ 1 0~ 2 252 ~
Co(N == (Y= 2Py X))+ == D trace(§) 1(fj # 0] (29)
i=1 j=1

wheresS; is the smoothing matrix for the-th dimension and@? is the estimated variance.

5.1 Simulations

We first apply SpAM to an example from (Hardle et al., 2004). A dataset with sampla siz£50
is generated from the following 200-dimensional additive model:

Yi = fi(xi1) + fz(Xiz) + fa(Xi3) + fa(Xia) + €i (30)
fi(x) = —2sin(X), fa(x) =x%— 3, fa) =x—3, fax)=e*+e1-1 (31)

and fj(x) = 0 for j > 5 with noise¢; ~ N(0,1). These data therefore have 196 irrelevant
dimensions. The results of applying SpAM with the plug-in bandwidths are summarized in Figure 2.
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Figure 2: (Simulated data) Upper left: The empiriéahorm of the estimated components as plotted
against the tuning parametérthe value on the-axis is proportional tozj I fjll2. Upper center:

The Cp, scores against the tuning parametgthe dashed vertical line corresponds to the value of

4 which has the smallesE, score. Upper right: The proportion of 200 trials where the correct
relevant variables are selected, as a function of samplensizewer (from left to right): Estimated

(solid lines) versus true additive component functions (dashed lines) for the first 6 dimensions; the
remaining components are zero.

5.2 Boston Housing

The Boston housing data was collected to study house values in the suburbs of Boston; there are
altogether 506 observations with 10 covariates. The dataset has been studied by many other authors
(Hardle et al., 2004; Lin and Zhang, 2006), with various transformations proposed for different
covariates. To explore the sparsistency properties of our method, we add 20 irrelevant variables. Ten
of them are randomly drawn from Uniform(D), the remaining ten are a random permutation of the
original ten covariates, so that they have the same empirical densities.

The full model (containing all 10 chosen covariates) for the Boston Housing data is:
medv = a+ fi(crim + fa(i ndus) + fz(nox) + f4(r m + fs(age)
+ fe(di s) + f7(t ax) + fg(ptrati o) + fg(b) + fio(l st at) (32)

The result of applying SpAM to this 30 dimensional dataset is shown in Figure 3. SpAM identifies 6
nonzero components. It correctly zeros out both types of irrelevant variables. From the full solution
path, the important variables are seen torbbg | st at, ptrati o, andcri m The importance

of variablesnox andb are borderline. These results are basically consistent with those obtained
by other authors (Hardle et al., 2004). However, usiigas the selection criterion, the variables

i ndux, age, di st, andt ax are estimated to be irrelevant, a result not seen in other studies.

5.3 SpAM for Spam

Here we consider an email spam classification problem, using the logistic SpAM backfitting algo-
rithm from Section 3.1. This dataset has been studied by Hastie et al. (2001), using a set of 3,065
emails as a training set, and conducting hypothesis tests to choose significant variables; there are a
total of 4,601 observations with = 57 attributes, all numeric. The attributes measure the percent-
age of specific words or characters in the email, the average and maximum run lengths of upper case
letters, and the total number of such letters. To demonstrate how SpAM performs well with sparse
data, we only sample = 300 emails as the training set, with the remaining 4301 data points used

as the test set. We also use the test data as the hold-out set to tune the penalization pardimeter
results of a typical run of logistic SpAM are summarized in Figure 4, using plug-in bandwidths.
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Figure 4: (Email spam) Classification accuracies and vaisdlection for logistic SpAM.
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