
No-regret Algorithms for Online Convex Programs

Geoffrey J. Gordon
Department of Machine Learning

Carnegie Mellon University
Pittsburgh, PA 15213

ggordon@cs.cmu.edu

Abstract

Online convex programming has recently emerged as a powerful primitive for
designing machine learning algorithms. For example, OCP can be used for learn-
ing a linear classifier, dynamically rebalancing a binary search tree, finding the
shortest path in a graph with unknown edge lengths, solving a structured classi-
fication problem, or finding a good strategy in an extensive-form game. Several
researchers have designed no-regret algorithms for OCP. But, compared to al-
gorithms for special cases of OCP such as learning from expert advice, these
algorithms are not very numerous or flexible. In learning from expert advice,
one tool which has proved particularly valuable is the correspondence between
no-regret algorithms and convex potential functions: by reasoning about these
potential functions, researchers have designed algorithms with a wide variety of
useful guarantees such as good performance when the target hypothesis is sparse.
Until now, there has been no such recipe for the more general OCP problem, and
therefore no ability to tune OCP algorithms to take advantage of properties of the
problem or data. In this paper we derive a new class of no-regret learning al-
gorithms for OCP. TheseLagrangian Hedgingalgorithms are based on a general
class of potential functions, and are a direct generalization of known learning rules
like weighted majority and external-regret matching. In addition to proving regret
bounds, we demonstrate our algorithms learning to play one-card poker.

1 Introduction

In a sequence of trials we must pick hypothesesy1, y2, . . . ∈ Y. After we chooseyt, the correct
answer is revealed as a convex loss functionℓt(yt).1 Just before seeing thetth example, our total
loss is thereforeLt =

∑t−1

i=1 ℓi(yi). If we had predicted using some fixed hypothesisy instead, then
our loss would have been

∑t−1

i=1 ℓi(y). Our totalregretat timet is the difference between these two
losses, with positive regret meaning that we would have preferredy to our actual plays:

ρt(y) = Lt −
t−1
∑

i=1

ℓi(y) ρt = sup
y∈Y

ρt(y)

We assume thatY is a compact convex subset ofR
d that has at least two elements. In classical

no-regret algorithms such as weighted majority,Y is a simplex: the corners ofY represent pure
actions, the interior points ofY represent probability distributions over pure actions, and the number
of cornersn is the same as the number of dimensionsd. In a more general OCP,Y may have

1Many problems use loss functions of the formℓt(yt) = ℓ(yt, y
true

t), whereℓ is a fixed function such as
squared error andytrue

t is a target output. The more general notation allows for problems where there may be
more than one correct prediction.

many more extreme points than dimensions,n ≫ d. For example,Y could be a convex set like
{y | Ay = b, y ≥ 0} for some matrixA and vectorb, or it could even be a sphere.

The shape ofY captures the structure in our prediction problem. Each point inY is a separate
hypothesis, but the losses of different hypotheses are related to each other because they are all em-
bedded in the common representation spaceR

d. While we could run a standard no-regret algorithm
such as weighted majority on a structuredY by giving it hypotheses corresponding to the extreme
points c1 . . . cn of Y, this transformation would lose the connections among hypotheses (with a
corresponding loss in runtime and generalization ability).

Our algorithms below are stated in terms of linear loss functions,ℓt(y) = ct · y. If ℓt is nonlinear
but convex, we can substitute the derivative at the current prediction,∂ℓt(yt), for ct, and our regret
bounds will still hold (see [1, p. 53]). We will writeC for the set of possible gradient vectorsct.

2 Related Work

A large number of researchers have studied online prediction in general and OCP in particular. The
OCP problem dates back to Hannan in 1957 [2]. The name “online convex programming” is due
to Zinkevich [3], who gave a clever gradient-descent algorithm. A similar algorithm and a weaker
bound were presented somewhat earlier in [1]: that paper’s GGD algorithm, using potential function
ℓ0(w) = k‖w‖22, is equivalent to Zinkevich’s “lazy projection” with a fixed learning rate. Another
clever algorithm for OCP was presented by Kalai and Vempala [4].

Compared to the above papers, the most important contribution of the current paper is its generality:
no previous family of OCP algorithms can use as flexible a class of potential functions. As an
illustration of the importance of this generality, consider the problem of learning from expert advice.
Well-known regret bounds for this problem are logarithmic in the number of experts (e.g., [5]); no
previous bounds for general OCP algorithms are sublinear in the number of experts, but logarithmic
bounds follow directly as a special case of our results [6, sec. 8.1.2]. Despite this generality, our
core result, Thm. 4 below, takes only half a dozen short equations to prove.

From the online prediction literature, the closest related work is that of Cesa-Bianchi and Lugosi [7],
which follows in the tradition of an algorithm and proof by Blackwell [8]. Cesa-Bianchi and Lugosi
consider choosing predictions from an essentially-arbitrary decision space and receiving outcomes
from an essentially-arbitrary outcome space. Together a decision and an outcome determine how
a markerRt ∈ R

d will move. Given a potential functionG, they present algorithms which keep
G(Rt) from growing too quickly. This result is similar in flavor to our Thm. 4, and both Thm. 4
and the results of Cesa-Bianchi and Lugosi are based on Blackwell-like conditions. In fact, our
Thm. 4 can be thought of as the first generalization of well-known online learning results such as
Cesa-Bianchi and Lugosi’s to online convex programming.

The main differences between the Cesa-Bianchi–Lugosi results and ours are the restrictions on their
potential functions. They write their potential function asG(u) = f(Φ(u)); they requireΦ to
be additive (that is,Φ(u) =

∑

i φi(ui) for one-dimensional functionsφi), nonnegative, and twice
differentiable, and they requiref : R

+ 7→ R
+ to be increasing, concave, and twice differentiable.

These restrictions rule out many of the potential functions used here, and in fact they rule out most
online convex programming problems. The most restrictive requirement is additivity; for example,
when defining potentials for OCPs via Eq. (7) below, unless the setȲ can be factored as̄Y1 × Ȳ2 ×
. . .× ȲN the potentials are generally not expressible asf(Φ(u)) for additiveΦ.

During the preparation of this manuscript, we became aware of the recent work of Shalev-Shwartz
and Singer [9]. This work generalizes some of the theorems in [6] and provides a very simple and
elegant proof technique for algorithms based on convex potential functions. However, it does not
consider the problem of defining appropriate potential functions for the feasible regions of OCPs
(as discussed in Sec. 5 below and in more detail in [6]); finding such functions is an important
requirement for applying potential-based algorithms to OCPs.

In addition to the general papers above, there are many no-regret algorithms for specific OCPs, such
as predicting as well as the best pruning of a decision tree [10], reorganizing a binary search tree so
that frequent items are near the root [4], and picking paths in a graph with unknown edge costs [11].

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: A setY = {y1 +y2 = 1, y ≥ 0} (thick
dark line) and its safe setS (light shaded region).

s1 ← 0
for t← 1, 2, . . .

ȳt ← f(st) (*)
if ȳt · u > 0 then

yt ← ȳt/(ȳt · u)
else

yt ← arbitrary element ofY
fi
Observect, computest+1 from (1)

end

Figure 2: The gradient form of the La-
grangian Hedging algorithm.

3 Regret Vectors

Lagrangian Hedging algorithms maintain their state in aregret vector,st, defined by the recursion

st+1 = st + (yt · ct)u− ct (1)

with the base cases1 = 0. Hereu is an arbitrary vector which satisfiesy · u = 1 for all y ∈ Y.
(If necessary we can append a constant element to eachy so that such au exists.) The regret vector
contains information about our actual losses and the gradients of our loss functions: fromst we can
find our regret versus anyy as follows. (This property justifies the name “regret vector.”)

y · st =
t−1
∑

i=1

(yi · ci)y · u−
t−1
∑

i=1

y · ci = Lt −
t−1
∑

i=1

y · ci = ρt(y)

We can define asafe set, in which our regret is guaranteed to be nonpositive:

S = {s | (∀y ∈ Y) y · s ≤ 0} (2)

The goal of the Lagrangian Hedging algorithm is to keep its regret vectorst near the safe setS. S is
a convex cone: it is closed under positive linear combinations of its elements. And, it ispolar [12]
to the cone of unnormalized hypotheses:

S⊥ = Ȳ ≡ {λy | y ∈ Y, λ ≥ 0} (3)

4 The Main Algorithm

We will present the general LH algorithm first, then (in Sec. 5) a specialization which is often easier
to implement. The two versions are called thegradient formand theoptimization form. The gradient
form is shown in Fig. 2. At each step it chooses its play based on the current regret vectorst (Eq. (1))
and a closed convex potential functionF (s) : R

d 7→ R with subgradientf(s) : R
d 7→ R

d. This
potential function is what distinguishes one instance of the LH algorithm from another.F (s) should
be small whens is in the safe set, and large whens is far from the safe set.

For example, suppose thatY is the probability simplex inRd, so thatS is the negative orthant inRd.
(This choice ofY would be appropriate for playing a matrix game or predicting from expert advice.)
For thisY, two possible potential functions are

F1(s) = ln
∑

i

eηsi − ln d F2(s) =
∑

i

[si]
2
+/2

whereη > 0 is a learning rate and[s]+ = max(s, 0). The potentialF1 leads to the Hedge [5] and
weighted majority [13] algorithms, while the potentialF2 results in external-regret matching [14,
Theorem B]. For more examples of useful potential functions, see [6].

To ensure the LH algorithm chooses legal hypothesesyt ∈ Y, we require the following (note the
constant 0 is arbitrary; any otherk would work as well)

F (s) ≤ 0 ∀s ∈ S (4)

Theorem 1 The LH algorithm is well-defined: defineS as in (2) and fix a finite convex potential
functionF . If F (s) ≤ 0 for all s ∈ S, then the LH algorithm picks hypothesesyt ∈ Y for all t.

(Omitted proofs are given in [6].) We can also define a version of the LH algorithm with an ad-
justable learning rate: replacingF (s) with F (ηs) is equivalent to updatingst with learning rateη.
Adjustable learning rates will help us obtain regret bounds for some classes of potentials.

5 The Optimization Form

Even if we have a convenient representation of our hypothesis spaceY, it may not be easy to work
directly with the safe setS. In particular, it may be difficult to define, evaluate, and differentiate a
potential functionF which has the necessary properties. To avoid these difficulties, we can work
with an alternate form of the LH algorithm. This form, called theoptimization form, definesF in
terms of a simpler functionW which we will call thehedging function. It uses the same pseudocode
as the gradient form (Fig. 2), but on each step it computesF and∂F by solving an optimization
problem involvingW and the hypothesis setY (Eq. (8) below).

For example, two possible hedging functions are

W1(ȳ) =

{

∑

i ȳi ln ȳi + ln d if ȳ ≥ 0,
∑

i ȳi = 1

∞ otherwise
(5)

W2(ȳ) =
∑

i

ȳ2
i /2 (6)

If Y is the probability simplex inRd, it will turn out thatW1(ȳ/η) andW2(ȳ) correspond to the
potentialsF1 andF2 from Section 4 above. So, these hedging functions result in the weighted
majority and external-regret matching algorithms. For an example where the hedging function is
easy to write analytically but the potential function is much more complicated, see Sec. 8 or [6].

The optimization form of the LH algorithm using hedging functionW is defined to be equivalent to
the gradient form using

F (s) = sup
ȳ∈Ȳ

(s · ȳ −W (ȳ)) (7)

HereȲ is defined as in (3).2 To implement the LH algorithm using theF of Eq. (7), we need an
efficient way to compute∂F . As Thm. 2 below shows, there is always aȳ which satisfies

ȳ ∈ arg max
ȳ∈Ȳ

(s · ȳ −W (ȳ)) (8)

and any such̄y is an element of∂F . So, the optimization form of the LH algorithm uses the same
pseudocode as the gradient form (Fig. 2), but uses Eq. (8) withs = st to computēyt in line (∗).
To gain an intuition for Eqs. (7–8), consider the example of external-regret matching. SinceY is
the unit simplex inRd, Ȳ is the positive orthant inRd. So, withW2(ȳ) = ‖ȳ‖22/2, the optimization
problem (8) will be equivalent to

ȳ = arg min
ȳ∈R

d

+

1

2
‖s− ȳ‖22

That is,ȳ is the projection ofs ontoR
d
+ by minimum Euclidean distance. It is not hard to verify that

this projection replaces the negative elements ofs with zeros,ȳ = [s]+. Substituting this value for
ȳ back into (7) and using the fact thats · [s]+ = [s]+ · [s]+, the resulting potential function is

F2(s) = s · [s]+ −
∑

i

[si]
2
+/2 =

∑

i

[si]
2
+/2

as claimed above. This potential function is the standard one for analyzing external-regret matching.

Theorem 2 Let W be convex,domW ∩ Ȳ be nonempty, andW (ȳ) ≥ 0 for all ȳ. Suppose the
sets{ȳ | W (ȳ) + s · ȳ ≤ k} are compact for alls andk. DefineF as in (7). ThenF is finite and
F (s) ≤ 0 for all s ∈ S. And, the optimization form of the LH algorithm using the hedging function
W is equivalent to the gradient form of the LH algorithm with potential functionF .

2Eq. (7) is similar to the definition of the convex dualW ∗, but the supremum is over̄y ∈ Ȳ instead of over
all ȳ. As a result,F andW ∗ can be very different functions. As discussed in [6],F can be expressed as the
dual of a function related toW .

6 Theoretical Results

Our main theoretical results are regret bounds for the LH algorithm. The bounds depend on the
curvature of our potentialF , the size of the hypothesis setY, and the possible slopesC of our loss
functions. Intuitively,F must be neither too curved nor too flat on the scale of the updates tost from
Eq. (1): if F is too curved then∂F will change too quickly and our hypothesisyt will jump around
a lot, while if F is too flat then we will not react quickly enough to changes in regret.

We will state our results for the gradient form of the LH algorithm. For the optimization form,
essentially the same results hold, but the constants are defined in terms of the hedging function
instead. Therefore, we never need to work with (or even be able to write down) the corresponding
potential function. For more details, see [6]. One result which is slightly tricky to carry over is
tuning learning rates. The choice of learning rate below and the resulting bound are the same as
for the gradient form, but the implementation is slightly different: to set a learning rateη > 0, we
replaceW (ȳ) with W (ȳ/η).

We will need upper and lower bounds onF . We will assume

F (s + ∆) ≤ F (s) + ∆ · f(s) + C‖∆‖2 (9)

for all regret vectorss and increments∆, and

[F (s) + A]+ ≥ inf
s′∈S

B‖s− s′‖p (10)

for all s. Here‖ · ‖ is an arbitrary finite norm, andA ≥ 0, B > 0, C > 0, and1 ≤ p ≤ 2 are
constants. Eq. (9), together with the convexity ofF , implies thatF is differentiable andf is its
gradient; the LH algorithm is applicable ifF is not differentiable, but its regret bounds are weaker.

We will bound the size ofY by assuming that

‖y‖◦ ≤M (11)

for all y in Y. Here,‖ · ‖◦ is the dual of the norm used in Eq. (9) [12].

The size of our update tost (in Eq. (1)) depends on the hypothesis setY, the cost vector setC, and
the vectoru. We have already boundedY; rather than boundingC andu separately, we will assume
that there is a constantD so that

E(‖st+1 − st‖2 | st) ≤ D (12)

Here the expectation is taken with respect to our choice of hypothesis, so the inequality must hold
for all possible values ofct. (The expectation is only necessary if we randomize our choice of
hypothesis, as would happen ifY is the convex hull of some non-convex set. If interior points ofY
are valid plays, we need not randomize, so we can drop the expectation in (12) and below.)

Our theorem then bounds our regret in terms of the above constants. Since the bounds are sublinear
in t, they show that Lagrangian Hedging is a no-regret algorithm when we choose an appropriate
potentialF .

Theorem 3 Suppose the potential functionF is convex and satisfies Eqs. (4), (9) and (10). Suppose
that the problem definition is bounded according to (11) and (12). Then the LH algorithm (Fig. 2)
achieves expected regret

E(ρt+1(y)) ≤M((tCD + A)/B)1/p = O(t1/p)

versus any hypothesisy ∈ Y.

If p = 1 the above bound isO(t). But, suppose that we know ahead of time the number of trialst
we will see. DefineG(s) = F (ηs), where

η =
√

A/(tCD)

Then the LH algorithm with potentialG achieves regret

E(ρt+1(y)) ≤ (2M/B)
√

tACD = O(
√

t)

for any hypothesisy ∈ Y.

The full proof of Thm. 3 appears in [6]; here, we sketch the proof of one of the most important
intermediate results. Thm. 4 shows that, if we can guaranteeE(st+1 − st) · ∂F (t) ≤ 0, thenF (st)
cannot grow too quickly. This result is analogous to Blackwell’s approachability theorem: since the
level sets ofF are related toS, we will be able to showst/t→ S, implying no regret.

Theorem 4 (Gradient descent)Let F (s) and f(s) satisfy Equation (9) with seminorm‖ · ‖ and
constantC. Letx0, x1, . . . be a sequence of random vectors. Writest =

∑t−1

i=0 xi, and letD be a
constant so thatE(‖xt‖2 | st) ≤ D. Suppose that, for allt, E(xt · f(st) | st) ≤ 0. Then for allt,

E(F (st+1) | s1)− F (s1) ≤ tCD

PROOF: The proof is by induction: fort ≥ 2, assumeE(F (st) | s1) ≤ F (s1) + (t − 1)CD. (It is
obvious that the base case holds fort = 1.) Then:

F (st+1) = F (st + xt)

≤ F (st) + xt · f(st) + C‖xt‖2
E(F (st+1) | st) ≤ F (st) + CD

E(F (st+1) | s1) ≤ E(F (st) | s1) + CD

E(F (st+1) | s1) ≤ F (s1) + (t− 1)CD + CD

which is the desired result. 2

7 Examples

The classical applications of no-regret algorithms are learning from expert advice and learning to
play a repeated matrix game. These two tasks are essentially equivalent, since they both use the
probability simplexY = {y | y ≥ 0,

∑

iyi = 1} for their hypothesis set. This choice ofY simplifies
the required algorithms greatly; with appropriate choices of potential functions, it can be shown that
standard no-regret algorithms such as Freund and Schapire’s Hedge [5], Littlestone and Warmuth’s
weighted majority [13], and Hart and Mas-Colell’s external-regret matching [14, Theorem B] are all
special cases of the LH algorithm.

A large variety of other online prediction problems can also be cast in our framework. These prob-
lems include path planning when costs are chosen by an adversary [11], planning in a Markov
decision process when costs are chosen by an adversary [15], online pruning of a decision tree [16],
and online balancing of a binary search tree [4]. More uses of online convex programming are
given in [1, 3, 4]. In each case the bounds for the LH algorithm will be polynomial or better in the
dimensionality of the appropriate hypothesis set and sublinear in the number of trials.

8 Experiments

To demonstrate that our theoretical bounds translate to good practical performance, we implemented
the LH algorithm with the potential functionW2 from (6) and used it to learn policies for the game
of one-card poker. (The hypothesis space for this learning problem is the set ofsequence weight
vectors, which is convex because one-card poker is an extensive-form game [17].)

In one-card poker, two players (called thegamblerand thedealer) each ante $1 and receive one
card from a 13-card deck. The gambler bets first, adding either $0 or $1 to the pot. Then the dealer
gets a chance to bet, again either $0 or $1. Finally, if the gambler bet $0 and the dealer bet $1, the
gambler gets a second chance to bring her bet up to $1. If either player bets $0 when the other has
already bet $1, that player folds and loses her ante. If neither player folds, the higher card wins the
pot, resulting in a net gain of either $1 or $2 (equal to the other player’s ante plus the bet of $0 or
$1). In contrast to the usual practice in poker we assume that the payoff vectorct is observable after
each hand; the partially-observable extension is beyond the scope of this paper.

One-card poker is a simple game; nonetheless it has many of the elements of more complicated
games, including incomplete information, chance events, and multiple stages. And, optimal play
requires behaviors like randomization and bluffing. The biggest strategic difference between one-
card poker and larger variants such as draw, stud, or hold-em is the idea of hand potential: while

0 50 100 150 200 250
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Gambler bound
Dealer bound
Avg payoff
Minimax value

0 50 100 150 200 250
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Gambler bound
Dealer bound
Avg payoff
Minimax value

Figure 3: Performance in self-play (left) and against a fixed opponent (right).

45679 and 24679 are almost equally strong hands in a showdown (they are both 9-high), holding
45679 early in the game is much more valuable because replacing the 9 with either a 3 or an 8 turns
it into a straight.

Fig. 3 shows the results of two typical runs: in both panels the dealer is using our no-regret algorithm.
In the left panel the gambler is also using our no-regret algorithm, while in the right panel the
gambler is playing a fixed policy. Thex-axis shows number of hands played; they-axis shows
the average payoff per hand from the dealer to the gambler. The value of the game,−$0.064, is
indicated with a dotted line. The middle solid curve shows the actual performance of the dealer
(who is trying to minimize the payoff).

The upper curve measures the progress of the dealer’s learning: after every fifth hand we extracted
a strategyyavg

t by taking the average of our algorithm’s predictions so far. We then plotted the
worst-case value ofyavg

t . That is, we plotted the payoff for playingyavg
t against an opponent which

knowsyavg
t and is optimized to maximize the dealer’s losses. Similarly, the lower curve measures

the progress of the gambler’s learning.

In the right panel, the dealer quickly learns to win against the non-adaptive gambler. The dealer
never plays a minimax strategy, as shown by the fact that the upper curve does not approach the
value of the game. Instead, she plays to take advantage of the gambler’s weaknesses. In the left
panel, the gambler adapts and forces the dealer to play more conservatively; in this case, the limiting
strategies for both players are minimax.

The curves in the left panel of Fig. 3 show an interesting effect: the small, damping oscillations
result from the dealer and the gambler “chasing” each other around a minimax strategy. One player
will learn to exploit a weakness in the other, but in doing so will open up a weakness in her own
play; then the second player will adapt to try to take advantage of the first, and the cycle will
repeat. Each weakness will be smaller than the last, so the sequence of strategies will converge to a
minimax equilibrium. This cycling behavior is a common phenomenon when two learning players
play against each other. Many learning algorithms will cycle so strongly that they fail to achieve the
value of the game, but our regret bounds eliminate this possibility.

9 Discussion

We have presented the Lagrangian Hedging algorithms, a family of no-regret algorithms for OCP
based on general potential functions. We have proved regret bounds for LH algorithms and demon-
strated experimentally that these bounds lead to good predictive performance in practice. The regret
bounds for LH algorithms have low-order dependences ond, the number of dimensions in the hy-
pothesis setY. This low-order dependence means that the LH algorithms can learn well in prediction
problems with complicated hypothesis sets; these problems would otherwise require an impractical
amount of training data and computation time.

Our work builds on previous work in online learning and onlineconvex programming. Our contribu-
tions include a new, deterministic algorithm; a simple, general proof; the ability to build algorithms
from a more general class of potential functions; and a new way of building good potential func-
tions from simpler hedging functions, which allows us to construct potential functions for arbitrary
convex hypothesis sets. Future work includes a no-internal-regret version of the LH algorithm, as
well as a bandit-style version. The former will guarantee convergence to a correlated equilibrium in
nonzero-sum games, while the latter will allow us to work from incomplete observations of the cost
vector (e.g., as might happen in an extensive-form game such as poker).

Acknowledgments Thanks to Amy Greenwald, Martin Zinkevich, and Sebastian Thrun, as well
as Yoav Shoham and his research group. This work was supported by NSF grant EF-0331657 and
DARPA contracts F30602-01-C-0219, NBCH-1020014, and HR0011-06-0023. The opinions and
conclusions are the author’s and do not reflect those of the US government or its agencies.

References

[1] Geoffrey J. Gordon. Approximate Solutions to Markov Decision Processes. PhD thesis,
Carnegie Mellon University, 1999.

[2] James F. Hannan. Approximation to Bayes risk in repeated play. In M. Dresher, A. Tucker, and
P. Wolfe, editors,Contributions to the Theory of Games, volume 3, pages 97–139. Princeton
University Press, 1957.

[3] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In Proceedings of the Twentieth International Conference on Machine Learning. AAAI Press,
2003.

[4] Adam Kalai and Santosh Vempala. Geometric algorithms for online optimization. Technical
Report MIT-LCS-TR-861, Massachusetts Institute of Technology, 2002.

[5] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. InEuroCOLT 95, pages 23–37. Springer-Verlag, 1995.

[6] Geoffrey J. Gordon. No-regret algorithms for structured prediction problems. Technical Report
CMU-CALD-05-112, Carnegie Mellon University, 2005.

[7] Nicolò Cesa-Bianchi and Ǵabor Lugosi. Potential-based algorithms in on-line prediction and
game theory.Machine Learning, 51:239–261, 2003.

[8] David Blackwell. An analogue of the minimax theorem for vector payoffs.Pacific Journal of
Mathematics, 6(1):1–8, 1956.

[9] Shai Shalev-Shwartz and Yoram Singer. Convex repeated games and Fenchel duality. In
B. Scḧolkopf, J.C. Platt, and T. Hofmann, editors,Advances in Neural Information Processing
Systems, volume 19, Cambridge, MA, 2007. MIT Press.

[10] David P. Helmbold and Robert E. Schapire. Predicting nearly as well as the best pruning of a
decision tree. InProceedings of COLT, pages 61–68, 1995.

[11] Eiji Takimoto and Manfred Warmuth. Path kernels and multiplicative updates. InCOLT, 2002.

[12] R. Tyrell Rockafellar.Convex Analysis. Princeton University Press, New Jersey, 1970.

[13] Nick Littlestone and Manfred Warmuth. The weighted majority algorithm. Technical Report
UCSC-CRL-91-28, University of California Santa Cruz, 1992.

[14] Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to correlated equi-
librium. Econometrica, 68(5):1127–1150, 2000.

[15] H. Brendan McMahan, Geoffrey J. Gordon, and Avrim Blum. Planning in the presence of cost
functions controlled by an adversary. InProceedings of the Twentieth International Conference
on Machine Learning, 2003.

[16] David P. Helmbold and Robert E. Schapire. Predicting nearly as well as the best pruning of a
decision tree. InCOLT, 1995.

[17] D. Koller, N. Meggido, and B. von Stengel. Efficient computation of equilibria for extensive
two-person games.Games and Economic Behaviour, 14(2), 1996.

