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Abstract
The problem of obtaining the maximum a posteriori estimate of a general dis-
crete random field (i.e. a random field defined using a finite and discrete set of
labels) is known to beNP-hard. However, due to its central importance in many
applications, several approximate algorithms have been proposed in the litera-
ture. In this paper, we present an analysis of three such algorithms based on
convex relaxations: (i)LP-S: the linear programming (LP) relaxation proposed by
Schlesinger [20] for a special case and independently in [4, 12, 23] for the general
case; (ii)QP-RL: the quadratic programming (QP) relaxation by Ravikumar and
Lafferty [18]; and (iii) SOCP-MS: the second order cone programming (SOCP) re-
laxation first proposed by Muramatsu and Suzuki [16] for two label problems and
later extended in [14] for a general label set.
We show that theSOCP-MS and theQP-RL relaxations are equivalent. Further-
more, we prove that despite the flexibility in the form of the constraints/objective
function offered byQP andSOCP, theLP-S relaxationstrictly dominates(i.e. pro-
vides a better approximation than)QP-RL and SOCP-MS. We generalize these
results by defining a large class ofSOCP(and equivalentQP) relaxations which is
dominated by theLP-S relaxation. Based on these results we propose some novel
SOCPrelaxations which strictly dominate the previous approaches.

1 Introduction
Discrete random fields are a powerful tool to obtain a probabilistic formulation for various applica-
tions in Computer Vision and related areas [3]. Hence, developing accurate and efficient algorithms
for performing inference on a given discrete random field is of fundamental importance. In this
work, we will focus on the problem of maximum a posteriori (MAP) estimation. MAP estimation
is a key step in obtaining the solutions to many applications such as stereo, image stitching and
segmentation [21]. Furthermore, it is closely related to many important Combinatorial Optimization
problems such asMAXCUT [6], multi-way cut [5], metric labelling [3, 11] and 0-extension [3, 9].

Given dataD, a discrete random field models the distribution (i.e. either the joint or the con-
ditional probability) of a labelling for a set of random variables. Each of these variablesv =
{v0, v1, · · · , vn−1} can take a label from a discrete setl = {l0, l1, · · · , lh−1}. A particular labelling
of variablesv is specified by a functionf whose domain corresponds to the indices of the random
variables and whose range is the index of the label set, i.e.f : {0, 1, · · · , n−1} → {0, 1, · · · , h−1}.
In other words, random variableva takes labellf(a). For convenience, we assume the model to be
a conditional random field (CRF) while noting that all the results of this paper also apply to Markov
random fields (MRF).

A CRF specifies a neighbourhood relationshipE between the random variables, i.e.(a, b) ∈ E if,
and only if,va andvb are neighbouring random variables. Within this framework, the conditional
probability of a labellingf given dataD is specified asPr(f |D, θ) = 1

Z(θ)
exp(−Q(f ;D, θ). Here

θ represents the parameters of theCRF andZ(θ) is a normalization constant which ensures that the
probability sums to one (also known as the partition function). The energyQ(f ;D, θ) is given by
Q(f ;D, θ) =

∑

va∈v
θ1

a;f(a) +
∑

(a,b)∈E
θ2

ab;f(a)f(b). The termθ1
a;f(a) is called a unary potential

since its value depends on the labelling of one random variable at a time. Similarly,θ2
ab;f(a)f(b) is

called a pairwise potential as it depends on a pair of random variables. For simplicity, we assume
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that θ2
ab;f(a)f(b) = w(a, b)d(f(a), f(b)) wherew(a, b) is the weight that indicates the strength of

the pairwise relationship between variablesva andvb, with w(a, b) = 0 if (a, b) /∈ E , andd(·, ·) is
a distance function on the labels. As will be seen later, this formulation of the pairwise potentials
would allow us to concisely describe our results.

The problem ofMAP estimation is well known to beNP-hard in general. Since it plays a central
role in several applications, many approximate algorithms have been proposed in the literature. In
this work, we analyze three such algorithms which are based on convex relaxations. Specifically,
we consider: (i)LP-S, the linear programming (LP) relaxation of [4, 12, 20, 23]; (ii)QP-RL, the
quadratic programming (QP) relaxation of [18]; and (iii)SOCP-MS, the second order cone program-
ming (SOCP) relaxation of [14, 16]. In order to provide an outline of these relaxations, we formulate
the problem ofMAP estimation as an Integer Program (IP).

1.1 Integer Programming Formulation

We define a binary variable vectorx of lengthnh. We denote the element ofx at indexa · h + i
asxa;i whereva ∈ v andli ∈ l. These elementsxa;i specify a labellingf such thatxa;i = 1 if
f(a) = i andxa;i = −1 otherwise. We say that the variablexa;i belongs tovariableva since it
defines which labelva does (or does not) take. LetX = xx⊤. We refer to the(a · h + i, b · h + j)th

element of the matrixX asXab;ij whereva, vb ∈ v andli, lj ∈ l. Clearly, the followingIP finds the
labelling with the minimum energy, i.e. it is equivalent to theMAP estimation problem:

IP: x∗ = arg minx

∑

va,li
θ1

a;i
(1+xa;i)

2 +
∑

(a,b)∈E,li,lj
θ2

ab;ij
(1+xa;i+xb;j+Xab;ij)

4

s.t. x ∈ {−1, 1}nh, (1)
∑

li∈l
xa;i = 2 − h, (2)

X = xx⊤. (3)

Constraints (1) and (3) specify that the variablesx andX are binary such thatXab;ij = xa;ixb;j .
We will refer to them as theinteger constraints. Constraint (2), which specifies that each variable
should be assigned only one label, is known as theuniqueness constraint. Note that one uniqueness
constraint is specified for each variableva. Solving the aboveIP is in generalNP-hard. It is therefore
common practice to obtain an approximate solution using convex relaxations. We describe four such
convex relaxations below.

1.2 Linear Programming Relaxation
TheLP relaxation (proposed by Schlesinger [20] for a special case and independently in [4, 12, 23]
for the general case), which we callLP-S, is given as follows:

LP-S: x∗ = argminx

∑

va,li
θ1

a;i
(1+xa;i)

2 +
∑

(a,b)∈E,li,lj
θ2

ab;ij
(1+xa;i+xb;j+Xab;ij)

4

s.t. x ∈ [−1, 1]nh,X ∈ [−1, 1]nh×nh, (4)
∑

li∈l
xa;i = 2 − h, (5)

∑

lj∈l
Xab;ij = (2 − h)xa;i, (6)

Xab;ij = Xba;ji, (7)

1 + xa;i + xb;j + Xab;ij ≥ 0. (8)

In theLP-S relaxation only those elementsXab;ij of X are used for which(a, b) ∈ E andli, lj ∈ l.
Unlike the IP, the feasibility region of the above problem is relaxed such that the variablesxa;i

andXab;ij lie in the interval[−1, 1]. Further, the constraint (3) is replaced by equation (6) which
is called themarginalization constraint[23]. One marginalization constraint is specified for each
(a, b) ∈ E andli ∈ l. Constraint (7) specifies thatX is symmetric. Constraint (8) ensures thatθ2

ab;ij

is multiplied by a number between0 and1 in the objective function. These constraints (7) and (8)
are defined for all(a, b) ∈ E andli, lj ∈ l. Note that the above constraints are not exhaustive, i.e.
it is possible to specify other constraints for the problem ofMAP estimation (as will be seen in the
different relaxations described in the subsequent sections).

1.3 Quadratic Programming Relaxation
We now describe theQP relaxation for theMAP estimationIP which was proposed by Ravikumar
and Lafferty [18]. To this end, it would be convenient to reformulate the objective function of theIP

using a vector of unary potentials of lengthnh (denoted byθ̂1) and a matrix of pairwise potentials
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of sizenh × nh (denoted byθ̂2). The element of the unary potential vector at index(a · h + i) is
defined aŝθ1

a;i = θ1
a;i −

∑

vc∈v

∑

lk∈l
|θ2

ac;ik|, whereva ∈ v andli ∈ l. The(a · h + i, b · h + j)th

element of the pairwise potential matrix̂θ
2 is defined such that

θ̂2
ab;ij =

{ ∑

vc∈v

∑

lk∈l
|θ2

ac;ik|, if a = b, i = j,
θ2

ab;ij otherwise,
(9)

whereva, vb ∈ v andli, lj ∈ l. In other words, the potentials are modified by defining a pairwise
potentialθ̂2

aa;ii and subtracting the value of that potential from the corresponding unary potential

θ1
a;i. The advantage of this reformulation is that the matrixθ̂

2
is guaranteed to be positive semidefi-

nite, i.e.θ̂
2
� 0. Using the fact that forxa;i ∈ {−1, 1},

(

1+xa;i

2

)2

=
1+xa;i

2 , it can be shown that

the following is equivalent to theMAP estimation problem [18]:

QP-RL: x∗ = argminx

(

1+x

2

)⊤
θ̂

1
+
(

1+x

2

)⊤
θ̂

2 (
1+x

2

)

, (10)

s.t.
∑

li∈l
xa;i = 2 − h, ∀va ∈ v, (11)

x ∈ {−1, 1}nh, (12)

where1 is a vector of appropriate dimensions whose elements are all equal to1. By relaxing
the feasibility region of the above problem tox ∈ [−1, 1]nh, the resultingQP can be solved in

polynomial time sincêθ
2
� 0 (i.e. the relaxation of theQP (10)-(12) is convex). We call the above

relaxationQP-RL. Note that in [18], theQP-RL relaxation was described using the variabley = 1+x

2 .
However, the above formulation can easily be shown to be equivalent to the one presented in [18].
1.4 Semidefinite Programming Relaxation
TheSDPrelaxation of theMAP estimation problem replaces the non-convex constraintX = xx⊤ by
the convex semidefinite constraintX− xx⊤ � 0 [6, 15] which can be expressed as

(

1 x⊤

x X

)

� 0, (13)

using Schur’s complement [2]. Further, likeLP-S, it relaxes the integer constraints by allowing the
variablesxa;i andXab;ij to lie in the interval[−1, 1] with Xaa;ii = 1 for all va ∈ v, li ∈ l. The
SDPrelaxation is a well-studied approach which provides accurate solutions for theMAP estimation
problem (e.g. see [25]). However, due to its computational inefficiency, it is not practically useful
for large scale problems withnh > 1000. See however [17, 19, 22].
1.5 Second Order Cone Programming Relaxation
We now describe theSOCP relaxation that was proposed by Muramatsu and Suzuki [16] for the
MAXCUT problem (i.e.MAP estimation withh = 2) and later extended for a general label set [14].
This relaxation, which we callSOCP-MS, is based on the technique of Kim and Kojima [10] who
observed that theSDPconstraint can be further relaxed to second order cone (SOC) constraints. For
this purpose, it employs a set of matricesS = {Ck|Ck = Uk(Uk)⊤ � 0, k = 1, 2, . . . , nC}.
Using the fact that the Frobenius dot product of two semidefinite matrices is non-negative, we get

⇒ ‖(Uk)⊤x‖2 ≤ Ck • X, k = 1, · · · , nC . (14)

Each of the aboveSOCconstraints may involve some or all variablesxa;i andXab;ij . For example,
if Ck

ab;ij = 0, then thekth SOCconstraint will not involveXab;ij (since its coefficient will be 0).

In order to describe theSOCP-MS relaxation, we consider a pair of neighbouring variablesva and
vb, i.e. (a, b) ∈ E , and a pair of labelsli and lj . These two pairs define the following variables:
xa;i, xb;j , Xaa;ii = Xbb;jj = 1 andXab;ij = Xba;ji (sinceX is symmetric). For each such pair of
variables and labels, theSOCP-MS relaxation specifies twoSOC constraints which involve only the
above variables [14, 16]. In order to specify the exact form of theseSOC constraints, we need the
following definitions.

Using the variablesva andvb (where(a, b) ∈ E) and labelsli and lj , we define the submatrices
x(a,b,i,j) andX(a,b,i,j) of x andX respectively as:

x(a,b,i,j) =

(

xa;i

xb;j

)

,X(a,b,i,j) =

(

Xaa;ii Xab;ij

Xba;ji Xbb;jj

)

. (15)
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The SOCP-MS relaxation specifiesSOC constraints of the form (14) for all pairs of neighbouring
variables(a, b) ∈ E and labelsli, lj ∈ l. To this end, it uses the following two matrices:C1

MS =
(

1 1
1 1

)

,C2
MS =

(

1 −1
−1 1

)

. Hence, in theSOCP-MS formulation, theMAP estimationIP is

relaxed to

SOCP-MS: x∗ = argminx

∑

va,li
θ1

a;i
(1+xa;i)

2 +
∑

(a,b)∈E,li,lj
θ2

ab;ij
(1+xa;i+xb;j+Xab;ij)

4

s.t. x ∈ [−1, 1]nh,X ∈ [−1, 1]nh×nh, (16)
∑

li∈l
xa;i = 2 − h, (17)

(xa;i − xb;j)
2 ≤ 2 − 2Xab;ij, (18)

(xa;i + xb;j)
2 ≤ 2 + 2Xab;ij, (19)

Xab;ij = Xba;ji. (20)

We refer the reader to [14, 16] for details.

2 Comparing Relaxations
In order to compare the relaxations described above, we require the following definitions. We say
that a relaxationA dominatesthe relaxationB (alternatively,B is dominated byA) if and only if

min
(x,X)∈F(A)

e(x,X; θ) ≥ min
(x,X)∈F(B)

e(x,X; θ), ∀θ, (21)

whereF(A) andF(B) are the feasibility regions of the relaxationsA andB respectively. The term
e(x,X; θ) denotes the value of the objective function at(x,X) (i.e. the energy of the possibly
fractional labelling(x,X)) for theMAP estimation problem defined over theCRF with parameterθ.
Thus the optimal value of the dominating relaxationA is always greater than or equal to the optimal
value of relaxationB. We note here that the concept of domination has been used previously in [4]
(to compareLP-S with the linear programming relaxation in [11]).

RelaxationsA andB are said to beequivalentif A dominatesB andB dominatesA, i.e. their optimal
values are equal to each other for allCRFs. A relaxationA is said tostrictly dominaterelaxation
B if A dominatesB but B does not dominateA. In other words there exists at least oneCRF with
parameterθ such that

min
(x,X)∈F(A)

e(x,X; θ) > min
(x,X)∈F(B)

e(x,X; θ). (22)

Note that, by definition, the optimal value of any relaxation would always be less than or equal to
the energy of the optimal (i.e. theMAP) labelling. Hence, the optimal value of a strictly dominating
relaxationA is closer to the optimal value of theMAP estimationIP compared to that of relaxation
B. In other words,A provides a tighter lower bound forMAP estimation thanB.

Our Results: We prove thatLP-S strictly dominatesSOCP-MS (see section 3). Further, in sec-
tion 4, we show thatQP-RL is equivalent toSOCP-MS. This implies thatLP-S strictly dominates the
QP-RL relaxation. In section 5 we generalize the above results by proving that a large class ofSOCP
(and equivalentQP) relaxations is dominated byLP-S. Based on these results, we propose a novel
set of constraints which result inSOCPrelaxations that dominateLP-S, QP-RL andSOCP-MS. These
relaxations introduceSOCconstraints on cycles and cliques formed by the neighbourhood relation-
ship of theCRF. Note that we will only provide the statement of the results here due to page limit.
All the proofs are described in [13].

3 LP-S vs. SOCP-MS
We now show that for theMAP estimation problem the linear constraints ofLP-S are stronger than
the SOCP-MS constraints. In other words the feasibility region ofLP-S is a strict subset of the
feasibility region ofSOCP-MS (i.e.F(LP-S) ⊂ F(SOCP-MS)). This in turn would allow us to prove
the following theorem.

Theorem 1: TheLP-S relaxation strictly dominates theSOCP-MS relaxation.

4 QP-RL vs. SOCP-MS
We now prove thatQP-RL andSOCP-MS are equivalent (i.e. their optimal values are equal forMAP
estimation problems defined over allCRFs). Specifically, we consider a vectorx which lies in the
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feasibility regions of theQP-RL andSOCP-MS relaxations, i.e.x ∈ [−1, 1]nh. For this vector, we
show that the values of the objective functions of theQP-RL and SOCP-MS relaxations are equal.
This would imply that ifx∗ is an optimal solution ofQP-RL for someCRF with parameterθ then
there exists an optimal solution(x∗,X∗) of theSOCP-MS relaxation. Further, ifeQ andeS are the
optimal values of the objective functions obtained using theQP-RL andSOCP-MS relaxation, then
eQ = eS .

Theorem 2: TheQP-RL relaxation and theSOCP-MS relaxation are equivalent.

Theorems 1 and 2 prove that theLP-S relaxation strictly dominates theQP-RL andSOCP-MS relax-
ations. A natural question that now arises is whether the additive bound ofQP-RL (proved in [18])
is applicable to theLP-S andSOCP-MS relaxations. Our next theorem answers this question in an
affirmative.

Theorem 3: Using the rounding scheme of [18],LP-S and SOCP-MS provide the same additive
bound as theQP-RL relaxation, i.e.S4 whereS =

∑

(a,b)∈E

∑

li,lj∈l
|θ2

ab;ij | (i.e. the sum of the
absolute values of all pairwise potentials). Furthermore, this bound is tight.

The above bound was proved for the case of binary variables (i.e. h = 2) in [8] using a slightly
different rounding scheme.

5 QP and SOCP Relaxations over Trees and Cycles
We now generalize the results of Theorem 1 by defining a large class ofSOCPrelaxations which
is dominated byLP-S. Specifically, we consider theSOCPrelaxations which relax the non-convex
constraintX = xx⊤ using a set of second order cone (SOC) constraints of the form

||(Uk)⊤x|| ≤ Ck • X, k = 1, · · · , nC (23)

whereCk = Uk(Uk)⊤ � 0, for all k = 1, · · · , nC .

Note that eachSOCP relaxation belonging to this class would define an equivalentQP relaxation
(similar to the equivalentQP-RL relaxation defined by theSOCP-MS relaxation). Hence, all theseQP
relaxations will also be dominated by theLP-S relaxation. Before we begin to describe our results
in detail, we need to set up some notation as follows.

(a) (b) (c)

Figure 1:(a) An exampleCRFdefined over four variables which form a cycle. Note that the observed
nodes are not shown for the sake of clarity of the image.(b) The setEk specified by the matrixCk

shown in equation (25), i.e.Ek = {(a, b), (b, c), (c, d)}. (c) The setV k = {a, b, c, d}. See text for
definitions of these sets.
Notation: We consider anSOCconstraint which is of the form described in equation (23), i.e.

||(Uk)⊤x|| ≤ Ck • X, (24)

wherek ∈ {1, · · · , nC}. In order to help the reader understand the notation better, we use an
exampleCRF shown in Fig. 1(a). ThisCRF is defined over four variablesv = {va, vb, vc, vd}
(connected to form a cycle of length 4), each of which take a label from the setl = {l0, l1}. For this
CRF we specify a constraint using a matrixCk � 0 which is 0 everywhere, except for the following
4 × 4 submatrix:









Ck
aa;00 Ck

ab;00 Ck
ac;00 Ck

ad;00

Ck
ba;00 Ck

bb;00 Ck
bc;00 Ck

bd;00

Ck
ca;00 Ck

cb;00 Ck
cc;00 Ck

cd;00

Ck
da;00 Ck

db;00 Ck
dc;00 Ck

dd;00









=







2 1 1 0
1 2 1 1
1 1 2 1
0 1 1 2






(25)

Using theSOCconstraint shown in equation (24) we define the following two sets: (i) The setEk is
defined such that(a, b) ∈ Ek if, and only if, it satisfies the following conditions:

(a, b) ∈ E , (26)
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∃li, lj ∈ l such thatCk
ab;ij 6= 0. (27)

Recall thatE specifies the neighbourhood relationship for the givenCRF. In other wordsEk is the
subset of the edges in the graphical model of theCRF such thatCk specifies constraints for the
random variables corresponding to those edges. For the exampleCRF (shown in Fig. 1(a)) andCk

matrix (in equation (25)), the setEk obtained is shown in Fig. 1(b). (ii) The setV k is defined as
a ∈ V k if, and only if, there exists avb ∈ v such that(a, b) ∈ Ek. In other wordsV k is the subset
of hidden nodes in the graphical model of theCRF such thatCk specifies constraints for the random
variables corresponding to those hidden nodes. Fig. 1(c) shows the setV k for our exampleSOC
constraint.

We also define a weighted graphGk = (V k, Ek) whose vertices are specified by the setV k and
whose edges are specified by the setEk. The weight of an edge(a, b) ∈ Ek is given byw(a, b).
Recall thatw(a, b) specifies the strength of the pairwise relationship between two neighbouring
variablesva andvb. Thus, for our exampleSOC constraint, the vertices of this graph are given in
Fig. 1(c) while the edges are shown in Fig. 1(b). This graph can be viewed as a subgraph of the
graphical model representation for the givenCRF.

Theorem 4: SOCP relaxations (and the equivalentQP relaxations) which define constraints only
using graphsGk = (V k, Ek) which form (arbitrarily large) trees are dominated by theLP-S relax-
ation.

We note that the above theorem can be proved using the results of [24] onmoment constraints(which
imply that LP-S provides the exact solution for theMAP estimation problems defined over tree-
structured random fields). However, our alternative proof presented in [13] allows us to generalize
the results of Theorem 4 for certain cycles as follows.

Theorem 5: Whend(i, j) ≥ 0 for all li, lj ∈ l, theSOCPrelaxations which define constraints only
using non-overlapping graphsGk which form (arbitrarily large) even cycles with all positive or all
negative weights are dominated by theLP-S relaxation.

The above theorem can be proved for cycles of any length whose weights are all negative by a similar
construction. Further, it also holds true forodd cycles(i.e. cycles of odd number of variables) which
have only one positive or only one negative weight. However, as will be seen in the next section,
unlike trees it is not possible to extend these results for any general cycle.

6 Some Useful SOC Constraints
We now describe twoSOCPrelaxations which include all the marginalization constraints specified
in LP-S. Note that the marginalization constraints can be incorporated within theSOCPframework
but not in theQP framework.
6.1 The SOCP-C Relaxation
TheSOCP-C relaxation (whereC denotes cycles) defines second order cone (SOC) constraints using
positive semidefinite matricesC such that the graphG (defined in section 5) form cycles. Let the
variables corresponding to vertices of one such cycleG of lengthc be denoted asvC = {vb|b ∈
{a1, a2, · · · , ac}}. Further, letlC = {lj|j ∈ {i1, i2, · · · , ic}} ∈ lc be a set of labels for the variables
vC . In addition to the marginalization constraints, theSOCP-C relaxation specifies the following
SOCconstraint:

||U⊤x|| ≤ C •X, (28)

such that the graphG defined by the above constraint forms a cycle. The matrixC is 0 everywhere
except the following elements:

Cak,al,ik,il
=

{

λc if k = l,
Dc(k, l) otherwise. (29)

HereDc is ac × c matrix which is defined as follows:

Dc(k, l) =







1 if |k − l| = 1
(−1)c−1 if |k − l| = c − 1

0 otherwise,
(30)

andλc is the absolute value of the smallest eigenvalue ofDc. In other words the submatrix ofC
defined byvC and lC has diagonal elements equal toλc and off-diagonal elements equal to the
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elements ofDc. Clearly,C = U⊤U � 0 since its only non-zero submatrixλcI + Dc (whereI is
a c × c identity matrix) is positive semidefinite. This allows us to define a validSOC constraint as
shown in inequality (28). We choose to define theSOCconstraint (28) for only those set of labelslC
which satisfy the following:

∑

(ak,al)∈E

Dc(k, l)θ2
akal;ikil

≥
∑

(ak,al)∈E

Dc(k, l)θ2
akal;jkjl

, ∀{j1, j2, · · · , jc}. (31)

Note that this choice is motivated by the fact that the variablesXakal;ikil
corresponding to these

setsvC andlC are assigned trivial values by theLP-S relaxation in the presence of non-submodular
terms.

Since marginalization constraints are included in theSOCP-C relaxation, the value of the objective
function obtained by solving this relaxation would at least be equal to the value obtained by theLP-S
relaxation (i.e.SOCP-C dominatesLP-S, see Case II in section 2). We can further show that in the
case where|l| = 2 and the constraint (28) is defined over a frustrated cycle (i.e. a cycle with an
odd number of non-submodular terms)SOCP-C strictly dominatesLP-S. One such example is given
in [13]. Note that if the givenCRF contains no frustrated cycle, then it can be solved exactly using
the method described in [7].

The constraint defined in equation (28) is similar to the (linear) cycle inequality constraints [1] which
are given by

∑

k,l

Dc(k, l)Xakal;ikil
≥ 2 − c. (32)

We believe that the feasibility region defined by cycle inequalities is a strict subset of the feasibility
region defined by equation (28). In other words a relaxation defined by adding cycle inequalities to
LP-S would strictly dominateSOCP-C. We are not aware of a formal proof for this. We now describe
theSOCP-Q relaxation.
6.2 The SOCP-Q Relaxation
In this previous section we saw thatLP-S dominatesSOCPrelaxations whose constraints are defined
on trees. However, theSOCP-C relaxation, which defines its constraints using cycles, strictly dom-
inatesLP-S. This raises the question whether matricesC, which result in more complicated graphs
G, would provide an even better relaxation for theMAP estimation problem. In this section, we
answer this question in an affirmative. To this end, we define anSOCPrelaxation which specifies
constraints such that the resulting graphG from a clique. We denote this relaxation bySOCP-Q
(whereQ indicates cliques).

The SOCP-Q relaxation contains the marginalization constraint and the cycle inequalities (defined
above). In addition, it also definesSOC constraints on graphsG which form a clique. We denote
the variables corresponding to the vertices of cliqueG asvQ = {vb|b ∈ {a1, a2, · · · , aq}}. Let
lQ = {lj |j ∈ {i1, i2, · · · , iq}} be a set of labels for these variablesvQ. Given this set of variables
vQ and labelslQ, we define anSOC constraint using a matrixC of sizenh × nh which is zero
everywhere except for the elementsCakal;ikil

= 1. Clearly,C is a rank1 matrix with eigenvalue1
and eigenvectoru which is zero everywhere exceptuak;ik

= 1 wherevak
∈ vQ andlik

∈ lQ. This
implies thatC � 0, which enables us to obtain the followingSOCconstraint:

(

∑

k

xak;ik

)2

≤ q +
∑

k,l

Xakal;ikil
. (33)

We choose to specify the above constraint only for the set of labelslQ which satisfy the following
condition:

∑

(ak,al)∈E

θ2
akal;ikil

≥
∑

(ak,al)∈E

θ2
akal;jkjl

, ∀{j1, j2, · · · , jq}. (34)

Again, this choice is motivated by the fact that the variablesXakal;ikil
corresponding to these sets

vQ and lQ are assigned trivial values by theLP-S relaxation in the presence of non-submodular
pairwise potentials.

When the clique contains a frustrated cycle, it can be shown thatSOCP-Q dominates theLP-S relax-
ation (similar toSOCP-C). Further, using a counter-example, it can proved that the feasibility region
given by cycle inequalities is not a subset of the feasibility region defined by constraint (33). One
such example is given in [13].
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7 Discussion
We presented an analysis of approximate algorithms forMAP estimation which are based on convex
relaxations. The surprising result of our work is that despite the flexibility in the form of the objective
function/constraints offered byQP and SOCP, the LP-S relaxation dominates a large class ofQP
and SOCP relaxations. It appears that the authors who have previously usedSOCP relaxations in
the Combinatorial Optimization literature [16] and those who have reportedQP relaxation in the
Machine Learning literature [18] were unaware of this result. We also proposed two newSOCP
relaxations (SOCP-C andSOCP-Q) and presented some examples to prove that they provide a better
approximation thanLP-S. An interesting direction for future research would be to determine the best
SOCconstraints for a givenMAP estimation problem (e.g. with truncated linear pairwise potentials).
Acknowledgments:We thank Pradeep Ravikumar and John Lafferty for careful reading of the manuscript and
for pointing out an error in our description of theSOCP-MS relaxation.
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