How SVMs can estimate quantiles and the median
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Abstract

We investigate quantile regression based on the pinball loss arerbensitive

loss. For the pinball loss a condition on the data-generating distribitias

given that ensures that the conditional quantiles are approximated with respect to
Il - l1- This result is then used to derive an oracle inequality for an SVM based
on the pinball loss. Moreover, we show that SVMs based or-thsensitive loss
estimate the conditional median only under certain condition8.on

1 Introduction

Let P be a distribution onX x Y, whereX is an arbitrary set anti’ C R is closed. The goal of
guantile regression is to estimate the conditional quante,the set valued function

Fip(x):={t e R:P((—o0,t]|z) > TandP([t,c0)|z) > 1 -7}, wz€X,
wherer € (0,1) is a fixed constantarll( - | z), = € X, is the (regular) conditional probability. For
conceptual simplicity (though mathematically this is hot necessary) we assume throughout this paper
that 7’7 () consists of singletons, i.e., there exists a funcipp : X — R, called the conditional
T-quantile function, such that’ o (z) = {f p(z)}, = € X. Let us now consider the so-called
7-pinball lossL, : R x R — [0, c0) defined byL, (y,t) := ¢, (y — t), wherey (r) = (7 — 1)r, if
r < 0,andy,(r) = 7r,if r > 0. Moreover, given a (measurable) functién X — R we define the
L-riskof f by R, p(f) := Ey)~pL-(y, f(x)). Now recall thatf; , is up to zero sets thenly
function that minimizes thé.,-risk, i.e. Rr, p(f’p) = inf Rr, p(f) = R} p, where the infi-
mum is taken over alf : X — RR. Based on this observation several estimators minimizing a (mod-
ified) empirical L.-risk were proposed (see [5] for a survey on both parametric and non-parametric
methods) for situations whefeis unknown, but i.i.d. sample® := ((z1,v1), - ., (Zn,y,)) drawn
from P are given. In particular, [6, 4, 10] proposed an SVM that finds a solution € H of

1 n
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where) > 0 is a regularization parameter aftlis a reproducing kernel Hilbert space (RKHS) over
X. Note that this optimization problem can be solved by considering the dual problem [4, 10], but
since this technique is nowadays standard in machine learning we omit the details. Moreover, [10]
contains an exhaustive empirical study as well some theoretical considerations.

Empirical methods estimating quantiles with the help of the pinball loss typically obtain functions
fp for which Ry p(fp) is close toR; _p with high probability. However, in general this only
implies thatfp, is close tof; , in a very weak sense (see [7, Remark 3.18]), and hence there is so
far only little justification for usingfp as an estimate of the quantile function. Our goal is to address
this issue by showing that under certain realistic assumptiofitsve@ have an inequality of the form

If = el ex) <cp \/RLT,P(f) —Ri.p- )



We then use this inequality to establish an oracle inequditysVMs defined by (1). In addition,

we illustrate how this oracle inequality can be used to obtain learning rates and to justify a data-
dependent method for finding the hyper-paramatand H. Finally, we generalize the methods for
establishing (2) to investigate the roleadf thee-insensitive loss used in standard SVM regression.

2 Main results

In the following X is an arbitrary, non-empty set equipped with-algebra, and” C R is a closed
non-empty set. Given a distributidhon X x Y we further assume throughout this paper that the
o-algebra onX is complete with respect to the marginal distributi®g of P, i.e., every subset of a
Px-zero set is contained in thealgebra. Since the latter can always be ensured by increasing the
original o-algebra in a suitable manner we note that this is not a restriction at all.

Definition 2.1 A distributionQ on R is said to have a-quantile of typen > 0 if there exists a
T-quantilet* € R and a constantq > 0 such that for alls € [0, o] we have

Q((t*,t" +5)) > cqs and Q((t" —5,t")) > cqs. 3

It is not difficult to see that a distributio@ having ar-quantile of some typex has a unique-
quantilet*. Moreover, ifQ has a Lebesgue density, thenQ has ar-quantile of typex if hq is
bounded away from zero gtf —«, t* +a] since we can use&, := inf{hq(t) : t € t* —a,t* +af}

in (3). This assumption is general enough to cover many distributions used in parametric statistics
such as Gaussian, Student;sand logistic distributions (wit" = R), Gamma and log-normal
distributions (withY” = [0, c0)), and uniform and Beta distributions (with = [0, 1]).

The following definition describes distributions éh x Y whose conditional distributiorB( - |x),
z € X, have the same-quantile typex.

Definition 2.2 Letp € (0, 0], 7 € (0,1), anda > 0. A distributionP on X x Y is said to have a
T-quantile ofp-average typey, if Q.. :=P(-|z) hasP x-almost surely ar-quantile typen andb:
X — (0, 00) defined by(z) :==cp.|,), Wherecp .|, is the constant in (3), satisfiés' € L, (Px ).

Let us now give some examples for distributions havirguantiles ofp-average typex.

Example 2.3 LetP be a distribution onX x R with marginal distributionP x and regular condi-
tional probabilityQ, ((—oo, y]) :=1/(14+e7%),y € R, wherez := (y—m(z)) /o(z),m: X — R
describes a location shift, and: X — [3, 1/] describes a scale modification for some constant
3 € (0,1]. Let us further assume that the functionsand o are measurable. Thug, is a logistic
distribution having the positive and bounded Lebesgue dehsityy) = e=*/(1 +e*)2, y € R.
Ther-quantile function ig*(z) := f; o = m(x) + o(z)log(;=), = € X, and we can choose
b(z) = inf{hq, (t) : t € [t*(z) — a, t*(x) + a]}. Note thathg, (m(x) + y) = hq, (m(x) — y) for

all y € R, andhq, (y) is strictly decreasing foy € [m(z), c0). Some calculations show

. * * . ul(x) UQ(I) 1
b(z) = ha, (t*(z)—a), ha, (t = wds =),
() = min{ha, (#°(x)=0). ha, (" (2)+e)} = min{ s s b € (cas s 7)
whereu; (z) := =Te=/7(®), uy(z) := =Te*/7(®) andc, g > 0 can be chosen independentiof
becauser(z) € [3,1/3]. Henceb~! € L., (Px) andP has ar-quantile ofcc-average type.

Example 2.4 Let P be a distribution onX x Y with marginal distributionP x and regular con-
ditional probability Q, := P(-|z) on Y. Furthermore, assume thdd, is Px-almost surely
of r-quantile typea. Let us now consider the family of distributiof'swith marginal distribu-

tion Px and regular conditional distribution€), := P((- — m(z))/o(z)|z), = € X, where

m: X — Rando : X — (5, 1/08) are as in the previous example. Thép has ar-quantile
Fq, =m(x) + U(x)f:,Qw of typea3, because we obtain far€ [0, /5] the inequality

Qu((fau fra, +9) = Qul((Fg, [, +5/0(@) = b(x)s/o(x) > b(a)Bs.

ConsequentlyP has ar-quantile ofp-average typey3 if and only if P does have a-quantile of
p-average typev.



The following theorem shows that for distributions havinguawtile of p-average type the condi-
tional quantile can be estimated by functions that approximately minimize the pinball risk.

Theorem 2.5 Letp € (0,00], 7 € (0,1), & > 0 be real numbers, ang := p% Moreover, let

P be a distribution onX x Y that has ar-quantile ofp-average typev. Then forallf : X — R
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satisfyingRr, p(f) =R _p < 27541 a 711 we have

« — 1/2 *
1f = Frple,mx < VRIS e ) /Recp () = RE o

Our next goal is to establish an oracle inequality for SVMs defined by (1). To this end let us assume
Y = [-1,1]. Then we havd.,(y,t) < L.(y,t) forally € Y, t € R, wheret denoteg clipped

to the interval—1, 1], i.e.,? := max{—1,min{1,¢}}. Since this yieldsR ., p(f) < Rp. p(f) for
all functionsf : X — R we will focus on clipped functiong in the following. To describe the
approximation error of SVMs we need thpproximation error functiom(\) := inf re g || f||% +
Rr.p(f) —Ri, p, A > 0. Recall that [8] showetim, .o A(A) = 0 if the RKHS H is dense in
L, (Px). We also need theovering numbershich fore > 0 are defined by

N(BH,e,Lg(/,L)) = min{n >1:3z1,...,2, € Lo(u) with By C U, (x; +EBL2(/4))}7 (4)

wherey is a distribution onX, and By and By, ,,, denote the closed unit balls ofahd the Hilbert
spaceL» (), respectively. Given a finite sequenge = ((z1,v1),..., (Tn,yn)) € (X x Y)"
we write Dx := (21,...,%,), andN (By, ¢, La(Dx)) := N(Bg, e, La(u)) if uis the empirical
measure defined b x . Finally, we writeL.. o f for the function(z, y) — L. (y, f(z)). With these
preparations we can now recall the following oracle inequality shown in more generality in [9].

Theorem 2.6 LetP be a distribution onX x [—1, 1] for which there exist constants> 1, 9 € [0, 1]
with
r * r * 9
Ep(Lrof—Lrofip)’ Sv(Ep(Lyof = Lo fip)) (5)
forall f: X — R. Moreover, letH be a RKHS oveX for which there exisp € (0,1) anda > 1
with
sup  logN (B, e, Ly(Dx)) < as2e, e>0. (6)
De(XxY)™
Then there exists a constaft, , depending only o andv such that for alls > 1, » > 1, and
A > 0 we have with probability not less thdn— 3e~¢ that

_ AN
Rr.p(fox) —RL, p < 8A(N)+30 L% + (

A

1
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Moreover, [9] showed that oracle inequalities of the above type can be used to establish learning
rates and to investigate data-dependent parameter selection strategies. For example if we assume that
there exist constants> 0 and3 € (0, 1] such thatd(\) < e\’ forall A > 0thenRr_p(fr.x,)
converges taR; _p with raten™" wherey := min { 5o—ra=m755: 2er) @ndA, = n~7/%,

Moreover, [9] shows that this rate can also be achieved by seleciimg data-dependent way with

the help of a validation set. Let us now consider how these learning rates in terms of risks translate
into rates forl| f7.x — f; pllL,(px)- TO this end we assume thithas ar-quantile ofp-average type

a for 7 € (0,1). Using the Lipschitz continuity of , and Theorem 2.5 we then obtain

r * 2 r * r * — r * o * 2
Ep(Lrof—Lrofip)’ < Ep|f—fipl2 < IF—fipl s Be| F— £ pl? < ¢(Re, p(F)—Rj. p)"

forall f satisfyingRme(f)—RzﬂP < 277%@%, i.e. we have a variance bound (5) fbr= ¢/2
and clipped functions with small excess risk. Arguing carefully to handle the restrictighves
then see thatfr x — f; pllz,(px) Can converge as fast as”, where

e B _B_
v= mln{6(4—q+g(q—2))+2g’ ﬂ+1} ’

To illustrate the latter let us assume ttfatis a Sobolev spacl ™ (X) of orderm € IN over X,
whereX is the unit ball inR¢. Recall from [3] that/ satisfies (6) fop := d/(2m) if m > d/2 and



in this caseH aso consists of continuous functions. Furthermore, assume that we are in the ideal
situationf;: , € W™ (X) which implies3 = 1. Then the learning rate fdifr,x — f2 pllz, p) be-

comesn~/(4—a(1-2)) 'which for co-average type distributions reducesito?™/ (6m+d) ~ p—1/3,

Let us finally investigate whether theinsensitive loss defined b¥(y, t) := max{0, |y — t| — €}
for y,t € R and fixede > 0, can be used to estimate the median, i.e(i1he)-quantile.

Theorem 2.7 Let L be thee-insensitive loss for somee> 0 andP be a distribution onX x R which
has a unique mediafi’ , , . Furthermore, assume that all conditional distributidP§|z), = € X,
are atom-free, i.eP({y}|z) = Oforall y € R, and symmetric, .2 (h(z)+ A|z) = P(h(x)— Alx)
for all measurabled C R and a suitable functiohh : X — R. If for the conditional distributions
have a positive mass concentrated aroyiid, , & € thenf7', . is the only minimizer oR . p.

Note that using [7] one can show that for distributions specified in the above theorem the
SVM using thee-insensitive loss approximatef' , , whenever the SVM isR, p-consistent,

ie. Rrp(fra) — R71.p in probability, see [2]. More advanced results in the sense of Theorem
2.5 seem also possible, but are out of the scope of this paper.

3 Proofs

Let us first recall some notions from [7] who investigated surrogate losses in general and the question
how approximate risk minimizers approximate exact risk minimizers in particular. To this end let
L: X xY xR — [0,00) be a measurable function which we call a loss in the following. For a
distributionP and anf : X — R the L-risk is then defined bR 1 p(f) := E(, y)~p L(2, ¥y, f(2)),

and, as usual, the Bayésrisk, is denoted bR} p, := inf Ry, p(f), where the infimum is taken over

all (measurablef X — ]R In addition, given a distributio onY” theinner L-riskswere defined

by Cr.q.«(t) == [y L(z,y,t) dQ(y), z € X, t € R, and theminimal innerL-riskswere denoted by

C Qe = meL Q.(t), z € X, where the infimum is taken over alle R. Moreover, following

(71 we usually omit the indexes or Q if L is independent of or y, respectively. Obviously, we

have

RL,P(f):/XCL,P(.\I),m(f(l’))dPX(m), (7)

and [7, Theorem 3.2] further shows that— C; 5, .|, . is measurable if the-algebra onX is
complete. In this case it was also shown that the intuitive forilg, = [ C} p( .|, , Px ()
holds, i.e. the Bayes-risk is obtained by minimizing the inner risks and subsequently integrating
with respect to the marginal distributidhy. Based on this observation the basic idea in [7] is to
consider both steps separately. In particular, it turned out that the setppiroximate minimizers
Mrqale) == {t € R: CLq.(t) < Cjq.+¢e}, e € [0,00], and the set oexact minimizers
ML,QJ( ) N.>0 MrL.q,z(€) play a crucial role. As in [7] we again omit the subscriptand

Q in these definitions if. happens to be independenta0br y, respectively.

Now assume we have two losskg, : X x Y xR — [0, 00] andLg,, : X XY x R — [0, oo], and
that our goal is to estimate the excdss,-risk by the excesé,.-risk. This issue was investigated
in [7], where the main device was the so-caltedibration functiond,,.x (-, Q, ) defined by

inf C t)—Cj if C} < 00,
Omax (€, Q, x) 1= { tER\M L, .Q.2 () Lour,Qua (1) Lowr,Q,@ e Lowe, Q.
& Leur,Qsx — = 00,

for all e € [0, 00]. In the following we sometimes Writé,ax, 1.,... Lou, (€, Qs ) = Omax (€, Q, x)
whenever we need to explicitly mention the target and surrogate losses. In addition, we follow our
convention which omits: or Q whenever this is possible. Now recall that [7, Lemma 2.9] showed

dmax (CLm,Q a:( ) - sz,Q ) Q» ) < CLW,Q w( ) - Clm,Q P teR (8)
if bothC;, . < ocandC; o, < oo. Before we use (8) to establish an inequality between
the excess risks af;,, and Lsur, we finally recall that the Fenchel-Legendre bi-conjuggte :
I — [0,00] of a functiong : I — [0, oc] defined on an interval is the largest convex function
h: I — [0, 00] satisfyingh < g. In addition, we writeg™* (co0) := lim;_,oc g**(¢) if I = [0, 00).
With these preparations we can now establish the following generalization of [7, Theorem 2.18].



Theorem 3.1 LetP be a distribution onX x Y withR}  <ooandRj p < oo and assume
that there exisp € (0, oo] and function® : X — [0, co] andé : [0, 00) — [0, 00) such that

6m&x(€aP( : |1‘),f1’) Z b(Jf) 5(5)7 € Z 07 MRS Xv (9)
andb~! € L,(Px). Then forg := = §:=09:[0,00) — [0,00),and all f : X — R we have

5 (R ()~ Rip) < 072 ooy (Riww ()~ Rip)"

Proof: Let us first consider the cager,,. p(f) < oco. Sinces** is convex and satisfies™(¢) <

d(e) forall e € [0, 00) we see by Jensen’s inequality that

6 (Ripw,p(f) — Rzm,P) < /X 6(Crpn P(-12), () — sz,.,p<.|x>,x) dPx () (10)
Moreover, using (8) and (9) we obtain

b(2) (Crp (- 2)2 () = Cho P 2)2) < CluweP(-10).e(t) = CLo (- |2y,

for Px-almost allz € X and allt € R. By (10), the definition of, and Hilder’s inequality in the
formof | - |y < |- Il - I - Il1, we thus find thab** (R .. .p(f) — R},. p) IS less than or equal to

([ 00) " Clrnpt 10210 = G100 P ()"
X

a/p
< (/ brapy ) (/ (Chan (1212 (F@) = Ci o)) Px ()
X X
1572 oy (Rimep () — R )"

Let us finally deal with the casR,,, p(f) = oo. If 5**(00) = 0 there is nothing to prove and
hence we assumg*(co) > 0. Following the proof of [7, Theorem 2.13] we then see that there
exist constants, , c; € (0, co) satisfyingt < c¢16**(t) + ¢ for all ¢ € [0, co]. From this we obtain

00 = Rp.p(f)—RL.p=< 01/ 0" (Cryne (- 2).2(t) = CP.. p(-|2y.) AP x () + 2
X

q

N

IN

_ q
< a [ 00) " (Coura (F@) = Cip i ) P (o) + 2.

where the last step is analogous to our considerationRfQr. p(f) < co. By b~! € L,(Px) and
Holder's inequality we then conclude,,, »(f) — R;_ p = o©. |

Our next goal is to determine the inner risks and their minérgZor the pinball loss. To this end
recall (see, e.g., [1, Theorem 23.8]) that given a distribu€pan IR and anon-negativdunction
g: X — [0,00) we have

/}Rng:/OwQ(ps)ds. (11)

Proposition 3.2 Letr € (0, 1) andQ be a distribution oR withC; _ , < oo andt* be ar-quantile
of Q. Then there exist;, ¢ € [0, 00) with ¢ + ¢— = Q({¢*}), and for allt > 0 we have

Cr.qt*+1t)—Cp q(t*) = tq++/0 Q((t*,t" +s))ds, and (12)
t
CL.q(t* —t)—CpLo(t*) = tq,+/0 Q((t* — 5,%)) ds. (13)

Proof: Let us consider the distributio*") defined byQ(*")(A4) := Q(¢* + A) for all measurable
A C R. Then it is not hard to see thatis a-quantile ofQ(*"). Moreover, we obviously have
Cr, q(t" +1) =Cp_qe (t) and hence we may assume without loss of generality that0. Then
our assumptions together wifh((—oo, 0]) + Q([0,00)) = 1 + Q({0}) yield 7 < Q((—00,0]) <
7+ Q({0}), i.e., there exists a, satisfying0 < ¢, < Q({0}) and

Q((=00,0)) =7 + ¢4 - (14)



Let us now compute the inner risks bf. To this end we first assume> 0. Then we have

/ _w=ndw = / _ ydQ() ~1Q((~0.) + / ydQ(y)

0<y<t

and |, (y — ) dQ(y) = [~y dQy) — tQ([t,)) — [y<,, ¥ dQ(y) and hence we obtain

Cooal) = (r=1) [ w-ndaw+r [ w-1iQw

= Cpo0) — 7+ 1Q((~00,0)) + Q0. 1)) / ydQ(y).

0<y<t
Moreover, using (11) we find

tQ([Ovt))_/ ydQ(y) = ; Q([0,t))ds — ; Q([s, 1)) ds = tQ({0}) + ; Q((0,5))ds ,

o<y<t
and since (14) implie€)((—c0,0)) + Q({0}) = Q((—00,0]) = 7 + ¢+ we thus obtain (12).
Now (13) can be derived from (12) by considering the pinball loss with pararteter and the
distributionQ defined byQ(A) := Q(—A4), A C R measurable. This further yieldsja satisfying
0 <g¢g- <Q({0}) andQ([0,00) =1 — 7 + g—. By (14) we then find;; + ¢— = Q({0}). ]

For the proof of Theorem 2.5 we recall a few more concepts figmiljo this end let us now assume
that our loss is independent of i.e. we consider a measurable functibn Y x R — [0, co]. We
write

Omin(L) := {Q € Qmin(L) : It} g € RsuchthatMy o(07) = {t] o1},
i.e. Omin (L) contains the distributions ori whose innet.-risks have exactly one exact minimizer.
Furthermore, note that this definition immediately yial?q;Q < oo forall Q € Quin(L). Follow-
ing [7] we now define theelf-calibration losof L by

L(Q,t) = [t—t} gl Q€ Quin(L), t€R. (15)

This loss is a so-called template loss in the sense of [7], i.e., for a given distrilibonX x Y,
whereX has a complete-algebra an®( - |x) € Omin (L) for Px-almost allz € X, theP-instance

Lp(x,t) := |t — t7p(. )| is measurable and hence a loss. [7] extended the definition of inner risks
to the self-calibration loss by settiitty ,(¢) := L(Q,t), and based on this the minimal inner risks
and their (approximate) minimizers were defined in the obvious way. Moreoveselhealibration
functionwas defined by, . ; ;(¢,Q) = inficp; =ty ol>e Cr.q(t) — C} - As shown in [7] this
self-calibration function has two important properties: first it satisfies
et ([t =101 Q) < Crqo(t) =Ciq, tER, (16)

i.e. it measures how well approximalterisk minimizerst approximate the true minimizef ,, and
second it equals the calibration function of fheénstancelyp, i.e.

Omax, Lo, L (8 P 12),2) = 0o 1 1 (6, P(- [2)) e €0,00], w € X. an
In other words, the self-calibration function can be utilized in Theorem 3.1.

Proof of Theorem 2.5: Let Q be a distribution orR with C} , < co and¢* be theonly 7-quantile
of Q. Then the formulas of Proposition 3.2 show

Omax.1.1(6: Q) = min{sq+ + /0E Q((t*,t" +5)) ds, eq— + /05 Q((t* — s,t%)) ds} , >0,

wheregq, andq_ are the real numbers defined in Proposition 3.2. Let us additionally assume that
the r-quantilet* is of type«. For the Huber type functiofi(e) := 2 /2 if ¢ € [0, ], andd(e) :=

ag —a?/2if ¢ > «, a simple calculation then yields . ; | (¢,Q) > cqd(e), wherecq is the
constant satisfying (3). Let us further defifie [0, 00) — [0,00) by 5(¢) := §9(¢'/9), e > 0. In

view of Theorem 3.1 we then need to find a convex functiorf0, oc) — [0, cc) such thaty < 4.

To this end we definé(e) := ste? if € € [0, spa,] andd(e) := a,(e — s£*2a,) if € > spay,
wherea, := a4 ands, := 2797, Thens : [0,00) — [0,00) is continuously differentiable and its
derivative is increasing, and thdss convex. Moreover, we havé < 4" and hence < § whichin

turn impliesS < 6**. Now we find the assertion by (16), (17), and Theorem 3.1. |



The proof of Theorem 2.7 follows immediately from the follagilemma.

Lemma 3.3 LetQ be a symmetric, atom-free distribution &with mediart* = 0. Then fore > 0
and L being thes-insensitive loss we havg, o(0) =Cj o = 2f€°° Q[s, 00)ds and ifCr, q(0) < oo
we further have

Crq(t) —CrLq(0) = Q s, € ds+/ Qle, 5] ift €[0,€,

e—t
e+t

/Qsoods—/Qsoods+2/Q03ds>0 ift >e.

Cr,q(t) —Crqle)

In particular, if Qe — 6, ¢ + ] = 0 for somes > 0 thenCy, (6) = C} q-

Proof: Because.(y,t) = L(—y, —t) for all y, ¢ € R we only have to consider> 0. For later use
we note that fof) < a < b < oo Equation (11) yields

b b
/ ydQ(y) = aQ([a. b)) + / Qls, b)ds. (18)

Moreover, the definition of, implies
t—e [e%e}
Cra= [ t-y-cdQu)+ [ y-e-taw).
—00 t+e

Using the symmetry of) yields — f ydQ(y) = [, ydQ(y) and hence we obtain

t—e t+e

t+e 00
Crq(t) = Q(—o0,t —€]ds — Q[t+6,oo)d8+/ de(y)+2/ ydQ(y). (19)

0 0 e—t t+e

Let us first consider the cage> e. Then the symmetry of) yields f”: ydQ(y) = ttf: ydQ(y),
and hence (18) implies

Cr.q(t) / Qe—tood3+/ Qt —et+6ds+/ Qls, t+e€]ds
(') t+e
+2 Q[s, 0)ds + Qt+e€,00) ds.
t+e 0
Using
t+e t+e t—e
Q[s,tJre)ds:/ Q[s,t +¢€)ds — Q[s,t +€)ds
t—e 0 0
we further obtain
t+e t+e
/Q Jt+e ds+/Qt+e 00) ds+/Qs 00) ds-/Qs 00) ds—/Qs t+e)d
t+e
From this andf, “ Q[t — et + | ds — [, “Q[s,t + | ds = — [, Q[s, t — €] ds follows

t—e
Crq(t) / Qst—eds—i—/ Qle — t,00) ds+ Q[soods+/ Qls, ) d

t+e

The symmetry of) impliesfo_ Qle —t,t —¢]ds = 2fo_ Q[0,t — €] ds, and we get

t—e t—e t—e t—e
— Jt—€ld —t, ds =2 0,s)d ,00)d
/0 Qs €] s+/0 Qle 00) ds /0 QJo, s) 3—|—/0 Qls, ) ds

This and

/t:Q[s,oo)ds—i—/oooQ[s,oo)ds:Z Q[soods+/ Q[s,00) ds

t+e



yields
t—e

t—e
Crq(t) =2 QI0, s) ds+/ Q[s,00) ds + 2
0 0

) t+e
Qls,00) ds + Q[s,00) ds.
t+e JO
By
t—e t+e t—e t+e
Qs, o0) ds + Qls,0)ds =2 Qls, 0) ds + Qls, ) ds
0 0 0 t—e
we obtain
t—e e o] t+e
Crq(t)=2 Q[0,00) ds + 2 Qls, 00) ds + Q[s, 00) ds
0 t+e t—e
if t > €. Let us now consider the case [0, ]. Analogously we obtain from (19) that
e—t e+t e}
Crqlt) = Qle —1t,t+ ¢ ds+/ Qs,t+¢|ds+2 Qls, ) ds
0 e—t e+t

e+t e—t e+t
+2/ Q[e—i—t,oo)ds—/ Q[e—t,oo)ds—/ Qle+t,00)ds.
0 0 0
Combining this with

e—t e—t e—t
€—1, € d — €—1, d = — € ) d
; Qle —t,t+¢€lds /0 Qe — t,00) ds /0 Qe +t,00)ds

andfoe“ Qe +t,00)ds — 054 Qe +t,00)ds = f:r: Qle + t,00) ds we get

e+t e+t )
Crqt) = Qe+ t,00)ds + Qls,t+e€lds+2 Qls, ) ds
e—t e—t e+t
e+t ) fe%e] oo
= Q[s,00) ds + 2 Q[s,00)ds = Qls,00) ds + Q[s, 00) ds.
e—t e+t e—t e+t

HenceCy, o (0) = 2 Q[s, 00) ds. The expressions fdt, o(t)—Cr.q(0), t € (0, €], andCy q(t)—
Cr.q(€),t > ¢, givenin Lemma 3.3 follow by using the same arguments. Hence one exact minimizer
of Cr () is the mediant* = 0. The last assertion is a direct consequence of the formula for
Cr.q(t) — Crq(0) inthe case € (0, €. [ ]
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