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Abstract

We establish a general oracle inequality for clipped approximate minimizers of
regularized empirical risks and apply this inequality to support vector machine
(SVM) type algorithms. We then show that for SVMs using Gaussian RBF kernels
for classification this oracle inequality leads to learning rates that are faster than
the ones established in [9]. Finally, we use our oracle inequality to show that a
simple parameter selection approach based on a validation set can yield the same
fast learning rates without knowing the noise exponents which were required to
be known a-priori in [9].

1 Introduction

The theoretical understanding of support vector machines (SVMs) and related kernel-based meth-
ods has been substantially improved in recent years. For example using Talagrand’s concentration
inequality and local Rademacher averages it has recently been shown that SVMs for classification
can learn with rates up to~! under somewhat realistic assumptions on the data-generating distri-
bution (see [9, 11] and the related work [2]). However, the so-called “shrinking technique” of [9, 11]
for establishing such rates, requires the free parameters to be cngsimi, and in addition, the
optimal values of these parameters depend on features of the data-generating distribution which are
typically unknown. Consequently, [9, 11] do not provide a practical method for learning with fast
rates. On the other hand, the oracle inequality in [2] only holds for distributions having Tsybakov
noise exponento, and hence it describes a situation which is rarely met in practice.

The goal of this work is to overcome these shortcomings by establishing a general oracle inequality
(see Theorem 3.1) for regularized empirical risk minimizers. The key ingredient of this oracle
inequality is the observation that for most commonly used loss functions it is possible to “clip”
the decision function of the algorithm before beginning with the theoretical analysis. In addition,
a careful choice of the weighted empirical process Talagrand’s inequality is applied to, makes the
“shrinking technique” superfluous. Finally, by explicitly dealing witapproximate minimizers of

the regularized risk our results also apply to actual SVM algorithms.

With the help of the general oracle inequality we then establish an oracle inequality for SVM type
algorithms (see Theorem 2.1) as well as a simple oracle inequality for model selection (see Theorem
4.2). For the former, we show that it leads to improved rates for e.g. binary classification under
the assumptions considered in [9] and a-priori known noise exponents. Using the model selection
theorem we then show how our new oracle inequality for SVMs can be used to analyze a simple
parameter selection procedure based on a validation set that achieves the same learning rates without
prior knowledge on the noise exponents.

The rest of this work is organized as follows: In Section 2 we present our oracle inequality for
SVM type algorithms. We then discuss its implications and analyze the simple parameter selection



procedure when using Gaussian RBF kernels. In Section 3 we then present and prove the general
oracle inequality. The proof of Theorem 2.1 as well as the oracle inequality for model selection can
be found in Section 4.

2 Main Results

Throughout this work we assume th&t is compact metric spac&; C [-1,1] is compact,P

is a Borel probability measure ol x Y, andF is a set of functions oveX such that) € F.
Often F is a reproducing kernel Hilbert space (RKHB) of continuous functions ovekK with
closed unit ballBg. It is well-known thatH can then be continuously embedded into the space
of continuous function&”(X) equipped with the usual maximum-norm|... In order to avoid
constants we always assume that this embedding has norm 1,|j.e.< ||.||z. Furthermore,
L:Y xR — [0,00) always denotes a continuous function which is convex in its second variable
such thatL(y,0) < 1. The functionsL will serve as loss functions and consequently let us recall
that the associatebl-risk of a measurable functiof: X — R is defined by

RL,P(f) = E(w,y)NPL(ya f(l’)) .

Note that the assumptiah(y, 0) < 1 immediately givesR;, p(0) < 1. Furthermore, the minimal
L-risk is denoted byR} p, i.e. R} p = inf{Rr p(f)|f : X — R measurable}and a function
attaining this infimum is denoted bfy .. We always assume that such gn,, exists.

The learning schemes we are mainly interested in are based on an optimization problem of the form
= i )\ 2 R ) ) 1
T = ngmin (A f[3 + Re,p(/) 1

where) > 0. Note that if we identify a training s&t = ((z1,v1), - -, (Zn,yn)) € (X x Y)™ with

its empirical measure, thefir » denotes the empirical estimators of the above learning scheme.
Obviously, support vector machines (see e.g. [5]) and regularization networks (see e.g. [7]) are both
learning algorithms which fall into the above category. One way to describe the approximation error
of these learning schemes is #ygproximation error function

a(A) = Mfealll + Re.p(frr) —Rip A >0,

which has been discussed in some detail in [10]. Furthermore in order to deal with the complexity
of the used RKHSs let us recall that for a subdet E of a Banach spacg thecovering numbers
are defined by

N(A e, E) := min{n >1:321,...,0, € EWith A C LJ(gcz —|—€BE)}, e >0,
i=1
whereBg denotes the closed unit ball &f. Given a finite sequenc€ = ((z1,y1),-- -, (Tn,Yn)) €
(X xY)" we writeTx := (z1,...,2,). For our main results we are particularly interested in

covering numbers in the Hilbert spate(7x ) which consists of all equivalence classes of functions
f: X xY — R and which is equipped with the norm

1Flzamo = (5 Sli@a )" @
i=1

In other words Lo (T'x ) is a Lo-space with respect to the empirical measuréwf . . ., x,,).

Learning schemes of the form (1) typically produce functigips, with limy_o || fpallcc = o0

(see e.g. [10] for a precise statement). Unfortunately, this behaviour has a serious negative impact
on the learning rates when directly employing standard tool’'s such as Hoeffding’s, Bernstein’s or
Talagrand’s inequality. On the other hand, when dealing with e.g. the hinge loss it is obvious that
clipping the functionfp » at —1 and1 does not worsen the corresponding risks. Following this
simple observation we will consider loss functiaishat satisfy theslipping condition

L(y,1) ift>1
Llyt) = {L(y,—l) ifr<—1, 3)



forall y € Y. Recall that this type of loss function was already considered in [4, 11], but the clipping
idea actually goes back to [1]. Moreover, it is elementary to check that most commonly used loss
functions including the hinge loss and the least squares loss satisfy (3). Given a fyhctdor- R

we now define itslipped versionf : X — [—1,1] by

) 1 if flx)>1
flx):={ fla) if f(z) € [-1,1]
-1 if flz)<—1.

It is clear from (3) that we always havk(y, f(x)) < L(y, f(z)) and consequently we obtain

R p(f) < Ry p(f)forall distributionsP. Finally, we also need the following Lipschitz condition

L(y,t1) — L(y,t
‘L|1 — sup | (yv 1) (ya 2)| < 9. (4)
YEY,— 1<ty t2<1 |t1 — to

With the help of these definitions we can now state our main result which establishes an oracle
inequality for clipped versions ofr »:

Theorem 2.1 Let P be a distribution onX x Y and letL be a loss function which satisfies (3) and
(4). LetH be a RKHS of continuous functions &n For a fixed elemenf, € H we define

a(fo) = Mlfolir +Re.p(fo) —Rip

B(fo) = sup |L(y, fo(x))|. (5)
rzeX,yeY
In addition, we assume that we have a variance bound of the form
2 12 2 « 9
Ep(Lof—LofLP) gv(Ep(LoffLofLP)) (6)
for constanta > 1, ¢ € [0, 1] and all measurablg’ : X — R. Moreover, suppose thdf satisfies
sup  log N (Bp, e, Lao(Tx)) < as™?P, e>0, )
Te(XxY)n

for some constants € (0,1) anda > 1. For fixed\ > 0 let f » € H be a function that minimizes
I = MIflI% + Rer(f) up to some > 0. Then there exists a constaht, , depending only op
andv such that for allr > 1 we have with probability not less than— 3e~" that

K, ,a\ =700 L Epea 5(3207)ﬁ | 1407 | L4B(fo)r
APy APny

RL,P(fAT,A)—RZ,p < (

n 3n

+ 8a(fo) + 4e. (8)

The above oracle inequality has some interesting consequences as the following examples illustrate.
We begin with an example that deals witffixedkernel:

Example 2.2 (Learning rates for single kernel) Assume that in Theorem 2.1 we have a Lipschitz
continuous loss function such as the hinge loss. In addition assume that the approximation error
function satisfiea(\) < c\?, A > 0, for some constanis> 0 and 3 € (0, 1]. Settingfy := frx

and optimizing (8) with respect to then shows that the corresponding SVM learns with raté,

where
B 26 }
BE2-0+pW—1)+p B+1)
Recall that this learning rate has already been obtained in [11].

v = min{

The next example investigates SVMs that use a Gaussian RBF kernel whose width may vary with
the sample size:

Example 2.3 (Classification with several Gaussian kernelshet X be the unit ball inR¢ and
Y := {-1,1}. Furthermore assume that we are interested in binary classification using the hinge



loss and the Gaussian RKHEs, that belong to the RBF kernells (21, z2) := e~ lo1=221" with
widtho > 0. If P has geometric noise exponent (0, co) in the sense of [9] then it was shown in
[9] that there exists a functiotfy € H, with | fo|lcc < 1 and

as(fo) < c (oA +0o77), >0, >0,

wherec > 0 is a constant independent afando. Moreover, [9, Thm. 2.1] shows thaf, satisfies
(7) forall p € (0,1) with

— 1-p)(1+96)d
0= ¢y g0 7P+

whered > 0 can be arbitrarily chosen and, ;5 is a suitable constant. Now assume tliahas

Tsybakov noise exponent [0, oo] in the sense of [9]. It was then shown in [9] that (6) is satisfied
for ¢ := ﬁ Minimizing (8) with respect te and A and choosing and sufficiently small then

yields that the corresponding SVM can learn with rate’+¢, where

___oletl)
T algr2) rq+ 1

ande > 0 can be chosen arbitrarily small. Note that these rates are superior to those obtained in
[9, Theorem 2.8].

In the above examples the optimal parametesdos depend on the sample sizebut not on the
training sampleq’. However, these optimal parameters require us to know certain characteristics
of the distribution such as the approximation exponérdr the noise exponenis andgq. The
following example shows that the oracle inequality of Theorem 2.1 can be used to find these optimal
parameters in a data-dependent fashion which does not require any a-priori knowledge:

Example 2.4 In this example we assume that our training Fetonsists on samples. We write

Ty for the firstn samples and’ for the lastn samples. Letfr, »» be the SVM solution using

a Gaussian kernel with width. Moreover, let C [1,n'/9) and A C (0, 1] be finite sets with
cardinality my; andm,, respectively. Under the assumptions of Example 2.3 the oracle inequality
(8) then shows that with probability not less thar- 3msmae™" we have

7 * o i T i d —ad
Rr.p(froon) —Rip < Kd,q,a,s(<)\sn) + (;) +0'N+o )
simultaneouslyor all o € ¥ and A € A, wheree € (0, 1] is arbitrarily but fixed andKy ¢« - is
a suitable constant. Now using a simple model selection approach (see e.g. Theorem 4.2) for the
second halfl} of our training set we find that with probability not less thar e~ we have

q+1
T+ log(mgmA)) a+2
n

RL,P(fTU,a;l,A*Tl)fR*L’P < C’<

. Ud % d —ad

+C min ( ) +o /\—1—00‘),
aez,,\eA( An

whereC' is a constant only depending @h ¢, o, ande, and (o7, A}, ) € X x A is a pair that

minimizes the empirical risR 1, 1, (.) overX x A.

Now assume that,, andA,, are 1/n- and1/n?-nets of[ 1, n'/%) and(0, 1], respectively. Obviously,

we can choos®&,, and A,, such thatmys,, < n? andmy, < n?, respectively. With such parameter

sets it is then easy to check that we obtain exactly the rates we have found in Example 2.3, but

withoutknowing the noise exponentsand g a-priori.

3 An oracle inequality for clipped penalized ERM

Theorem 2.1 is a consequence of a far more general oracle inequality on clipped penalized empirical
risk minimizers. Since this result is of its own interest we now present it together with its proof in
detail. To this end recall that a subroot is a hondecreasing fungtior0,co) — [0, 00) such

that o(r)/+/r is nonincreasing in-. Moreover, for a Rademacher sequemce= (oy,...,0,)

with respect to the measureand a functiom: : Z — R we defineR,h : Z" — R by R,h :=
n~!(o1h(z1) + - - + onh(z,)). Now the general oracle inequality is:



Theorem 3.1 Let P # ) be a set of (hyper)-parameter, be a set of measurable functiorfs:
X — Rwith0 € F,andQ : P x F — [0, 00| be a function. LeP be a distribution onX x Y and
L be aloss function which satisfies (3) and (4). For a fixed pait fo) € P x F we define

aa(po, fo) == Qpo, fo) + R p(fo) — RL p-

Moreover, let us assume that the quantyf,) defined in (5) idinite. In addition, we assume
that we have a variance bound of the form (6) for constants 1, ¢ € [0, 1] and all measurable
f+ X — R. Furthermore, suppose that there exists a subggptvith

ErprEoy sSup ’RU(L ° f — Lo fz,P)’ < @n(r) ’ r>0. (9)
(p.f)EPXF
Qp, f)+Ep(Lof—Lofr p)<r

Finally, let (pr.q, fr.o) be ane-approximate minimizer ofp, f) — Q(p, f) + Rr,r(f). Then for
all 7 > 1 and allr satisfying

32v7)ﬁ 2877}

r > Inax{120cpn(r), (
n

(10)
n

we have with probability not less thdn— 3e~" that

14B(f0)7’

Qpro. fro) + Rep(fro) — Rip < 5r+ —3, T 8aq(po, fo) + 4e.

Proof: We write B for B(fy). ForT € (X x Y)™ we now observ&(pr.q, fra) + RL/T(fAT)Q) —
Q(po, fo) — R, r(fo) < e by the definition of(pr.q, fro), and hence we find

Qpr.a, fro)+Ro.p(fr.o) ~R} p
< Rip(fre)—Ror(fre) +Ror(fo) — Re.p(fo) + aa(po. fo) + €
= Rep(fro)—Rir(fip)-Rir(fro+Rir(fip) (12)

+Rrr(fo) =Rz (fo)—Re.p(fo)+Re,r(fo) (12)
+Rrr(fo)=Rer(fi p)—Rep(fo)+Re.p(fi p) (13)

+aq(po, fo) + €.

Let us first estimate the term in line (12). To this end we white= L o fo — L o fo. Then our
assumption o guarantees; > 0, and since we also hayé; || < B, we find||h1 —Ephi]|e <
B. In addition, we obviously havEp (hy —Eph;)? < Eph? < BEph;. Consequently, Bernstein’s
inequality [6, Thm. 8.2] shows that with probability not less than e~” we have

[2rBEph 2B
Erhi —Ephy < T Pl + T .
n 3n

Now usingv/ab < 4 + & we find/27BEph; - n~% <Ephy + 57 and consequently we have
7Bt

6n

Let us now estimate the term in line (13). To this end we write= LofO—LofaP. Then we have
lh2]lse < 3 and|hy — Ephalls < 6. In addition, our variance bound givEs> (hy — Ephs)? <
Eph? < v(Ephs)?, and consequently, Bernstein's inequality shows that with probability not less
thanl — e~™ we have

P" (T <AL RLVT(fo)—RL,T(fo)—RL,p(fo)—FRL’P(fo) < Ephi+ ) > 1—e 7. (14)

2rv(Ephy)? 47
MJFW.

ET}ZQ — Ephg <

Now, forg=! + (¢/) " = 1 the elementary inequalityb < a?qg~* + b7 (¢') " holds, and hence for
q:=525,¢ = 2,a:=V21-9997y . n~ 7, andb := (—Q]Eg’”)ﬁ/2 we obtain

27v(Ephsy)? < (1 129><21_191919v7 !

) = + Ephs.

n n



Since elementary calculations show tfat?9”) *=7 < 1 we obtain

Therefore we have with probability not less thiar e~ that

9\ /2vT 4T

Rer.r(fo) ~Rer(fI.p) —Re.p(fo) +Rr.p(fip) <Ephy+ (1 - 5) <T) Ty ot (15)

Let us finally estimate the term in line (11). To this end we whije:= L o f—"Lo fip fEF.
Moreover, forr > 0 we define

{ Ephffhf

€ G, we haveEpg, r = 0 and

gr =

(n.f) e P x F}.
Ephs—h

Thenforg, ; := ao et

Ephy — hy(z) [Ephs — hyll

o = SU =
190.1 1o = S0 ey + Ep(hy) ¥ 71— O, F) + En(hy) ¥ 7

In addition, the inequality’v>~? < (a + b)? and the variance bound assumption (6) implies that
Eph?c Eph? v
< < )
Ep(hy)+r)? = r272(Ephys)? = 277

IN

6
.

Epgf),f < (

Now define

Ephy —Erhy
®(r) := Epopn  sup .
) w.pyepxF QUps f) +Ep(hy) +1

Standard symmetrization then yields

Er.pn sup |[Eph; —Erhs| < 2EpropnEqms sup |Rohy|,
(p,f)EPXF (p,f)EPXF
Qp,f)+Ep(hp)<r Qp,f)+Ep(hp)<r

and hence Lemma 3.2 proved below together with (9) shb(w$ < 10p,,(r)r~1, 7 > 0. Therefore
applying Talagrand’s inequality in the version of [3] to the cl@ssve obtain

n 2
P <T € Z": sup Eprg < 30in (r) + v + 77—)

>1—-e 7.
9€G.. r nr2=%  nr

Let us defines, := 2%enlr) | (nf;—lﬂg)l/z + 7. Then the above inequality gives with probability

not less tharl — e~ that for all(p, f) € P x F we have

2rur? 7
Eth_EThf <e&p- (Q(p’f)+[[4jphf) +30<Pn(7’)+ TUT n 7-7

n n

and consequently we have with probability not less thane~" that

Rip(fra) = Rip(fip) — Ror(fre) + Ror(fip)

. 9
< e (Upras fro) + Rep(fre) — Re.p(fip)) +300n(r) + 1/ 2TZT + 7777 . (16)

Now observe that for the functiorig andhy which we defined when estimating (12) and (13) we
have

Epg+Eph =R p(fo) —RLp, 7

and hence we can combine our estimates (16), (14), and (15) of the terms (11), (12), and (13) to
obtain that with probability not less thdn— 3e~" we have

(1-&.)(Upr.a, fro) + Re,p(fre) — Rip)

[27vr? 9. 2ur\7=5  (66+7B)T )
S 3080n(7')+ n + (1—5)(T> + (6771,) + aQ(p(),fU)+RL7P(f0)_RL’p+€.




In particular, forr satisfying the assumption (10) we ha%”;‘ﬂ <4 ( 27’“9)1/2 < 1, and

nr2—7

It < 1. This showsl — ¢, > 1, and hence we obtain with probability not less than 3e~" that

nr —

5 . [32Tvr? uT\ =7 44t
Qpr.o, fra) + Re.p(fra) —RLp < 120p0,(r) + - +2(2-9) (—) SR Rl

n n
14Bt
3n

+ + 4aq(po, fo) + 4(Re,p(fo)—Ri p) + 4e.

1
However we also havé20yp,,(r) < r, (%)1/2 <o, T <3 and2(2 - 9)(2T) T
2(2 — )3 < r, and hence we find the assertion.

HIN

For the proof of Theorem 3.1 it remains to show the following lemma:

Lemma 3.2 Let P and F be as in Theorem 3.1. Furthermore, 1t : 7 — Randa : P x F —
[0, 00). Define

®(r) := Erwpn sup |]ETW(f)_EPW(f)|

fEPXF a(p, f) +r
and suppose that there exists a subrfaguch that
Er~pn  sup  [ExW(f) —EpW(f)| < U(r), r>0.
(p,f)EPXF
a(p,f)<r

Then we havé(r) < 2¥(r) for all » > 0.

Proof: Forz > 1,r > 0, andT € (X x Y)™ we obtain by a standard peeling approach that
EpW(f) — ExW(f)]

(p./)EPXF a(p, f) +r
< sup EpW(f) —ErW(f)| + sup [EpW(f) —ErW(f)|
(p./)EPXF a(p, f) +r L (p.f)ePxF a(p, f) +r
a(p,f)<r a(p,f)>ra’

a(p,f)<ra’tt

T (p,f)EPXF
a(p,f)<r a(p,f)Sra:H'l

EpW(f) — ExW > EpW(f) —ErW
< sup EpW(f) — Er (f)\+z sup [EpW(f) — ExW(f)|
(p./)EPXF r = (n.))EPXF rTt 4T
a(p,f)<r a(p,f)Zr@i
a(p,f)<ra*t?
o0
1 1
< - swp [EBpW(H)-EeW()+ - ———  swp [EpW(f) -~ ErW(f)|
reg Ll pperxF

1 U (ratth)
- ?(\IJ(TH_Z xi +1 )
=0
i1

However sincel is a subroot we obtain that(rz‘*!) < x> ¥(r) so that we obtain the assertion
by settingz := 4. |

4 Proof of Theorem 2.1

Before we begin the proof of Theorem 2.1 let us state the following proposition which follows
directly from [8] (see also [9, Prop. 5.7]) together with simple considerations on covering numbers:

Proposition 4.1 Let F := H be a RKHSP := {p,} be a singleton, an€(po, f) := || f||>. If (7)
is satisfied then there exists a constantdepending only op such that (9) is satisfied for

P 1 _p_ 1
) = pmc[sim g0 () (2)F 1y (2



Proof of Theorem 2.1:From the covering bound assumption we observe that Proposition 4.1 im-
plies we have the bound (9) withy, () defined by the righthand side of Proposition 4.1 and therefore
Theorem 3.1 implies that Condition (10) becomes

L o TNE/a\ 2 T\ Ths fa\Tis /32uT\ 2w 287
r> max{lZOcpv5(1_7’)7“5(1_p)(7) (7) ,12001,(7) o (7) +p,( ) N ,—} (18)
A n A n n n

and solving with respect toyields the conclusion. ]

Finally, for the parameter selection approach in Example 2.4 we need the following oracle inequality
for model selection:

Theorem 4.2 Let P be a distribution onX x Y and letL be a loss function which satisfies (3),
(4), and the variance bound (6). Furthermore, JEt:= {f1,..., fn} be a finite set of functions
mappingX into [—1,1]. ForT € (X x Y)™ we define

fr = arg }IélgRL,T(f) .

Then there exists a universal constdfitsuch that for allr > 1 we have with probability not less
thanl — 3e~7 that

Klogm\ =% 32uT\ =5 5K logm + 1541
) e (ST e

R <
Rep(fr)=Rip < 5 -

8min(R —R3 .
+ g}gﬁ( L.p(f) L.p)

Proof: Since all functionsf; already map intd—1, 1] we do not have to consider the clipping oper-
ator. Forr > 0 we now definef, := {f € F : R p(f) — R} p < r}. Then the cardinality of

F. is smaller than or equal ta and hence we haw®' (L o F, — L o f} p,e,La2(T)) < m for all
e > 0. Using the technique of [8] (cf. also [9, Prop. 5.7]) we hence obtain that (9) is satisfied for

1
on(r) = % max{\/vlogmrﬁm7 iigb} ,

wherec is a universal constant. Applying Theorem 3.1 then yields the assertion. |
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