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Kekuléstr. 7, 12489 Berlin

mikio@first.fhg.de

Joachim Buhmann
Inst. of Computational Science

ETH Zurich
CH-8092 Z̈urich

jbuhmann@inf.ethz.ch

Klaus-Robert Müller2,1

Technical University of Berlin2

Computer Science
Franklinstr. 28/29, 10587 Berlin

krm@cs.tu-berlin.de

Abstract

We show that the relevant information about a classification problem in feature
space is contained up to negligible error in a finite number of leading kernel PCA
components if the kernel matches the underlying learning problem. Thus, ker-
nels not only transform data sets such that good generalization can be achieved
even by linear discriminant functions, but this transformation is also performed
in a manner which makes economic use of feature space dimensions. In the best
case, kernels provide efficient implicit representations of the data to perform clas-
sification. Practically, we propose an algorithm which enables us to recover the
subspace and dimensionality relevant for good classification. Our algorithm can
therefore be applied (1) to analyze the interplay of data set and kernel in a geo-
metric fashion, (2) to help in model selection, and to (3) de-noise in feature space
in order to yield better classification results.

1 Introduction

Kernel machines use a kernel function as a non-linear mapping of the original data into a high-
dimensional feature space; this mapping is often referred to as empirical kernel map [6, 11, 8, 9].
By virtue of the empirical kernel map, the data is ideally transformed such that a linear discriminative
function can separate the classes with low generalization error, say via a canonical hyperplane with
large margin. The latter is used to provide an appropriate mechanism of capacity control and thus to
“protect” against the high dimensionality of the feature space.

The idea of this paper is to add another aspect, not covered by this picture. We will show theoretically
that if the learning problem matches the kernel well, the relevant information of a supervised learning
data set is always contained in a finite number of leading kernel PCA components (that is, the label
information projected to the kernel PCA directions), up to negligible error. This result is based on
recent approximation bounds dealing with the eigenvectors of the kernel matrix which show that if
a function can be reconstructed using only a few kernel PCA components asymptotically, then the
same already holds in a finite sample setting, even for small sample sizes.

Consequently, the use of a kernel function not only greatly increases the expressive power of linear
methods by non-linearly transforming the data, but it does so ensuring that the high dimensionality
of the feature space will not become overwhelming: the relevant information for classification will
stay confined within a comparablylow dimensional subspace. This finding underlines the efficient
use of data that is made by kernel machines using a kernel suited to the problem. While the number
of data points stays constant for a given problem, a smart choice of kernel permits to make better
use of the available data at a favorable “data point per effective dimension”-ratio, even for infinite-
dimensional feature spaces. Furthermore we can use de-noising techniques in feature space, much
in the spirit of Mika et al. [8, 5] and thus regularize the learning problem in an elegant manner.

Let us consider an example. Figure 1 shows the first six kernel PCA components for an example
data set. Above each plot, the variance of the data along this direction and the contribution of this



Figure 1: Although the data set is embedded into a high-dimensional manifold, not all directions
contain interesting information. Above the first six kernel PCA components are plotted. Of these,
only the fourths is highly relevant for the learning problem. Note, however, that this example is
atypical in having a single relevant component. In general, several components will have to be
combined to construct the decision boundary.

component to the class labels are plotted (normalized such that the maximal possible contribution is
one1). Of these six components, only the fourth contributes significantly to the class memberships.
As we will see below, the contributions in the other directions is mostly noise. This is true espe-
cially for components with small variance. Therefore, after removing this noise, a finite number of
components suffice to represent the optimal decision boundary.

The dimensionality of the data set in feature space is characteristic for the relation between a data
set and a kernel. Roughly speaking, the relevant dimensionality of the data set corresponds to the
complexity of the learning problem when viewed through the lens of the kernel function. This notion
of complexity relates the number of data points required by the learning problem and the noise, as a
small relevant dimensionality enables the de-noising of the data set to obtain an estimate of the true
class labels, making the learning process much more stable. This combination of dimension and
noise estimate allows us to distinguish among data sets showing weak performance which might
either be complex or noisy.

To summarize the main contributions of this paper: (1) We provide theoretical bounds showing that
the relevant information (defined in section 2) is actually contained in the leading projected kernel
principal components under appropriate conditions. (2) We propose an algorithm which estimates
the relevant dimensionality of the data set and permits to analyze the appropriateness of a kernel for
the data set, and thus to perform model selection among different kernels. (3) We show how the
dimension estimate can be used in conjunction with kernel PCA to perform effective de-noising. We
analyze some well-known benchmark data sets and evaluate the performance as a de-noising tool
in Section 5. Note that we do not claim to obtain better performance within our framework when
compared to, for example, cross-validation techniques. Rather, we are on par. Our contribution
is to foster an understanding about a data set and to gain better insights of whether a mediocre
classification result is due to intrinsic high dimensionality of the data or overwhelming noise level.

2 The Relevant Information and Kernel PCA Components

In this section, we will define the notion of the relevant information contained in the class labels,
and show that the location of this vector with respect to the kernel PCA components is linked to the
scalar products with the eigenvectors of the kernel matrix.

1Note, however, that these numbers do not simply add up, instead the contribution ofa andb is
√

a2 + b2.



Let us start to formalize the ideas introduced so far. As usual, we will consider a data set(X1, Y1),
. . . , (Xn, Yn) where theX lie in some spaceX and theY are inY = {±1}. We assume that the
(Xi, Yi) are drawn i.i.d. fromPX×Y . In kernel methods, the data is non-linearly mapped into some
feature spaceF via the feature mapΦ. Scalar products inF can be computed by the kernelk in
closed form:〈Φ(x),Φ(x′)〉 = k(x, x′). Summarizing all the pairwise scalar products results in the
(normalized) kernel matrixK with entriesk(Xi, Xj)/n.

We wish to summarize the information contained in the class label vectorY = (Y1, . . . , Yn)
about the optimal decision boundary. We define therelevant information vectoras the vector
G = (E(Y1|X1), . . . ,E(Yn|Xn)) containing the expected class labels for the objects in the training
set. The idea is that sinceE(Y |X) = P (Y = 1|X) − P (Y = −1|X), the sign ofG contains the
relevant information on the true class membership by telling us which class is more probable. The
observed class label vector can be written asY = G − N with N = G − Y denoting the noise in
the class labels. We want to study the relation ofG with respect to the kernel PCA components. The
following lemma relates projections ofG to the eigenvectors of the kernel matrixK:

Lemma 1 Thekth kernel PCA componentfk evaluated on theXis is equal to thekth eigenvector2

of the kernel matrixK: (fk(X1), . . . , fk(Xn)) = uk. Consequently, the projection of a vector
Y ∈ Rn to the leadingd kernel PCA components is given byπd(Y ) =

∑d
k=1 uku

>
kY.

Proof The kernel PCA directions are given as (see [10])vk =
∑n

i=1 αiΦ(Xi), whereαi =
[uk]i/lk, [uk]i denoting theith component ofuk, andlk, uk being the eigenvalues and eigenvec-
tors of the kernel matrixK. Thus, thekth PCA component for a pointXj in the training set is

fk(Xj) = 〈Φ(Xj), vk〉 =
1
lk

n∑
i=1

〈Φ(Xj),Φ(Xi)〉[uk]i =
1
lk

n∑
i=1

k(Xj , Xi)[uk]i.

The sum computes thejth component ofKuk = lkuk, becauseuk is an eigenvector ofK. Therefore

fk(Xj) =
1
lk

[lkuk]j = [uk]j .

Since theuk are orthogonal (Kis a symmetric matrix), the projection ofY to the space spanned by
the firstd kernel PCA components is given by

∑d
i=1 uiu

>
iY . �

3 A Bound on the Contribution of Single Kernel PCA Components

As we have just shown, the location ofG is characterized by its scalar products with the eigenvectors
of the kernel matrix. In this section, we will apply results from [1, 2] which deal with the asymptotic
convergence of spectral properties of the kernel matrix to show that the decay rate of the scalar
products are linked to the decay rate of the kernel PCA principal values.

It is clear that we cannot expectG to generally locate favorably with respect to the kernel PCA
components, but only when there is some kind of match betweenG and the chosen kernel. This
link will be established by asymptotic considerations. Kernel PCA is closely linked to the spectral
properties of the kernel matrix, and it is known [3, 4] that the eigenvalues and the projections to
eigenspaces converge. Their asymptotic limits are given as the eigenvaluesλi and eigenfunctions
ψi of the integral operatorTkf =

∫
k( · , x)f(x)PX (dx) defined onL2(PX ), wherePX is the

marginal measure ofPX×Y which generates our samples. The eigenvalues and eigenfunctions also
occur in the well-known Mercer’s formula: By Mercer’s theorem,k(x, x′) =

∑∞
i=1 λiψi(x)ψi(x′).

The asymptotic counterpart ofG is given by the functiong(x) = E(Y |X = x).

We will encode fitness betweenk andg by requiring thatg lies in the image ofTk. This is equivalent
to saying that there exists a sequence(αi) ∈ `2 such thatg =

∑∞
i=1 λiαiψi.3 Under this condition,

the scalar products decay as quickly as the eigenvalues, because〈g, ψi〉 = λiαi = O(λi). Because
of the known convergence of spectral projections, we can expect the same behavior asymptotically

2As usual, the eigenvectors are arranged in descending order by corresponding eigenvalue.
3A different condition is thatg lies in the RKHS generated byk. This amounts to saying thatg lies in the

image ofT 1/2
k . Therefore, the condition used here is slightly more restrictive.



from the finite sample case. However, the convergence speed is the crucial question. This question is
not trivial, because eigenvector stability is known to be linked to the gap between the corresponding
eigenvalues, which will be fairly small for small eigenvalues. In fact, for example, the results from
[14] do not scale properly with the corresponding eigenvalue, such that the bounds are too loose. A
number of recent results on the spectral properties of the kernel matrix [1, 2] specifically deal with
error bounds for small eigenvalues and their associated spectral projections. Using these results, we
obtain the following bound onu>iG.4

Theorem 1 Let g =
∑∞

i=1 αiλiψi as explained above, and letG = (g(X1), . . . , g(Xn)). Then,
with high probability.

1√
n
|u>iG| < 2liarci(1 +O(rn−1/4))

+ rarΛrO(1) + Tr +
√
ATrO(n−1/4) + rar

√
ΛrO(n−1/2),

wherer balances the different terms (1≤ r ≤ n), ci measures the size of the eigenvalue cluster
aroundli, ar =

∑r
i=1 |αi| is a measure of the size of the firstr components,Λr is the sum of all

eigenvalues smaller thanλr,A is the supremum norm ofg, andTr is the error of projectingg to the
space spanned by the firstr eigenfunctions.

The bound consists of a part which scales withli (first term) and a part which does not (remaining
terms). Typically, the bound initially scales withli until the non-scaling part dominates the bound
for largeri. These two parts are balanced byr. However, note that all terms which do not scale with
li will typically be small: for smooth kernels, the eigenvalues quickly decay to zero asr →∞. The
related quantitiesΛr, andTr, will also decay to zero at slightly slower rates. Therefore, by adjusting
r (asn→∞), the non-scaling part can be made arbitrarily small, leading to a small bound on|u>iG|
for largeri.

Put differently, the bound shows that the relevant information vectorG (as introduced in Section 2)
is contained in a number of leading PCA components up to a negligible error. The number of dimen-
sions depends on the asymptotic coefficientsαi and the decay rate of the asymptotic eigenvalues of
k. Since this rate is related to the smoothness of the kernel function, the dimension will be small for
smooth kernels whose leading eigenfunctionsψi permit good approximation ofg.

4 The Relevant Dimension Estimation Algorithm

In this section, we will propose the relevant dimension estimation (RDE) algorithm which estimates
the dimensionality of the relevant information from a finite sample, allowing us to analyze the fit
between a kernel function and a data set in a practical way.

Dimension Estimation We propose an approach which is motivated by the geometric findings
explained above. SinceG is not known, we can only observe the contributions of the kernel PCA
components toY , which can be written asY = G + N (see Section 2). The contributionsu>iY
will thus be formed as a superposition ofu>iY = u>iG + u>iN . Now, by Theorem 1, we know that
G will be very close to zero for the latter coefficients, while on the other hand, the noiseN will be
equally distributed over all coefficients. Therefore, the kernel PCA coefficientss = u>iY will have
the shape of an evenly distributed noise flooru>iN from which the coefficientsu>iG of the relevant
information protrude (see Figure 2(b) for an example).

We thus propose the following algorithm: Given a fixed kernelk, we estimate the true dimension
by fitting a two component model to the coordinates of the label vector. Lets = (u>1Y, . . . , u

>
nY ).

Then, assume that

si ∼
{
N (0, σ2

1) 1 ≤ i ≤ d

N (0, σ2
2) d < i ≤ n.

4We have tried to reduce the bound to its most prominent features. For a more detailed explanation of the
quantities and the proof, see the appendix. Also, the confidenceδ of the “with high probability” part is hidden
in theO( · ) notation. We have used theO( · ) notation rather deliberately to exhibit the dominant constants.
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Figure 2: Further plots on the toy example from the introduction. (a) contains the kernel PCA
component contributions (dots), and the training and test error by projecting the data set to the
given number of leading kernel PCA components. (b) shows the negative log-likelihood of the two
component model used to estimate the dimensionality of the data. (c) The resulting fit when using
only the first four components.

We select thed minimizing the negative log-likelihood, which is proportional to

`(d) =
d

n
log σ2

1 +
n− d

n
log σ2

2 , with σ2
1 =

1
d

d∑
i=1

s2i , σ
2
2 =

1
n− d

n∑
i=d+1

s2i . (1)

Model Selection for Kernel Choice For different kernels, we again use the likelihood and select
the kernel which leads to the best fit in terms of the likelihood. If the kernel width does not match
the scale of the structure of the data set, the fit of the two component model will be inferior: for very
small or very large kernels, the kernel PCA coefficients ofY have no clear structure, such that the
likelihood will be small. For example, for Gaussian kernels, for very small kernel widths, noise is in-
terpreted as relevant information, such that there appears to be no noise, only very high-dimensional
data. On the other hand, for very large kernel widths, any structure will be indistinguishable from
noise such that the problem appears to be very noisy with almost no structure. In both cases, fitting
the two component model will not work very well, leading to large values of`.

Experimental Error Estimation The estimated dimension can be used to estimate the noise
level present in the data set. The idea is to measure the error between the projected label
vector Ĝ = πd(Y ), which approximates the true label informationG. The resulting number
êrr = 1

n

∑n
i=1 1{[Ĝ]i 6= Yi} is an estimate of the fraction of misclassified examples in the training

set, and therefore an estimate for the noise level in the class labels.

A Note on ConsistencyBoth the estimate of̂G and the noise level are consistent if the estimated
dimensiond scales sub-linearly withn. The argument can be sketched as follows: since the kernel
PCA components do not depend onY , the noiseN contained inY is projected to a random subspace
of dimensiond. Therefore,1n‖πd(N)‖2 ≈ d

n ( 1
n‖N‖

2) → 0 asn → ∞, sinced/n → 0 and
1
n‖N‖

2 → E(N2). Empirically, d was found to be rather stable, but in principle, the condition



on d could even be enforced by adding a small sub-linear term (for example,
√
n, or log n, to the

estimated dimensiond).

5 Experiments

Toy Data Set Returning to the toy example from the introduction, let us now take a closer look at
this data set. In Figure 2(a), the spectrum for the toy data set is plotted. We can see that every kernel
PCA component contributes to the observed class label vector. However, most of these contributions
are noise, since the classes are overlapping. The RDE method estimates that only the first four
components are relevant. This behavior of the algorithm can also be seen from the training and
independent test error measured on a second data set of size1000 which can also be found in this
plot. In Figure 2(b), the log-likelihoods from (1) are shown, and one observes a well pronounced
minimum. Finally, in Figure 2(c), the resulting fit is shown.

Benchmark data sets We performed experiments on the classification learning sets from [7]. For
each of the data sets, we de-noise the data set using a family of rbf kernels by projecting the class
labels to the estimated number of leading kernel PCA components. The kernel width is also selected
automatically using the achieved log-likelihood as described above. The width of the rbf kernel is
selected from20 logarithmically spaced points between10−2 and104 for each data set.

For the dimension estimation task, we compare our RDE method to a dimensionality estimate based
on cross-validation. More concretely, the matrixS =

∑d
i=1 uiu

>
i computes the projection to the

leadingd kernel PCA components. Interpreting the matrixS as a linear fit matrix, the leave-one-
out cross-validation error can be computed in closed form (see [12])5, sinceS is diagonal with
respect to the eigenvector basisui. Evaluating the cross-validation error for all dimensions and for
a number of kernel parameters, one can select the best dimension and kernel parameter. Since the
cross-validation can be computed efficiently, the computational demands of both methods are equal.
Table 3 shows the resulting dimension estimates. We see that both methods perform on par, which
shows that the strong structural prior assumption underlying RDE is justified.

For the de-noising task, we have compared a (unregularized) least-squares fit in the reduced feature
space (kPCR) against kernel ridge regression (KRR) and support vector machines (SVM) on the
same data set. The resulting test errors are plotted also in Table 3. We see that a relatively simple
method on the reduced features leads to classification which is on par with the state-of-the-art com-
petitors. Also note that the estimated error rates match the actually observed error rates quite well,
although there is a tendency to under-estimate the true error.

Finally, inspecting the estimated dimension and noise level reveals that the data setsbreast-cancer,
diabetis,flare-solar,german, andtitanic all have only moderately large dimensionalities. This sug-
gest that these data sets are inherently noisy and better results cannot be expected, at least within
the family of rbf kernels. On the other hand, the data setimageseems to be particularly noise free,
given that one can achieve a small error in spite of the large dimensionality. Finally, thesplicedata
set seems to be a good candidate to benefit from more data.

6 Conclusion

Both in theory and on practical data sets, we have shown that the relevant information in a supervised
learning scenario is contained in the leading projected kernel PCA components if the kernel matches
the learning problem. The theory provides a consistent estimation for the expected class labels and
the noise level. This behavior complements the common statistical learning theoretical view on ker-
nel based learning with insight on the interaction of data and kernel: A well chosen kernel (a) makes
the model estimate efficiently and generalize well, since only a comparatively low dimensional rep-
resentation needs to be learned for a fixed given data size and (b) permits a de-noising step that
discards some void projected kernel PCA directions and thus provides a regularized model.

Practically, our RDE algorithm automatically selects the appropriate kernel model for the data and
extracts as additional side information an estimate of the effective dimension and estimated expected

5This applies only to the 2-norm. However, as the performance of 2-norm based methods like kernel ridge
regression on classification problems show, the 2-norm is also informative on the classification performance.



data set dim dim (cv) est. error rate kPCR KRR SVM
banana 24 26 8.8± 1.5 11.3± 0.7 10.6± 0.5 11.5± 0.7
breast-cancer 2 2 25.6± 2.1 27.0± 4.6 26.5± 4.7 26.0± 4.7
diabetis 9 9 21.5± 1.3 23.6± 1.8 23.2± 1.7 23.5± 1.7
flare-solar 10 10 32.9± 1.2 33.3± 1.8 34.1± 1.8 32.4± 1.8
german 12 12 22.9± 1.1 24.1± 2.1 23.5± 2.2 23.6± 2.1
heart 4 5 15.8± 2.5 16.7± 3.8 16.6± 3.5 16.0± 3.3
image 272 368 1.7± 1.0 4.2± 0.9 2.8± 0.5 3.0± 0.6
ringnorm 36 37 1.9± 0.7 4.4± 1.2 4.7± 0.8 1.7± 0.1
splice 92 89 9.2± 1.3 13.8± 0.9 11.0± 0.6 10.9± 0.6
thyroid 17 18 2.0± 1.0 5.1± 2.1 4.3± 2.3 4.8± 2.2
titanic 4 6 20.8± 3.8 22.9± 1.6 22.5± 1.0 22.4± 1.0
twonorm 2 2 2.3± 0.7 2.4± 0.1 2.8± 0.2 3.0± 0.2
waveform 14 23 8.4± 1.5 10.8± 0.9 9.7± 0.4 9.9± 0.4

Figure 3: Estimated dimensions and error rates for the benchmark data sets from [7]. “dim” shows
the medians of the estimated dimensionalities over the resamples. “dim (cv)” shows the same quan-
tity, but this time, the dimensions have been estimated by leave-one-out cross-validation. “est. error
rate” is the estimated error rate on the training set by comparing the de-noise class labels to the true
class labels. The last three columns show the test error rates of three algorithms: “kPCR” predicts
using a simple least-squares hyperplane on the estimated subspace in feature space, “KRR” is kernel
ridge regression with parameters estimated using leave-one-out cross-validation, and “SVM” are the
original error rates from [7].

error for the learning problem. Compared to common cross-validation techniques one could argue
that all we have achieved is to find a similar model as usual at a comparable computing time. How-
ever, we would like to emphasize that the side information extracted by our procedure contributes
to a better understanding of the learning problem at hand: Is the classification result limited due to
intrinsic high dimensional structure or are we facing noise and nuisance dimensions? Simulations
show the usefulness of our RDE algorithm.

An interesting future direction lies in combining these results with generalization bounds which
are also based on the notion of an effective dimension, this time, however, with respect to some
regularized hypothesis class (see, for example, [13]). Linking the effective dimension of the data set
with the dimension of a learning algorithm, one could obtain data dependent bounds in a natural way
with the potential to be tighter than bounds which are based on the abstract capacity of a hypothesis
class.
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[5] S Mika, B Scḧolkopf, A Smola, K-R M̈uller, M Scholz, and Gunnar R̈athsch. Kernel PCA and de-noising
in feature space. InAdvances in Neural Information Processing Systems 11. MIT Press, 1999.

[6] K-R Müller, S Mika, G R̈atsch, K Tsuda, and B Schölkopf. An introduction to kernel-based learning
algorithms.IEEE Transaction on Neural Networks, 12(2):181–201, May 2001.
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A Proof of Theorem 1

First, let us collect the definitions concerning kernel functions. Letk be a Mercer kernel with
k(x, x′) =

∑∞
i=1 λiψi(x)ψi(x′), andk(x, x) ≤ K < ∞. The kernel matrix ofk for ann-sample

X1, . . . , Xn is [K]ij = k(Xi, Xj)/n. Eigenvalues ofK are li, and its eigenvectors areui. The
kernelk is approximated by the truncated kernel matrix iskr(x, x′) =

∑r
i=1 λiψi(x)ψi(x′), and its

kernel matrix is denoted byKr, whose eigenvalues aremi. The approximation error is measured
by Er = Kr −K. We will measure the amount of clusteringci of the eigenvalues by the number
of eigenvalues ofKr betweenli/2 and2li. The matrix containing the sample vectors of the first
r eigenfunctionsψi of k is given by[Ψr]i` = ψ`(Xi)/

√
n, 1 ≤ i ≤ n, 1 ≤ ` ≤ r. Since the

eigenfunctions are orthogonal asymptotically, we can expect that the sample vectors of the eigen-
functions converge to either0 or 1. The error is measured by the matrixCr = Ψ>rΨr − I. Finally,
let Λr =

∑∞
i=r+1 λi.

Next, we collect definitions concerning some functionf . Let f =
∑∞

i=1 λiαiψi with (αi) ∈
`2, and |f | ≤ A < ∞. The size of the contribution of the firstr terms is measured byar =∑r

i=1 |αi|. Define the error of truncatingf to the firstr elements of its series expansion byTr =
(
∑∞

i=r+1 λ
2
iα

2
i )

1/2.

Theproof of Theorem 1 is based on performing rough estimates of the bound from Theorem 4.92
in [1]. The bound is

1√
n
|u>if(X)| < min

1≤r≤n

[
liD(r, n) + E(r, n) + T (r, n)

]
where the three terms are given by

D(r, n) = 2ar‖Ψ+
r ‖ci, E(r, n) = 2rar‖Ψ+

r ‖‖Er‖, T (r, n) = Tr +
√
FTr

4

√
1
nδ
,

It holds that‖Ψ+
r ‖ ≤ (1− ‖Ψ>rΨr − I‖)1/2 = (1− ‖Cr‖)−1/2 ([1], Lemma 4.44). Furthermore,

‖Cr‖ → 1 asn → ∞ for fixed r. For kernel with bounded diagonal, it holds that with probability
larger than1−δ ([1], Lemma 3.135) that‖Cr‖ ≤ r

√
r(r + 1)K/λrnδ = r2O(n−1/2) with a rather

large constant, especially, ifλr is small. Consequently,‖Ψ+
r ‖ ≤ (1−‖Cr‖)−1/2 = 1+O(rn−1/4).

Now, Lemma 3.135 in [1] bounds‖Er‖ from which we can derive the asymptotic

‖Er‖ ≤ λr + Λr +

√
2KΛr

nδ
= Λr +

√
ΛrO(n−

1
2 ),

assuming thatK will be reasonably small (for example, for rbf-kernels,K = 1). Combining this
with our rate for‖Ψ+

r ‖, we obtain

E(r, n) = 2rar

(
Λr +

√
ΛrO(n−

1
2 )

)
(1+O(rn−

1
4 )) = 2rarΛr(1+O(rn−

1
4 ))+rar

√
ΛrO(n−

1
2 ).

Finally, we obtain

1√
n
|u>if(X)| = 2liarci(1 +O(rn−

1
4 ))

+ 2rarΛr(1 +O(rn−
1
4 )) + rar

√
ΛrO(n−

1
2 ).+ Tr +

√
ATrO(n−

1
2 ).

If we assume thatΛr will be rather small, we replace1+O(rn−
1
4 ) byO(1) for the second term and

obtain the claimed rate. �


