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Abstract

We investigate quantile regression based on the pinball loss and theǫ-insensitive
loss. For the pinball loss a condition on the data-generating distributionP is
given that ensures that the conditional quantiles are approximated with respect to
‖ · ‖1. This result is then used to derive an oracle inequality for an SVM based
on the pinball loss. Moreover, we show that SVMs based on theǫ-insensitive loss
estimate the conditional median only under certain conditions onP .

1 Introduction

Let P be a distribution onX × Y , whereX is an arbitrary set andY ⊂ R is closed. The goal of
quantile regression is to estimate the conditional quantile,i.e., the set valued function

F ∗
τ,P(x) :=

{

t ∈ R : P
(

(−∞, t] |x
)

≥ τ andP
(

[t,∞) |x
)

≥ 1 − τ
}

, x ∈ X,

whereτ ∈ (0, 1) is a fixed constant andP( · |x), x ∈ X, is the (regular) conditional probability. For
conceptual simplicity (though mathematically this is not necessary) we assume throughout this paper
thatF ∗

τ,P(x) consists of singletons, i.e., there exists a functionf∗τ,P : X → R, called the conditional
τ -quantile function, such thatF ∗

τ,P(x) = {f∗τ,P(x)}, x ∈ X. Let us now consider the so-called
τ -pinball lossLτ : R×R → [0,∞) defined byLτ (y, t) := ψτ (y− t), whereψτ (r) = (τ − 1)r, if
r < 0, andψτ (r) = τr, if r ≥ 0. Moreover, given a (measurable) functionf : X → R we define the
Lτ -risk of f by RLτ ,P(f) := E(x,y)∼PLτ (y, f(x)). Now recall thatf∗τ,P is up to zero sets theonly
function that minimizes theLτ -risk, i.e. RLτ ,P(f∗τ,P) = inf RLτ ,P(f) =: R∗

Lτ ,P, where the infi-
mum is taken over allf : X → R. Based on this observation several estimators minimizing a (mod-
ified) empiricalLτ -risk were proposed (see [5] for a survey on both parametric and non-parametric
methods) for situations whereP is unknown, but i.i.d. samplesD := ((x1, y1), . . . , (xn, yn)) drawn
from P are given. In particular, [6, 4, 10] proposed an SVM that finds a solutionfD,λ ∈ H of

arg min
f∈H

λ‖f‖2
H +

1

n

n
∑

i=1

Lτ (yi, f(xi)) , (1)

whereλ > 0 is a regularization parameter andH is a reproducing kernel Hilbert space (RKHS) over
X. Note that this optimization problem can be solved by considering the dual problem [4, 10], but
since this technique is nowadays standard in machine learning we omit the details. Moreover, [10]
contains an exhaustive empirical study as well some theoretical considerations.

Empirical methods estimating quantiles with the help of the pinball loss typically obtain functions
fD for which RLτ ,P(fD) is close toR∗

Lτ ,P with high probability. However, in general this only
implies thatfD is close tof∗τ,P in a very weak sense (see [7, Remark 3.18]), and hence there is so
far only little justification for usingfD as an estimate of the quantile function. Our goal is to address
this issue by showing that under certain realistic assumptions onP we have an inequality of the form

‖f − f∗τ,P‖L1(PX) ≤ cP

√

RLτ ,P(f) −R∗
Lτ ,P . (2)



We then use this inequality to establish an oracle inequalityfor SVMs defined by (1). In addition,
we illustrate how this oracle inequality can be used to obtain learning rates and to justify a data-
dependent method for finding the hyper-parameterλ andH. Finally, we generalize the methods for
establishing (2) to investigate the role ofǫ in theǫ-insensitive loss used in standard SVM regression.

2 Main results

In the followingX is an arbitrary, non-empty set equipped with aσ-algebra, andY ⊂ R is a closed
non-empty set. Given a distributionP onX × Y we further assume throughout this paper that the
σ-algebra onX is complete with respect to the marginal distributionPX of P, i.e., every subset of a
PX -zero set is contained in theσ-algebra. Since the latter can always be ensured by increasing the
originalσ-algebra in a suitable manner we note that this is not a restriction at all.

Definition 2.1 A distributionQ on R is said to have aτ -quantile of typeα > 0 if there exists a
τ -quantilet∗ ∈ R and a constantcQ > 0 such that for alls ∈ [0, α] we have

Q
(

(t∗, t∗ + s)
)

≥ cQ s and Q
(

(t∗ − s, t∗)
)

≥ cQ s . (3)

It is not difficult to see that a distributionQ having aτ -quantile of some typeα has a uniqueτ -
quantilet∗. Moreover, ifQ has a Lebesgue densityhQ thenQ has aτ -quantile of typeα if hQ is
bounded away from zero on[t∗−α, t∗+α] since we can usecQ := inf{hQ(t) : t ∈ [t∗−α, t∗+α]}
in (3). This assumption is general enough to cover many distributions used in parametric statistics
such as Gaussian, Student’st, and logistic distributions (withY = R), Gamma and log-normal
distributions (withY = [0,∞)), and uniform and Beta distributions (withY = [0, 1]).

The following definition describes distributions onX × Y whose conditional distributionsP( · |x),
x ∈ X, have the sameτ -quantile typeα.

Definition 2.2 Let p ∈ (0,∞], τ ∈ (0, 1), andα > 0. A distributionP onX×Y is said to have a
τ -quantile ofp-average typeα, if Qx := P( · |x) hasPX -almost surely aτ -quantile typeα andb :
X → (0,∞) defined byb(x) :=cP( · |x), wherecP( · |x) is the constant in (3), satisfiesb−1∈Lp(PX).

Let us now give some examples for distributions havingτ -quantiles ofp-average typeα.

Example 2.3 Let P be a distribution onX × R with marginal distributionPX and regular condi-
tional probabilityQx

(

(−∞, y]
)

:= 1/(1+e−z), y ∈ R, wherez :=
(

y−m(x)
)

/σ(x),m : X → R

describes a location shift, andσ : X → [β, 1/β] describes a scale modification for some constant
β ∈ (0, 1]. Let us further assume that the functionsm andσ are measurable. ThusQx is a logistic
distribution having the positive and bounded Lebesgue densityhQx

(y) = e−z/(1 + e−z)2, y ∈ R.
Theτ -quantile function ist∗(x) := f∗τ,Qx

= m(x) + σ(x) log( τ
1−τ ), x ∈ X, and we can choose

b(x) = inf{hQx
(t) : t ∈ [t∗(x) − α, t∗(x) + α]}. Note thathQx

(m(x) + y) = hQx
(m(x) − y) for

all y ∈ R, andhQx
(y) is strictly decreasing fory ∈ [m(x),∞). Some calculations show

b(x) = min
{

hQx
(t∗(x)−α), hQx

(t∗(x)+α)
}

= min
{ u1(x)

(1+u1(x))2
,

u2(x)

(1+u2(x))2

}

∈
(

cα,β ,
1

4

)

,

whereu1(x) := 1−τ
τ e−α/σ(x), u2(x) := 1−τ

τ eα/σ(x) andcα,β > 0 can be chosen independent ofx,
becauseσ(x) ∈ [β, 1/β]. Henceb−1 ∈ L∞(PX) andP has aτ -quantile of∞-average typeα.

Example 2.4 Let P̃ be a distribution onX × Y with marginal distributionP̃X and regular con-
ditional probability Q̃x := P̃(· |x) on Y . Furthermore, assume that̃Qx is P̃X -almost surely
of τ -quantile typeα. Let us now consider the family of distributionsP with marginal distribu-
tion P̃X and regular conditional distributionsQx := P̃

(

(· − m(x))/σ(x)
∣

∣x
)

, x ∈ X, where
m : X → R andσ : X → (β, 1/β) are as in the previous example. ThenQx has aτ -quantile
f∗τ,Qx

= m(x) + σ(x)f∗
τ,Q̃x

of typeαβ, because we obtain fors ∈ [0, αβ] the inequality

Qx

(

(f∗τ,Qx
, f∗τ,Qx

+ s)
)

= Q̃x

(

(f∗
τ,Q̃x

, f∗
τ,Q̃x

+ s/σ(x))
)

≥ b(x)s/σ(x) ≥ b(x)βs .

Consequently,P has aτ -quantile ofp-average typeαβ if and only if P̃ does have aτ -quantile of
p-average typeα.



The following theorem shows that for distributions having a quantile ofp-average type the condi-
tional quantile can be estimated by functions that approximately minimize the pinball risk.

Theorem 2.5 Let p ∈ (0,∞], τ ∈ (0, 1), α > 0 be real numbers, andq := p
p+1 . Moreover, let

P be a distribution onX × Y that has aτ -quantile ofp-average typeα. Then for allf : X → R

satisfyingRLτ ,P(f) −R∗
Lτ ,P ≤ 2−

p+2
p+1α

2p

p+1 we have

‖f − f∗τ,P‖Lq(PX) ≤
√

2 ‖b−1‖1/2
Lp(PX)

√

RLτ ,P(f) −R∗
Lτ ,P .

Our next goal is to establish an oracle inequality for SVMs defined by (1). To this end let us assume
Y = [−1, 1]. Then we haveLτ (y, t̄) ≤ Lτ (y, t) for all y ∈ Y , t ∈ R, wheret̄ denotest clipped
to the interval[−1, 1], i.e., t̄ := max{−1,min{1, t}}. Since this yieldsRLτ ,P(f̄) ≤ RLτ ,P(f) for
all functionsf : X → R we will focus on clipped functions̄f in the following. To describe the
approximation error of SVMs we need theapproximation error functionA(λ) := inff∈H λ‖f‖2

H +
RLτ ,P(f) − R∗

Lτ ,P, λ > 0. Recall that [8] showedlimλ→0A(λ) = 0 if the RKHSH is dense in
L1(PX). We also need thecovering numberswhich forε > 0 are defined by

N
(

BH , ε, L2(µ)
)

:= min
{

n ≥ 1 : ∃x1, . . . , xn ∈ L2(µ) with BH ⊂ ∪n
i=1(xi + εBL2(µ))

}

, (4)

whereµ is a distribution onX, andBH andBL2(µ) denote the closed unit balls ofHand the Hilbert
spaceL2(µ), respectively. Given a finite sequenceD = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n

we writeDX := (x1, . . . , xn), andN (BH , ε, L2(DX)) := N (BH , ε, L2(µ)) if µ is the empirical
measure defined byDX . Finally, we writeLτ ◦f for the function(x, y) 7→ Lτ (y, f(x)). With these
preparations we can now recall the following oracle inequality shown in more generality in [9].

Theorem 2.6 LetP be a distribution onX×[−1, 1] for which there exist constantsv ≥ 1, ϑ ∈ [0, 1]
with

EP

(

Lτ ◦ f̄ − Lτ ◦ f∗τ,P

)2 ≤ v
(

EP(Lτ ◦ f̄ − Lτ ◦ f∗τ,P)
)ϑ

(5)

for all f : X → R. Moreover, letH be a RKHS overX for which there exist̺ ∈ (0, 1) anda ≥ 1
with

sup
D∈(X×Y )n

logN
(

BH , ε, L2(DX)
)

≤ aε−2̺ , ε > 0 . (6)

Then there exists a constantK̺,v depending only on̺ andv such that for allς ≥ 1, n ≥ 1, and
λ > 0 we have with probability not less than1 − 3e−ς that

RLτ ,P(f̄D,λ)−R∗
Lτ ,P ≤ 8A(λ)+30

√

A(λ)

λ

ς

n
+

(

K̺,va

λ̺n

)
1

2−ϑ+̺(ϑ−1)

+
K̺,va

λ̺n
+5

(32vς

n

)
1

2−ϑ

.

Moreover, [9] showed that oracle inequalities of the above type can be used to establish learning
rates and to investigate data-dependent parameter selection strategies. For example if we assume that
there exist constantsc > 0 andβ ∈ (0, 1] such thatA(λ) ≤ cλβ for all λ > 0 thenRLτ ,P(f̄T,λn

)

converges toR∗
Lτ ,P with raten−γ whereγ := min { β

β(2−ϑ+̺(ϑ−1))+̺ ,
2β

β+1} andλn = n−γ/β .
Moreover, [9] shows that this rate can also be achieved by selectingλ in a data-dependent way with
the help of a validation set. Let us now consider how these learning rates in terms of risks translate
into rates for‖f̄T,λ − f∗τ,P‖Lq(PX). To this end we assume thatP has aτ -quantile ofp-average type
α for τ ∈ (0, 1). Using the Lipschitz continuity ofLτ and Theorem 2.5 we then obtain

EP

(

Lτ ◦f̄−Lτ ◦f∗τ,P

)2 ≤ EP|f̄−f∗τ,P|2 ≤ ‖f̄−f∗τ,P‖2−q
∞ EP|f̄−f∗τ,P|q ≤ c

(

RLτ ,P(f̄)−R∗
Lτ ,P

)q/2

for all f satisfyingRLτ ,P(f̄)−R∗
Lτ ,P ≤ 2−

p+2
p+1α

2p

p+1 , i.e. we have a variance bound (5) forϑ := q/2

and clipped functions with small excess risk. Arguing carefully to handle the restriction onf̄ we
then see that‖f̄T,λ − f∗τ,P‖Lq(PX) can converge as fast asn−γ , where

γ := min
{

β
β(4−q+̺(q−2))+2̺,

β
β+1

}

.

To illustrate the latter let us assume thatH is a Sobolev spaceWm(X) of orderm ∈ N overX,
whereX is the unit ball inRd. Recall from [3] thatH satisfies (6) for̺ := d/(2m) if m > d/2 and



in this caseH also consists of continuous functions. Furthermore, assume that we are in the ideal
situationf∗τ,P ∈Wm(X) which impliesβ = 1. Then the learning rate for‖f̄T,λ − f∗τ,P‖Lq(PX) be-

comesn−1/(4−q(1−̺)), which for∞-average type distributions reduces ton−2m/(6m+d) ≈ n−1/3.

Let us finally investigate whether theǫ-insensitive loss defined byL(y, t) := max{0, |y − t| − ǫ}
for y, t ∈ R and fixedǫ > 0, can be used to estimate the median, i.e. the(1/2)-quantile.

Theorem 2.7 LetL be theǫ-insensitive loss for someǫ > 0 andP be a distribution onX×R which
has a unique medianf∗1/2,P . Furthermore, assume that all conditional distributionsP(·|x), x ∈ X,
are atom-free, i.e.P({y}|x) = 0 for all y ∈ R, and symmetric, i.e.P(h(x)+A|x) = P(h(x)−A|x)
for all measurableA ⊂ R and a suitable functionh : X → R. If for the conditional distributions
have a positive mass concentrated aroundf∗1/2,P ± ǫ thenf∗1/2,P is the only minimizer ofRL,P.

Note that using [7] one can show that for distributions specified in the above theorem the
SVM using theǫ-insensitive loss approximatesf∗1/2,P whenever the SVM isRL,P-consistent,
i.e. RL,P(fT,λ) → R∗

L,P in probability, see [2]. More advanced results in the sense of Theorem
2.5 seem also possible, but are out of the scope of this paper.

3 Proofs

Let us first recall some notions from [7] who investigated surrogate losses in general and the question
how approximate risk minimizers approximate exact risk minimizers in particular. To this end let
L : X × Y × R → [0,∞) be a measurable function which we call a loss in the following. For a
distributionP and anf : X → R theL-risk is then defined byRL,P(f) := E(x,y)∼PL(x, y, f(x)),
and, as usual, the BayesL-risk, is denoted byR∗

L,P := inf RL,P(f), where the infimum is taken over
all (measurable)f : X → R. In addition, given a distributionQ onY theinnerL-riskswere defined
by CL,Q,x(t) :=

∫

Y
L(x, y, t) dQ(y), x ∈ X, t ∈ R, and theminimal innerL-riskswere denoted by

C∗
L,Q,x := inf CL,Q,x(t), x ∈ X, where the infimum is taken over allt ∈ R. Moreover, following

[7] we usually omit the indexesx or Q if L is independent ofx or y, respectively. Obviously, we
have

RL,P(f) =

∫

X

CL,P( · |x),x

(

f(x)
)

dPX(x) , (7)

and [7, Theorem 3.2] further shows thatx 7→ C∗
L,P( · |x),x is measurable if theσ-algebra onX is

complete. In this case it was also shown that the intuitive formulaR∗
L,P =

∫

X
C∗

L,P( · |x),x dPX(x)

holds, i.e. the BayesL-risk is obtained by minimizing the inner risks and subsequently integrating
with respect to the marginal distributionPX . Based on this observation the basic idea in [7] is to
consider both steps separately. In particular, it turned out that the sets ofε-approximate minimizers
ML,Q,x(ε) :=

{

t ∈ R : CL,Q,x(t) < C∗
L,Q,x + ε

}

, ε ∈ [0,∞], and the set ofexact minimizers
ML,Q,x(0+) :=

⋂

ε>0 ML,Q,x(ε) play a crucial role. As in [7] we again omit the subscriptsx and
Q in these definitions ifL happens to be independent ofx or y, respectively.

Now assume we have two lossesLtar : X ×Y ×R → [0,∞] andLsur : X ×Y ×R → [0,∞], and
that our goal is to estimate the excessLtar-risk by the excessLsur-risk. This issue was investigated
in [7], where the main device was the so-calledcalibration functionδmax ( · ,Q, x) defined by

δmax (ε,Q, x) :=

{

inft∈R\MLtar,Q,x(ε) CLsur,Q,x(t) − C∗
Lsur,Q,x if C∗

Lsur,Q,x <∞ ,

∞ if C∗
Lsur,Q,x = ∞ ,

for all ε ∈ [0,∞]. In the following we sometimes writeδmax,Ltar,Lsur
(ε,Q, x) := δmax (ε,Q, x)

whenever we need to explicitly mention the target and surrogate losses. In addition, we follow our
convention which omitsx or Q whenever this is possible. Now recall that [7, Lemma 2.9] showed

δmax

(

CLtar,Q,x(t) − C∗
Ltar,Q,x,Q, x

)

≤ CLsur,Q,x(t) − C∗
Lsur,Q,x , t ∈ R (8)

if both C∗
Ltar,Q,x < ∞ andC∗

Lsur,Q,x < ∞. Before we use (8) to establish an inequality between
the excess risks ofLtar andLsur, we finally recall that the Fenchel-Legendre bi-conjugateg∗∗ :
I → [0,∞] of a functiong : I → [0,∞] defined on an intervalI is the largest convex function
h : I → [0,∞] satisfyingh ≤ g. In addition, we writeg∗∗(∞) := limt→∞ g∗∗(t) if I = [0,∞).
With these preparations we can now establish the following generalization of [7, Theorem 2.18].



Theorem 3.1 LetP be a distribution onX × Y with R∗
Ltar,P

< ∞ andR∗
Lsur,P

< ∞ and assume
that there existp ∈ (0,∞] and functionsb : X → [0,∞] andδ : [0,∞) → [0,∞) such that

δmax(ε,P( · |x), x) ≥ b(x) δ(ε) , ε ≥ 0, x ∈ X, (9)

andb−1 ∈ Lp(PX). Then forq := p
p+1 , δ̄ := δq : [0,∞) → [0,∞), and allf : X → R we have

δ̄∗∗
(

RLtar,P(f) −R∗
Ltar,P

)

≤ ‖b−1‖q
Lp(PX)

(

RLsur,P(f) −R∗
Lsur,P

)q
.

Proof: Let us first consider the caseRLtar,P(f) < ∞. Sinceδ̄∗∗ is convex and satisfies̄δ∗∗(ε) ≤
δ̄(ε) for all ε ∈ [0,∞) we see by Jensen’s inequality that

δ̄∗∗
(

RLtar,P(f) −R∗
Ltar,P

)

≤
∫

X

δ̄
(

CLtar,P( · |x),x(t) − C∗
Ltar,P( · |x),x

)

dPX(x) (10)

Moreover, using (8) and (9) we obtain

b(x) δ
(

CLtar,P( · |x),x(t) − C∗
Ltar,P( · |x),x

)

≤ CLsur,P( · |x),x(t) − C∗
Lsur,P( · |x),x

for PX -almost allx ∈ X and allt ∈ R. By (10), the definition of̄δ, and Ḧolder’s inequality in the
form of ‖ · ‖q ≤ ‖ · ‖p · ‖ · ‖1, we thus find that̄δ∗∗

(

RLtar,P(f) −R∗
Ltar,P

)

is less than or equal to
(

∫

X

(

b(x)
)−q(CLsur,P( · |x),x

(

f(x)
)

− C∗
Lsur,P( · |x),x

)q
dPX(x)

)q/q

≤
(

∫

X

b−pdPX

)q/p(
∫

X

(

CLsur,P( · |x),x

(

f(x)
)

− C∗
Lsur,P( · |x),x

)

dPX(x)
)q

≤ ‖b−1‖q
Lp(PX)

(

RLsur,P(f) −R∗
Ltar,P

)q
.

Let us finally deal with the caseRLtar,P(f) = ∞. If δ̄∗∗(∞) = 0 there is nothing to prove and
hence we assumēδ∗∗(∞) > 0. Following the proof of [7, Theorem 2.13] we then see that there
exist constantsc1, c2 ∈ (0,∞) satisfyingt ≤ c1δ

∗∗(t) + c2 for all t ∈ [0,∞]. From this we obtain

∞ = RLtar,P(f) −R∗
Ltar,P ≤ c1

∫

X

δ̄∗∗
(

CLtar,P( · |x),x(t) − C∗
Ltar,P( · |x),x

)

dPX(x) + c2

≤ c1

∫

X

(

b(x)
)−q

(

CLsur,P( · |x),x

(

f(x)
)

− C∗
Lsur,P( · |x),x

)q

dPX(x) + c2 ,

where the last step is analogous to our considerations forRLtar,P(f) < ∞. By b−1 ∈ Lp(PX) and
Hölder’s inequality we then concludeRLsur,P(f) −R∗

Lsur,P
= ∞.

Our next goal is to determine the inner risks and their minimizers for the pinball loss. To this end
recall (see, e.g., [1, Theorem 23.8]) that given a distributionQ on R and anon-negativefunction
g : X → [0,∞) we have

∫

R

g dQ =

∫ ∞

0

Q(g ≥ s) ds . (11)

Proposition 3.2 Letτ ∈ (0, 1) andQ be a distribution onR withC∗
Lτ ,Q <∞ andt∗ be aτ -quantile

of Q. Then there existq+, q− ∈ [0,∞) with q+ + q− = Q({t∗}), and for allt ≥ 0 we have

CLτ ,Q(t∗ + t) − CLτ ,Q(t∗) = tq+ +

∫ t

0

Q
(

(t∗, t∗ + s)
)

ds , and (12)

CLτ ,Q(t∗ − t) − CLτ ,Q(t∗) = tq− +

∫ t

0

Q
(

(t∗ − s, t∗)
)

ds . (13)

Proof: Let us consider the distributionQ(t∗) defined byQ(t∗)(A) := Q(t∗ + A) for all measurable
A ⊂ R. Then it is not hard to see that0 is a τ -quantile ofQ(t∗). Moreover, we obviously have
CLτ ,Q(t∗ + t) = CLτ ,Q(t∗)(t) and hence we may assume without loss of generality thatt∗ = 0. Then
our assumptions together withQ((−∞, 0]) + Q([0,∞)) = 1 + Q({0}) yield τ ≤ Q((−∞, 0]) ≤
τ + Q({0}), i.e., there exists aq+ satisfying0 ≤ q+ ≤ Q({0}) and

Q((−∞, 0]) = τ + q+ . (14)



Let us now compute the inner risks ofLτ . To this end we first assumet ≥ 0. Then we have
∫

y<t

(y − t) dQ(y) =

∫

y<0

y dQ(y) − tQ((−∞, t)) +

∫

0≤y<t

y dQ(y)

and
∫

y≥t
(y − t) dQ(y) =

∫

y≥0
y dQ(y) − tQ([t,∞)) −

∫

0≤y<t
y dQ(y) and hence we obtain

CLτ ,Q(t) = (τ − 1)

∫

y<t

(y − t) dQ(y) + τ

∫

y≥t

(y − t) dQ(y)

= CLτ ,Q(0) − τt+ tQ((−∞, 0)) + tQ([0, t)) −
∫

0≤y<t

y dQ(y) .

Moreover, using (11) we find

tQ([0, t)) −
∫

0≤y<t

y dQ(y) =

∫ t

0

Q([0, t))ds−
∫ t

0

Q([s, t)) ds = tQ({0}) +

∫ t

0

Q((0, s))ds ,

and since (14) impliesQ((−∞, 0)) + Q({0}) = Q((−∞, 0]) = τ + q+ we thus obtain (12).
Now (13) can be derived from (12) by considering the pinball loss with parameter1 − τ and the
distributionQ̄ defined byQ̄(A) := Q(−A), A ⊂ R measurable. This further yields aq− satisfying
0 ≤ q− ≤ Q({0}) andQ([0,∞) = 1 − τ + q−. By (14) we then findq+ + q− = Q({0}).

For the proof of Theorem 2.5 we recall a few more concepts from [7]. To this end let us now assume
that our loss is independent ofx, i.e. we consider a measurable functionL : Y ×R → [0,∞]. We
write

Qmin(L) :=
{

Q ∈ Qmin(L) : ∃ t∗L,Q ∈ R such thatML,Q(0+) = {t∗L,Q}
}

,

i.e.Qmin(L) contains the distributions onY whose innerL-risks have exactly one exact minimizer.
Furthermore, note that this definition immediately yieldsC∗

L,Q < ∞ for all Q ∈ Qmin(L). Follow-
ing [7] we now define theself-calibration lossof L by

L̆(Q, t) := |t− t∗L,Q| , Q ∈ Qmin(L), t ∈ R . (15)

This loss is a so-called template loss in the sense of [7], i.e., for a given distributionP onX × Y ,
whereX has a completeσ-algebra andP( · |x) ∈ Qmin(L) for PX -almost allx ∈ X, theP-instance
L̆P(x, t) := |t− t∗L,P( · |x)| is measurable and hence a loss. [7] extended the definition of inner risks

to the self-calibration loss by settingCL̆,Q(t) := L̆(Q, t), and based on this the minimal inner risks
and their (approximate) minimizers were defined in the obvious way. Moreover, theself-calibration
functionwas defined byδmax,L̆,L(ε,Q) = inft∈R; |t−t∗

L,Q|≥ε CL,Q(t) − C∗
L,Q. As shown in [7] this

self-calibration function has two important properties: first it satisfies

δmax,L̆,L

(

|t− t∗L,Q|,Q
)

≤ CL,Q(t) − C∗
L,Q , t ∈ R, (16)

i.e. it measures how well approximateL-risk minimizerst approximate the true minimizert∗L,Q, and

second it equals the calibration function of theP-instanceL̆P, i.e.

δmax,L̆P,L(ε,P( · |x), x) = δmax,L̆,L(ε,P( · |x)) , ε ∈ [0,∞], x ∈ X. (17)

In other words, the self-calibration function can be utilized in Theorem 3.1.

Proof of Theorem 2.5: Let Q be a distribution onR with C∗
L,Q < ∞ andt∗ be theonly τ -quantile

of Q. Then the formulas of Proposition 3.2 show

δmax,L̆,L(ε,Q) = min
{

εq+ +

∫ ε

0

Q
(

(t∗, t∗ + s)
)

ds, εq− +

∫ ε

0

Q
(

(t∗ − s, t∗)
)

ds
}

, ε ≥ 0,

whereq+ andq− are the real numbers defined in Proposition 3.2. Let us additionally assume that
theτ -quantilet∗ is of typeα. For the Huber type functionδ(ε) := ε2/2 if ε ∈ [0, α], andδ(ε) :=
αε − α2/2 if ε > α, a simple calculation then yieldsδmax,L̆,L(ε,Q) ≥ cQδ(ε), wherecQ is the

constant satisfying (3). Let us further defineδ̄ : [0,∞) → [0,∞) by δ̄(ε) := δq(ε1/q), ε ≥ 0. In
view of Theorem 3.1 we then need to find a convex functionδ̂ : [0,∞) → [0,∞) such that̂δ ≤ δ̄.
To this end we definêδ(ε) := sp

pε
2 if ε ∈

[

0, spap

]

and δ̂(ε) := ap

(

ε − sp+2
p ap

)

if ε > spap,

whereap := αq andsp := 2−q/p. Thenδ̂ : [0,∞) → [0,∞) is continuously differentiable and its
derivative is increasing, and thusδ̂ is convex. Moreover, we havêδ′ ≤ δ̄′ and hencêδ ≤ δ̄ which in
turn impliesδ̂ ≤ δ̄∗∗. Now we find the assertion by (16), (17), and Theorem 3.1.



The proof of Theorem 2.7 follows immediately from the following lemma.

Lemma 3.3 LetQ be a symmetric, atom-free distribution onR with mediant∗ = 0. Then forǫ > 0
andL being theǫ-insensitive loss we haveCL,Q(0) = C∗

L,Q = 2
∫ ∞

ǫ
Q[s,∞)ds and ifCL,Q(0) <∞

we further have

CL,Q(t) − CL,Q(0) =

∫ ǫ

ǫ−t

Q[s, ǫ] ds+

∫ ǫ+t

ǫ

Q[ǫ, s] ds, if t ∈ [0, ǫ],

CL,Q(t) − CL,Q(ǫ) =

t−ǫ
∫

0

Q[s,∞) ds−
ǫ+t
∫

2ǫ

Q[s,∞) ds+ 2

t−ǫ
∫

0

Q[0, s] ds ≥ 0, if t > ǫ.

In particular, ifQ[ǫ− δ, ǫ+ δ] = 0 for someδ > 0 thenCL,Q(δ) = C∗
L,Q.

Proof: BecauseL(y, t) = L(−y,−t) for all y, t ∈ R we only have to considert ≥ 0. For later use
we note that for0 ≤ a ≤ b ≤ ∞ Equation (11) yields

∫ b

a

y dQ(y) = aQ([a, b]) +

∫ b

a

Q([s, b])ds . (18)

Moreover, the definition ofL implies

CL,Q(t) =

∫ t−ǫ

−∞

t− y − ǫ dQ(y) +

∫ ∞

t+ǫ

y − ǫ− t dQ(y) .

Using the symmetry ofQ yields−
∫ t−ǫ

−∞
y dQ(y) =

∫ ∞

ǫ−t
y dQ(y) and hence we obtain

CL,Q(t) =

∫ t−ǫ

0

Q(−∞, t− ǫ]ds−
∫ t+ǫ

0

Q[t+ ǫ,∞)ds+

∫ t+ǫ

ǫ−t

y dQ(y)+2

∫ ∞

t+ǫ

y dQ(y) . (19)

Let us first consider the caset ≥ ǫ. Then the symmetry ofQ yields
∫ t+ǫ

ǫ−t
y dQ(y) =

∫ t+ǫ

t−ǫ
y dQ(y),

and hence (18) implies

CL,Q(t) =

∫ t−ǫ

0

Q[ǫ− t,∞)ds+

∫ t−ǫ

0

Q[t−ǫ, t+ǫ] ds+

∫ t+ǫ

t−ǫ

Q[s, t+ǫ] ds

+2

∫ ∞

t+ǫ

Q[s,∞) ds+

∫ t+ǫ

0

Q[t+ǫ,∞) ds.

Using
∫ t+ǫ

t−ǫ

Q[s, t+ ǫ) ds =

∫ t+ǫ

0

Q[s, t+ ǫ) ds−
∫ t−ǫ

0

Q[s, t+ ǫ) ds

we further obtain
t+ǫ
∫

t−ǫ

Q[s, t+ ǫ) ds+

t+ǫ
∫

0

Q[t+ ǫ,∞) ds+

∞
∫

t+ǫ

Q[s,∞) ds =

∞
∫

0

Q[s,∞) ds−
t−ǫ
∫

0

Q[s, t+ ǫ) ds .

From this and
∫ t−ǫ

0
Q[t− ǫ, t+ ǫ] ds−

∫ t−ǫ

0
Q[s, t+ ǫ] ds = −

∫ t−ǫ

0
Q[s, t− ǫ] ds follows

CL,Q(t)=−
∫ t−ǫ

0

Q[s, t− ǫ] ds+

∫ t−ǫ

0

Q[ǫ− t,∞) ds+

∫ ∞

t+ǫ

Q[s,∞) ds+

∫ ∞

0

Q[s,∞) ds .

The symmetry ofQ implies
∫ t−ǫ

0
Q[ǫ− t, t− ǫ] ds = 2

∫ t−ǫ

0
Q[0, t− ǫ] ds, and we get

−
∫ t−ǫ

0

Q[s, t− ǫ] ds+

∫ t−ǫ

0

Q[ǫ− t,∞) ds = 2

∫ t−ǫ

0

Q[0, s) ds+

∫ t−ǫ

0

Q[s,∞) ds .

This and
∫ ∞

t+ǫ

Q[s,∞) ds+

∫ ∞

0

Q[s,∞) ds = 2

∫ ∞

t+ǫ

Q[s,∞) ds+

∫ t+ǫ

0

Q[s,∞) ds



yields

CL,Q(t) = 2

∫ t−ǫ

0

Q[0, s) ds+

∫ t−ǫ

0

Q[s,∞) ds+ 2

∫ ∞

t+ǫ

Q[s,∞) ds+

∫ t+ǫ

0

Q[s,∞) ds .

By
∫ t−ǫ

0

Q[s,∞) ds+

∫ t+ǫ

0

Q[s,∞) ds = 2

∫ t−ǫ

0

Q[s,∞) ds+

∫ t+ǫ

t−ǫ

Q[s,∞) ds

we obtain

CL,Q(t) = 2

∫ t−ǫ

0

Q[0,∞) ds+ 2

∫ ∞

t+ǫ

Q[s,∞) ds+

∫ t+ǫ

t−ǫ

Q[s,∞) ds

if t ≥ ǫ. Let us now consider the caset ∈ [0, ǫ]. Analogously we obtain from (19) that

CL,Q(t) =

∫ ǫ−t

0

Q[ǫ− t, t+ ǫ] ds+

∫ ǫ+t

ǫ−t

Q[s, t+ ǫ] ds+ 2

∫ ∞

ǫ+t

Q[s,∞) ds

+2

∫ ǫ+t

0

Q[ǫ+ t,∞) ds−
∫ ǫ−t

0

Q[ǫ− t,∞) ds−
∫ ǫ+t

0

Q[ǫ+ t,∞) ds .

Combining this with
∫ ǫ−t

0

Q[ǫ− t, t+ ǫ] ds−
∫ ǫ−t

0

Q[ǫ− t,∞) ds = −
∫ ǫ−t

0

Q[ǫ+ t,∞) ds

and
∫ ǫ+t

0
Q[ǫ+ t,∞) ds−

∫ ǫ−t

0
Q[ǫ+ t,∞) ds =

∫ ǫ+t

ǫ−t
Q[ǫ+ t,∞) ds we get

CL,Q(t) =

∫ ǫ+t

ǫ−t

Q[ǫ+ t,∞) ds+

∫ ǫ+t

ǫ−t

Q[s, t+ ǫ] ds+ 2

∫ ∞

ǫ+t

Q[s,∞) ds

=

∫ ǫ+t

ǫ−t

Q[s,∞) ds+ 2

∫ ∞

ǫ+t

Q[s,∞) ds =

∫ ∞

ǫ−t

Q[s,∞) ds+

∫ ∞

ǫ+t

Q[s,∞) ds.

HenceCL,Q(0) = 2
∫ ∞

ǫ
Q[s,∞) ds. The expressions forCL,Q(t)−CL,Q(0), t ∈ (0, ǫ], andCL,Q(t)−

CL,Q(ǫ), t > ǫ, given in Lemma 3.3 follow by using the same arguments. Hence one exact minimizer
of CL,Q(·) is the mediant∗ = 0. The last assertion is a direct consequence of the formula for
CL,Q(t) − CL,Q(0) in the caset ∈ (0, ǫ].
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