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Abstract

We consider a general form of transductive learning on graphs with Laplacian
regularization, and derive margin-based generalization bounds using appropriate
geometric properties of the graph. We use this analysis to obtain a better under-
standing of the role of normalization of the graph Laplacian matrix as well as the
effect of dimension reduction. The results suggest a limitation of the standard
degree-based normalization. We propose a remedy from our analysis and demon-
strate empirically that the remedy leads to improved classification performance.

1 Introduction

In graph-based methods, one often constrsiotdarity graphsby linking similar data points that are

close in the feature space. It was proposed in [3] that one may first project these data points into the
eigenspace corresponding to the largest eigenvalues of a normalized adjacency matrix of the graph
and then use the standdrdmeans method for clustering. In the ideal case, points in the same class
will be mapped into a single point in the reduced eigenspace, while points in different classes will be
mapped to different points. One may also consider similar ideas in semi-supervised learning using a
discriminative kernel method. If the underlying kernel is induced from the graph, one may formulate
semi-supervised learning directly on the graph (e.g., [1, 5, 7, 8]). In these studies, the kernel is in-
duced from the adjacency matA¥ whose(s, j)-entry is the weight of edgg, j). W is sometimes
normalized byD~'/2WD~1/2 [2, 4, 3, 7] whereD is a diagonal matrix whosgj, j)-entry is the

degree of thg-th node, but sometimes not [1, 8]. Although such normalization may significantly
affect the performance, the issue has not been studied from the learning theory perspective. The
relationship of kernel design and graph learning was investigated in [6], which argued that quadratic
regularization-based graph learning can be regarded as kernel design. However, normalization of
‘W was not considered there. The goal of this paper is to provide some learning theoretical insight
into the role of normalization of the graph Laplacian matiix-{ W). We first present a model for
transductive learning on graphs and develop a margin analysis for multi-class graph learning. Based
on this, we analyze the performance of Laplacian regularization-based graph learning in relation to
graph properties. We use this analysis to obtain a better understanding of the role of normalization
of the graph Laplacian matrix as well as dimension reduction in graph learning. The results indicate
a limitation of the commonly practiced degree-based normalization mentioned above. We propose
a learning theoretical remedy based on our analysis and use experiments to demonstrate that the
remedy leads to improved classification performance.

2 Transductive Learning Model

We consider the following multi-category transductive learning model defined on a grapii.+et
{v1,...,um} be a set ofm nodes, and le} be a set ofK’ possible output values. Assume that
each node; is associated with an output valye € Y, which we are interested in predicting. We
randomly draw a set of indicesZ,, = {j; : 1 < i < n} from{1,..., m} uniformly and without



replacement. We then manually label th@odesv;, with labelsy;, € Y, and then automatically
label the remainingn — n nodes. The goal is to estimate the labels on the remainirgn nodes
as accurately as possible. We encode the lgpiito a vector inRX, so that the problem becomes
that of generating an estimation vectfr. = [f;1,..., f; k] € RE, which can then be used to
recover the labey;. In multi-category classification witlx” classesy = {1,..., K}, we encode
eachy; = k € Y ase;, € RX, whereey, is a vector of zero entries except for theh entry being
one. Givenf;. = [fj1,---, [5,x] € RE (which is intended to approximatg,;), we decode the
corresponding label estimatiq)) as: §; = argmaxy {f;,x: k=1,..., K}. If the true label is
y;, then the classification error éar(f;.,v;) = I(§; # y;), where we usd(-) to denote the set
indicator function.

In order to estimatef = [f;x] € R™¥ from only a subset of labeled nodes, we consider for a
given kernel matriXK e R™, the quadratic regularizatioff Qi f = > 1, SRK " f ok, where
foe =1[fiks -, fmi] € R™. We assume th& is full-rank. We will consider the kernel matrix

induced by the graph Laplacian, to be introduced later in the paper. Note that the bold $gmbol
denotes the kernel matrix, and regulardenotes the number of classes.

Given a vectorf € R™K, the accuracy of its componefit. = [fj.1, ..., f;,x] € R¥ is measured
by a loss function(f;..,y;). Our learning method attempts to minimize the empirical risk on the
setZ,, of n labeled training nodes, subject f6 Qk f being small:
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where\ > 0 is an appropriately chosen regularization parameter.

In this paper, we focus on a special class of loss function that is of the fdifn.,y,;) =

Zszl ¢o(fjk,Or,y,), Whered, , is the delta function defined a&; , = 1 whena = b andd, , = 0
otherwise. We are interested in the generalization behavior of (1) compared to a properly defined
optimal regularized risk, often referred to as “oracle inequalities” in the learning theory literature.

Theorem 1 Leto(f;,.,y;) = Zszl ®o(fj.x»Or,y,) In (1). Assume that there exist positive constants
a, b, and ¢ such that: (i)¢o(z,y) is non-negative and convex in (i) ¢o(z,y) is Lipschitz with
constanth whengg(z,y) < a, and (i) ¢ = inf{z : ¢o(z,1) < a} —sup{z : ¢o(z,0) < a}.
Thenvp > 0, the expected generalization error of the learning method (1) over the random training
samplesZ,, can be bounded by:
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whereZ,, = {1,...,m} — Z,, tr,(K) = (% Z;.”:l Kg.’J) : ,andK; ; is the(j, j)-entry ofK.

Proof. The proof is similar to the proof of a related bound for binary-classification in [6]. We shall
introduce the following notation. let,.; # i1, ..., i, be an integer randomly drawn fro#),, and

let Zp+1 = Zp U {iny1}. Let f(ZnH) be the semi-supervised learning method (1) using training
data inZ, 1: f(Zn41) = arg inf rc g [% djezn OS5 Y5) + /\fTQKf}. Adapted from a
related lemma used in [6] for proving a similar result, we have the following inequality for each
k=1,...,K:

|fin+1,7€(Zn+1) - fin+17/€(Zn)| < |v1,k¢(fin+17'(zn+1)’ }/;;71+1)|K7:n,+177:n+1/(2An)7 (2)

where V, ,.é(f;..,y) denotes a sub-gradient of(fi.,y) with respect tof;, where f;. =
[fi1,---, fix]- Nextwe prove

A 1 A b p
err(fin+1-,'(Zn)7yin+1) < sup _¢O(fin+l7k(zn+1)’ 5in+17k) + —Kin+1-,in+1 . (3)
k=ko,int1 LO cAn

In fact, if f(Zn) does not make an error on thg, ;-th example, then the inequality automatically
holds. Otherwise, assume thgt7,,) makes an error on thg ;;-th example, then there exists



Yinr suchthatfi, . (Zn) < finyho(Zn). I we letd = (inf{z : ¢o(z,1) < a} + sup{z :
¢o(x,0) < a})/2, then eitherjfin+17yi7l+l( Zy) <d orfl-nﬂ_,ko( Zy,) > d. By the definition ofc and
d, it follows that there exists = ko or k = i, such that eitheto(fi,., x(Zn+1), i, k) = @ OF
Jiniro(Zus1) = finir 6(Z0)| = ¢/2. Using (2), we have eithepo(fi, .,k (Zn+1), 85,1 k) = a
OrbKi, ,1iny/(200) > ¢/2, implying thatt éo (fi, 1k (Znt1)s 0iir k) + (Z’K%\%)p >1=
err(fi..,..(Zy),yi,.,). This proves (3).

We are now ready to prove Theorem 1 using (3). For every Z,.1, denote byZnﬂz1 the

subset ofn samples inZ,,,; with the j-th data point left out. We haverr(f;.(Z r(z)),yg) <
L6(f;.(Zns1),y5) + (:5K;.;)". We thus obtain for alf € R™:
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The formulation used here corresponds to the one-versus-all method for multi-category classifi-
cation. For the SVM losgy(z,y) = max(0,1 — (22 — 1)(2y — 1)), we may takea = 0.5,

b = 2, andc = 0.5. In the experiments reported here, we shall employ the least squares function
do(x,y) = (z—1y)? which is widely used for graph learning. With this formulation, we may choose
a=1/16,b=0.5,c=0.5in Theorem 1.

3 Laplacian regularization

Consider an undirected grajgh = (V, E) defined on the nodeg = {v; : j = 1,...,m}, with
edgesE C {1,...,m} x {1,...,m}, and weightsv; ;, > 0 associated with edgég, ;') € E. For
simplicity, we assume thay, j) ¢ E andw; j = 0 when(j, j') ¢ E. Letdeg;(G) = Z;’?Zl wj
be the degree of nodeof graphG. We consider the following definition of normalized Laplacian.

Definition 1 Consider a graphG = (V, E) of m nodes with weightsv; ;» (4,7 = 1,...,m).
The unnormalized Laplacian matrig(G) € R™*™ is defined as:L; j/(G) = —w; if Jj#
J'; deg;(G) otherwise. Givenn scaling factorsS; (j = 1,...,m), let S = diag({S;}). The

S-normalized Laplacian matrix is defined a€s(G) = S*W[,(G) ~1/2_ The corresponding

2
regularization is based onf”, Ls(G) f.x = 3 27—y wj v ( Lok _ fj—k) :

A common choice o6 is S = I, corresponding to regularizing with the unnormalized Laplacian
L. The idea is natural: we assume that the predictive vafygsand fj 1 should be close when
(j j') € E with a strong link. Another common choice is to normalizeSy = deg,(G) (i-e.

= D) so that diagonals ofs become all one [3, 4, 7, 2].

Definition 2 Given labely = {y;};=1,...m onV, we define the cut fofg in Definition 1 as:

.....

2
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cut(Ls,y) = ijj/:yj;éyj/ El (S_J T Sy) + ijj/:yj:yj/ 5 <\/§ \ /sj,> '

Unlike typical graph-theoretical definitions of graph-cut, this learning theoretical definition of graph-
cut penalizes not only between-class edge weights but also within-class edge weights when such an
edge connects two nodes with different scaling factors. This penalization is intuitive if we look at the
regularizer in Definition (1), which encouraggs./+/S; to be similar tof;: «//S; whenw ; is

large. If j and;j’ belongs to the same class, we wght, to be similar tof;, . Therefore for such




an in-class paitj, j'), we want to havéS; ~ S;,. This penalization has important consequences,
which we will investigate later in the paper. For unnormalized Laplacian$i;e= 1), the second

term on the right hand side of Definition 2 vanishes, and our learning theoretical definition becomes
identical to the standard graph-theoretical definitiont (L, y) = Zj‘j,:yﬂéyj, w; -

We considerK in (1) defined as followsK = (aS™! + Lg(G))™!, wherea > 0 is a tuning
parameter to makK strictly positive definite. This parameter is important.

For simplicity, we state the generalization bound based on Theorem 1 with optiflte that in
applications is usually tuned through cross validation. Therefore assuming oplimll simplify
the bound so that we can focus on the more essential characteristics of generalization performance.

Theorem 2 Let the conditions in Theorem 1 hold with the regularization condilor- (oS~ +
Ls(G))~t. Assume thaby(0,0) = ¢o(1,1) = 0, thenVp > 0, there exists a sample independent
regularization parameteh in (1) such that the expected generalization error is bounded by:

1 Cp(a,b,c)

Bz, — Z err(f;.(Zn),y;) < W(as + cut(Ls, y))?/ P, (K)P/ P+
J€Zn
whereC,(a, b, c) = (b/ac)?/ P+ (pt/P+1) 4 p=p/(P+1)) ands = > S;l.

Proof. Let fj x = d,, & It can be easily verified thgC ", ¢(f;.,y;)/m + A\fT Qi f = AMas +
cut(Ls,y)). Now, we simply use this expression in Theorem 1, and then optimizedover

This theorem relates graph-cut to generalization performance. The conditions on the loss function in
Theorem 2 hold for least squares wiffuc = 16. It also applies to other standard loss functions such

as SVM. Withp fixed, the generalization error decreases at the@éte »/ (?+1)) whenn increases.

This rate of convergence is faster whemcreases. However in gener#t,,(K) is an increasing
function ofp. Therefore we have a trade-off between the two terms. The bound also suggests that if
we normalize the diagonal entriesKfsuch thatk; ; is a constant, thetr, (K) is independent of

p, and thus a larger can be used in the bound. This motivates the idea of normalizing the diagonals

of K. Our goal is to better understand how the quartity+ cut(Ls, y))p_iltrp(K)p_il is related
to properties of the graph, which gives better understanding of graph-based learning.

Definition 3 A subgraphGy = (Vy, Ey) of G = (V, E) is a pure component @ is connectedE
is induced by restrictindZ on'V;, and if labelsy have identical values oW,. A pure subgrapli’ =
Uj_, G, of G dividesV into ¢ disjoint setsV = U}_, V; such that each subgrapgh, = (V;, E) is
a pure component. Denote By(G,) = A\;(L(G,)) thei-th smallest eigenvalue @f(G).

If we remove all edges af that connect nodes with different labels, then the resulting subgraph is
a pure subgraph (but not the only one). For each pure compcheits first eigenvalue\, (G,) is
always zero. The second eigenvalyéG,) > 0, and it measures how well-connect@dis [2].

Theorem 3 Let the assumptions of Theorem 2 hold, &/d= U}_, G, (G, = (V, E¢)) be a pure
subgraph of5. For all p > 1, there exist sample-independerand «, such that the generalization

performance of ()Ez, >,z err(f;.,y;)/(m — n), is bounded by
2p/(p+1)

Cy(a.b,c) (wy/m\"” “ so(p)/m\
p\@,0,C 1/2 se\p)/m 1/2 786 p)/m
7/]1;0/(;0-5-1) S <Z mP ) + cut (£Sa y) <; )\2(Gg)p> )

=1 ¢

wherem; = [Vy|,s = Y70, S71, andsi(p) = 3¢y, S

Proof sketch We simply upper boundr, (K) in terms of\2(G,) ands,, whereK = (aS™! +
Ls)~!. Substitute this estimation into Theorem 2 and optimize it oven

To put this into perspective, suppose that we use unnormalized Laplacian regularizer on a zero-cut
graph. Ther8 = I andcut(Ls,y) = 0, and by lettingp = 1 andp — oo in Theorem 3, we have:

i Y b fioy;) b
Eznzerl;ifg,,yg)gz _% and Eznzerr(ij,yj)<_. m_

— -n ac — m—n ~ ac nmingmyg
J€Zn Jj€Zn



That is, in the zero-cut case, the generalization performaan be bounded #3%(/q/n). We can
also achieve a faster convergence rat©¢f/n), but it also depends om /(min; m,) > ¢. This
implies that we will achieve better convergence at@Hé/n) level if the sizes of the components

are balanced, while the convergence may behaveikg/q /n) otherwise.

3.1 Near zero-cut optimum scaling factors

The above observation motivates a scaling marso that it compensates for the unbalanced pure
component sizes. From Definition 2 and Theorem 2 we know that good scaling factors should be
approximately constant within each class. Here we focus on the case that scaling factors are constant
within each pure componers{ = s, whenyj € V%) in order to derive optimum scaling factors.

, w,
Letus defineut(G',y) = >_; iy 2y, Wigr + 2ese 2jev, ey, —5- In Theorem 3, when we
usecut(Ls,y) < cut(G’,y)/ ming 5, and letp — oo and assume thatut(G’, y) is sufficiently

small, the dominate term of the bound becor#@g:(5e/me) S~ %, which can then be optimized
with the choices, = m,, and the resulting bound becomes:

m

2
s b el
1_n > err(fiy) < —- S <\/q+ uc‘lt(iy)>

— G') mi
= ac n (G") ming my

whereu(G’) = ming(A2(Ge)/my). Hence, ifcut(G’, y) is small, then we should choosg « my,
for each pure componefso that the generalization performance is approximdtely b - ¢/n.

The analysis provided here not only formally shows the importance of normalization in the learn-
ing theoretical framework but also suggests that the good normalization factor for each isode
approximately the size of the well-connected pure component that containg rfasieuming that
nodes belonging to different pure components are only weakly connected). The commonly practiced
degree-based normalization mett®d= deg,(G) provides such good normalization factors under

a simplified “box model” used in early studies e.g. [4]. In this model, each node connects to itself
and all other nodes of the same pure component with edge weight= 1. The degree is thus
deg;(G¢) = |Vi| = my, which gives the optimal scaling in our analysis. However, in general, the
box model may not be a good approximation for practical problems. A more realistic approxima-
tion, which we call core-satellite model, will be introduced in the experimental section. For such a
model, the degree-based normalization can fail becausét}¢G,) within each pure component

G, is not approximately constant (thus raisioat (Ls, v)), and it may not be proportional te,.

Our remedy is as follows. L& = (aI+L£)~! be the kernel matrix corresponding to the unnormal-
ized Laplacian. Let, € R™ be the vector whosgth entry is 1 ifj € V, and O otherwise. Then it

is easy to verify that for smadl and near-zeroeut(G’,y), we havenK = >"7_, vov] /me+ O(1),

and thusK; ; oc m; ! for eachj € V;. Therefore the scaling fact®; = 1/K; ; is nearly optimal

for all j. We call this method of normalizatioS{ = 1/K; ;, K = (aS™! + £s)~!) K-scalingin

this paper as it scales the kernel malixso that eacliK; ; = 1. By contrast, we call the standard
degree-based normalizatioB;(= deg;(G), K = (al + Lg)~') L-scalingas it scales diagonals

of Lg to 1. AlthoughK-scaling coincides with a common practice in standard kernel learning, it is
important to notice that showing this method behaves well in the graph learning setting is non-trivial
and novel. In fact, no one has proposed this normalization method in the graph learning setting
before this work. Without the learning theoretical results developed here, it is not obvious whether
this method should work better than the commonly practiced degree-based normalization.

4 Dimension Reduction

Normalization and dimension reduction have been commonly used in spectral clustering such as
[3, 4]. For semi-supervised learning, dimension reduction (without normalization) is known to im-
prove performance [1, 6] while normalization (without dimension reduction) has also been explored
[7]. An appropriate combination of normalization and dimension reduction can further improve per-
formance. We shall first introduce dimension reduction with normalized Lapl#gjafy). Denote

by P%(G) the projection operator onto the eigenspace8f ! + Ls(G) corresponding to the



smallest eigenvalues. Now, we may define the following ragzdaon the reduced subspace:

LK f o PE(G) [k = for
400 otherwise

riE = @
Note that we will focus on bounding the generalization complexity using the reduced dimensionality
r. In such context, the choice & is not important. For example, we may simply chob&e= 1.

The benefit of dimension reduction in graph learning has been investigated in [6], under the spectral
kernel design framework. Note that the normalization issue, which will change the eigenvectors and
their ordering, wasn't investigated there. The following theorem shows that the target vectors can be
well approximated by its projection oni®g (G). We skip the proof due to the space limitation.

Theorem4 Let G' = UJ_ G, (G¢ = (Vi, E¢)) be a pure subgraph ofi. Considerr > g:
Ar11(Ls(G)) > Arg1(L£s(G")) > ming A2(Ls(Gy)). For eachk, let f;, = 4,, 1 be the target
(encoding of the true labels) for claggj = 1, ...,m). Then|P5(G)f.r — f kll3 < 5,.(S)||f. &ll3,

_ 1£s(G)—Ls(G")|l2+d(S _ —1/2 —1/2
whered,.(S) = I£s( iws((ﬂs()c);‘)k = d(S) = maXeﬁzj,j/ew(sj —S; )%

We can prove a generalization bound using Theorem 4. For simplicity, we only consider least
squares loss(f;..,y;) = ZkK:l(fj,k — 6k7yj)2 in (1) using regularization (4) anl, = I. With
p=1,we have. >>"" | ¢(fj.,y;) < 4-(S)* + Mm. Itis also equivalent to takK, = P5(G) due

to the dimension reduction, so that we can tisd<) = r. Now from Theorem 1 witlu = 1/16,
b=0.5,c=0.5 wehavel,, L3 err(f;.y;) < 16(5,(S)*+Am)+ 1= By optimizing

over )\, we obtain

Ez, Y W < 160,(S)* +32y/r/n. ©

J€Zn

The analysis of optimum scaling factors is analogous to Section 3.1, and the conclusions there hold.
Compared to Theorem 3, the advantage of dimension reduction in (5) is that the quattify, v)

is replaced by| Ls(G) — Ls(G’)||2, which is typically much smaller. Instead of a rigorous analysis,

we shall just give a brief intuition. For simplicity we take= I so that we can ignore the variations
caused by8. The 2-norm of the symmetric error matids (G) — Ls(G') is its largest eigenvalue,
which is no more than the largest 1-norm of one of its row vectors. In contnattLs, y) behaves

similar to the absolute sum of entries of the error matrix, whici ismes more than the averaged
1-norm of its row vectors. Therefore if error is relatively uniform across rows, ¢e(Ls, y) can

be at an order offn times more thaf| Ls(G) — Ls(G')|2-

5 Experiments

We test the three types of the kernel matKx (Unnormalized normalized byK-scalingor L-

scaling with the two regularization methods: the first method is to Kswithout dimension re-
duction, and the second method reduces the dimensid@dfto eigenvectors corresponding to

the smallest eigenvalues and regularizes with K ! f if P5(G)f = f and-+oo otherwise. We

are particularly interested in how wél-scaling performs. From data pointsp training labeled
examples are randomly chosen while ensuring that at least one training example is chosen from
each class. The remaining — n data points serve as test data. The regularization pararheter

is chosen by cross validation on thetraining labeled examples. We will show performance ei-
ther when the rest of the parametessghd dimensionality’) are also chosen by cross validation

or when they are set to the optimuwrécle performance). The dimensionalityis chosen from
K,K+5, K+10,---,100 whereK is the number of classes unless otherwise specified. Our focus

is on smalln close to the number of classes. Throughout this section, we conduct 10 runs with
random training/test splits and report the average accuracy. We use the one-versus-all strategy with
least squares loss; (a,b) = (a — 6x.p).

Controlled data experiments

The purpose of the controlled data experiments is to observe the correlation of the effectiveness of
the normalization methods with graph properties. The graphs we generate contain 2000 nodes, each
of which is assigned one of 10 classes. We show the results when dimension reduction is applied
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Figure 1:Classification accuracy (%). (a) Graphs with near constant within class degrees. (b) Core-satellite
graphs.n = 40, m = 2000. With dimension reduction (din 20; chosen by cross validation).

to the three types of matriK. The performance is averaged over 10 random splits with error bar
representing one standard deviation. Figure 1 (a) shows classification accuracy on three graphs that
were generated so that the node degrees (of either correct edges or erroneous edges) are close to
constant within each class but vary across classes. On these graphK-boditing andL-scaling
significantly improve classification accuracy over the unnormalized baseline. There is not much
difference betweerk-scaling’s andL-scaling’s. Observe thdK-scaling andL-scaling perform
differently on the graphs used in Figure 1 (b). These five graphs have the following properties. Each
class consists afore nodesndsatellite nodesCore nodes of the same class are tightly connected

with each other and do not have any erroneous edges. Satellite nodes are relatively weakly connected
to core nodes of the same class. They are also connected to some other classes’ satellite nodes (i.e.,
introducing errors). This core-satellite model is intended to simulate real-world data in which some
data points are close to the class boundaries (satellite nodes). For graphs generated in this manner,
degrees vary within the same class since the satellite nodes have smaller degrees than the core nodes.
Our analysis suggests tHatscaling will do poorly. Figure 1 (b) shows that on the five core-satellite
graphs,K-scaling indeed produces higher performance thastaling. In particularK-scaling

does well even wheh-scaling rather underperforms the unnormalized baseline.

Real-world data experiments

Our real-world data experiments use an image data set (MNIST) and a text data set (RCV1). The
MNIST data set, downloadable from http://yann.lecun.com/exdb/mnist/, consists of hand-written
digit image data (representing 10 classes, from digit “0” to “9"). For our experiments, we randomly
choose 2000 images (i.en, = 2000). Reuters Corpus Version 1 (RCV1) consists of news articles
labeled with topics. For our experiments, we chose 10 topics (ranging from sports to labor issues;
representing 10 classes) that have relatively large populations and randomly chose 2000 articles
that are labeled with exactly one of those 10 topics. To generate graphs from the image data, as is
commonly done, we first generate the vectors of the gray-scale values of the pixels, and produce the
edge weight between thieth and thej-th data pointsX; andX; by w; ; = exp(—||X; — X;||?/t)

wheret > 0 is a parameter (RBF kernels). To generate graphs from the text data, we first create
the bag-of-word vectors and then sef; based on RBF as above. As our baseline, we test the
supervised configuration by lettiny + BI be the kernel matrix and using the same least squares
loss function, where we use tleacle 5 which is optimal.

Figures 2 (a-1,2) shows performance in relation to the number of labeled examypegiie MNIST
data set. The comparison of the three bold lines (representing the methods with dimension reduc-
tion) in Figure 2 (a-1) shows that when the dimensionality aradle determined by cross validation,

(a-1) MNIST, dim andx  (a-2) MNIST, optimum (b-1) RCV1 (b-2) RCV1
by cross validatio dim ard cross validatio optimum - :
8 (2 75 f¥s D = =X¢ = Supervised baseline
N o 2P ——+—— Unnormalized (w/o dim redu.
7 75 L 65 &_.z, ; 65 L ‘ ( . )
& //w —— L-scaling (w/o dim redu.)
g 65 65 |- MERCY 5 X X —o——K-scaling (w/o dim redu.)
5 . ¥ x )
S 55 55 | X -X 45 5 L ,X et Unnormalized (w/ dim redu.)
XX , —S¢— L-scaling (w/ dim redu.)
4 45 35 35 X —o—K-scaling (w/ dim redu.)
10 30 50 10 30 50 10 50 90 10 50 90
# of labeled examples # of labeled examples # of labeled examples # of labeled ex.

Figure 2:Classification accuracy (%) versus sample siZen = 2000). (a-1) MNIST, dim anc determined
by cross validation. (a-2) MNIST, dim andset to the optimum. (b-1) RCV1, dim arddetermined by cross
validation. (b-2) RCV1, dim and: set to the optimum.



K-scaling outperformg&.-scaling, and.-scaling outperforms the unnormalized Laplacian. The per-
formance differences among these three are statistically signifigaat)(01) based on the paired

t test. The performance of the unnormalized Laplacian (with dimension reduction) is roughly con-
sistent with the performance with similér, ) with heuristic dimension selection in [1]. Without
dimension reductionL-scaling andK-scaling still improve performance over the unnormalized
Laplacian. The best performance is always obtaineKbgcaling with dimension reduction.

In Figure 2 (a-1), the unnormalized Laplacian with dimension reduction underperforms the un-
normalized Laplacian without dimension reduction, indicating that dimension reduction rather de-
grades performance. By comparing Figure 2 (a-1) and (a-2), we observe that this seemingly counter-
intuitive performance trend is caused by the difficulty of choosing the right dimensionality by cross
validation. Figure 2 (a-2) shows the performance atdtele optimal dimensionality and.. As
observed, if the optimal dimensionality is known (as in (a-2)), dimension reduction improves per-
formance either with or without normalization l¢-scaling andL-scaling, and all transductive
configurations outperform the supervised baseline. We also note that the comparison of Figure 2
(a-1) and (a-2) shows that choosing good dimensionality by cross validation is much harder than
choosinga by cross validation, especially when the number of labeled examples is small. On the
RCV1 data set, the performance trend is similar to that of MNIST. Figures 2 (b-1,2) shows the per-
formance on RCV1 using the RBF kernekf 0.25, 100NN). In the setting of Figure 2 (b-1) where

the dimensionality and were determined by cross validatid§;scaling with dimension reduction
generally performs the best. By setting the dimensionality @nd the optimum, the benefit of
K-scaling with dimension reduction is even clearer (Figure 2 (b-2)). Its performance differences
from the second and third bedt-scaling (w/ dim redu.)’ and ‘Unnormalized (w/ dim redu.)’ are
statistically significanty{ < 0.01) in both Figure 2 (b-1) and (b-2).

In our experimentd<-scaling with dimension reduction consistently outperformed others. Without
dimension reductiori-scaling and.-scaling are not always effective. This is consistent with our
analysis. On real dataut is not near-zero, and the effect of normalization is unclear (Section 3.1);
however, when dimension is reduceldis(G) — Ls(G)||2 (corresponding teut) can be much
smaller (Section 4), which suggests tl&tscaling should improve performance.

6 Conclusion

We derived generalization bounds for learning on graphs with Laplacian regularization, using prop-
erties of the graph. In particular, we explained the importance of Laplacian normalization and di-
mension reduction for graph learning. We argued that the staddaozling normalization method

has the undesirable property that the normalization factors can vary significantly within a pure com-
ponent. An alternate normalization method, which we &alscaling, is proposed to remedy the
problem. Experiments confirm the superiority of the this normalization scheme.
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