Part of Advances in Neural Information Processing Systems 19 (NIPS 2006)
Kilian Q. Weinberger, Fei Sha, Qihui Zhu, Lawrence Saul
In many areas of science and engineering, the problem arises how to discover low dimensional representations of high dimensional data. Recently, a number of researchers have converged on common solutions to this problem using methods from convex optimization. In particular, many results have been obtained by constructing semidefinite programs (SDPs) with low rank solutions. While the rank of matrix variables in SDPs cannot be directly constrained, it has been observed that low rank solutions emerge naturally by computing high variance or maximal trace solutions that respect local distance constraints. In this paper, we show how to solve very large problems of this type by a matrix factorization that leads to much smaller SDPs than those previously studied. The matrix factorization is derived by expanding the solution of the original problem in terms of the bottom eigenvectors of a graph Laplacian. The smaller SDPs obtained from this matrix factorization yield very good approximations to solutions of the original problem. Moreover, these approximations can be further refined by conjugate gradient descent. We illustrate the approach on localization in large scale sensor networks, where optimizations involving tens of thousands of nodes can be solved in just a few minutes.