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Abstract

We present a learning algorithm for undiscounted reinforcement learning. Our
interest lies in bounds for the algorithm’s online performance after some finite
number of steps. In the spirit of similar methods already successfully applied
for the exploration-exploitation tradeoff in multi-armed bandit problems, we use
upper confidence bounds to show that our UCRL algorithm achieves logarithmic
online regret in the number of steps taken with respect to an optimal policy.

1 Introduction

1.1 Preliminaries

Definition 1. A Markov decision process(MDP) M on a finite set ofstatesS with a finite set
of actionsA available in each state∈ S consists of(i) an initial distribution µ0 over S,(ii) the
transition probabilitiesp(s, a, s′) that specify the probability of reaching states′ when choosing
action a in states, and (iii) the payoff distributions with meanr(s, a) and support in[0, 1] that
specify the random reward for choosing actiona in states.

A policy on an MDPM is a mappingπ : S → A. We will mainly considerunichainMDPs, in
which under any policy any state can be reached (after a finite number of transitions) from any state.
For a policyπ let µπ be the stationary distribution induced byπ on M .1 Theaverage rewardof π
then is defined as

ρ(M,π) :=
∑
s∈S

µπ(s)r(s, π(s)). (1)

A policy π∗ is calledoptimalonM , if ρ(M,π) ≤ ρ(M,π∗) =: ρ∗(M) =: ρ∗ for all policiesπ.

Our measure for the quality of a learning algorithm is the total regret after some finite number of
steps. When a learning algorithmA executes actionat in statest at stept obtaining rewardrt, then
RT :=

∑T−1
t=0 rt−Tρ∗ denotes thetotal regret ofA afterT steps. Thetotal regretRε

T with respect
to anε-optimal policy(i.e. a policy whose return differs fromρ∗ by at mostε) is defined accordingly.

1.2 Discussion

We would like to compare this approach with the various PAC-like bounds in the literature as given
for the E3-algorithm of Kearns, Singh [1] and the R-Max algorithm of Brafman, Tennenholtz [2] (cf.
also [3]). Both take as inputs (among others) a confidence parameterδ and an accuracy parameter

1Every policyπ induces a Markov chainCπ on M . If Cπ is ergodic with transition matrixP , then there
exists a unique invariant and strictly positive distributionµπ, such that independent ofµ0 one hasµn =
µ0P̄n → µπ, whereP̄n = 1

n

∑n
j=1 P j . If Cπ is not ergodic,µπ will depend onµ0.



ε. The algorithms then are shown to yieldε-optimal return after time polynomial in1δ , 1
ε (among

others)with probability1−δ. In contrast, our algorithm has no such input parameters and converges
to an optimal policy with expected logarithmic online regret in the number of steps taken.

Obviously, by using a decreasing sequenceεt, online regret bounds for E3 and R-Max can be
achieved. However, it is not clear whether such a procedure can give logarithmic online regret
bounds. We rather conjecture that these bounds either will be not logarithmic in the total number of
steps (ifεt decreases quickly) or that the dependency on the parameters of the MDP – in particular
on the distance between the reward of the best and a second best policy – won’t be polynomial (ifεt

decreases slowly).

Moreover, although our UCRL algorithm shares the “optimism under uncertainty” maxim with R-
Max, our mechanism for the exploitation-exploration tradeoff is implicit, while E3 and R-Max have
to distinguish between “known” and “unknown” states explicitly. Finally, in their original form both
E3 and R-Max need a policy’sε-return mixing timeTε as input parameter. The knowledge of this
parameter then is eliminated by calculating theε-optimal policy forTε = 1, 2, . . ., so that sooner
or later the correctε-return mixing time is reached. This is sufficient to obtain polynomial PAC-
bounds, but seems to be intricate for practical purposes. Moreover, as noted in [2], at some time step
the assumedTε may be exponential in the trueTε, which makes policy computation exponential in
Tε. Unlike that, we need our mixing time parameter only in the analysis. This makes our algorithm
rather simple and intuitive.

Recently, more refined performance measures such as thesample complexity of exploration[3] were
introduced. Strehl and Littman [4] showed that in the discounted setting, efficiency in the sample
complexity implies efficiency in theaverage loss. However,average lossis defined in respect to
the actually visited states, so that smallaverageloss does not guarantee smalltotal regret, which is
defined in respect to the states visited by an optimal policy. For this average loss polylogarithmic on-
line bounds were shown for for the MBIE algorithm [4], while more recently logarithmic bounds for
delayed Q-learning were given in [5]. However, discounted reinforcement learning is a bit simpler
than undiscounted reinforcement learning, as depending on the discount factor only a finite number
of steps is relevant. This makes discounted reinforcement learning similar to the setting with trials
of constant length from a fixed initial state [6]. For this case logarithmic online regret bounds in the
number of trials have already been given in [7].

Since we measure performance during exploration, the exploration vs. exploitation dilemma be-
comes an important issue. In the multi-armed bandit problem, similar exploration-exploitation
tradeoffs were handled with upper confidence bounds for the expected immediate returns [8, 9].
This approach has been shown to allow good performance during the learning phase, while still con-
verging fast to a nearly optimal policy. Our UCRL algorithm takes into account the state structure
of the MDP, but is still based on upper confidence bounds for the expected return of a policy. Up-
per confidence bounds have been applied to reinforcement learning in various places and different
contexts, e.g. interval estimation [10, 11], action elimination [12], or PAC-learning [6]. Our UCRL
algorithm is similar to Strehl, Littman’s MBIE algorithm [10, 4], but our confidence bounds are
different, and we are interested in the undiscounted case.

Another paper with a similar approach is Burnetas, Katehakis [13]. The basic idea of their rather
complexindex policiesis to choose the action with maximal return in some specified confidence
region of the MDP’s probability distributions. The online-regret of their algorithm is asymptotically
logarithmic in the number of steps, which is best possible. Our UCRL algorithm is simpler and
achieves logarithmic regret not only asymptotically but uniformly over time. Moreover, unlike in
the approach of [13], knowledge about the MDP’s underlying state structure is not needed.

More recently, online reinforcement learning with changing rewards chosen by an adversary was
considered under the presumption that the learner has full knowledge of the transition probabilities
[14]. The given algorithm achieves best possible regret ofO(

√
T ) afterT steps.

In the subsequent Sections 2 and 3 we introduce our UCRL algorithm and show that its expected
online regret in unichain MDPs isO(log T ) afterT steps. In Section 4 we consider problems that
arise when the underlying MDP is not unichain.



2 The UCRL Algorithm

To select good policies, we keep track of estimates for the average rewards and the transition prob-
abilities. For each stept let

Nt(s, a) = |{0 ≤ τ < t : sτ = s, aτ = a}|,
Rt(s, a) =

∑
0≤τ<t:

sτ =s, aτ =a

rτ ,

Pt(s, a, s′) = |{0 ≤ τ < t : sτ = s, aτ = a, sτ+1 = s′}|,
be the number of steps when actiona was chosen in states, the sum of rewards obtained when
choosing this action, and the number of times the transition was to states′, respectively. From these
numbers we immediately get estimates for the average rewards and transition probabilities,

r̂t(s, a) :=
Rt(s, a)
Nt(s, a)

,

p̂t(s, a, s′) :=
Pt(s, a, s′)
Nt(s, a)

,

provided that thenumber of visits in(s, a), Nt(s, a) > 0. In general, these estimates will deviate
from the respective true values. However, together with appropriate confidence intervals they may
be used to define a setMt of plausible MDPs. Our algorithm then chooses an optimal policyπ̃t for
an MDPM̃t with maximal average reward̃ρ∗t := ρ∗(M̃t) among the MDPs inMt. That is,

π̃t := arg max
π
{ρ(M,π) : M ∈Mt}, and

M̃t := arg max
M∈Mt

{ρ(M, π̃t)}.

More precisely, we wantMt to be a set of plausible MDPs in the sense that

P {ρ∗ > ρ̃∗t } < t−α (2)

for someα > 2. Essentially, condition (2) means that it is unlikely that the true MDPM is not
in Mt. Actually, Mt is defined to contain exactly thoseunichain MDPs M ′ whose transition
probabilitiesp′(·, ·, ·) and rewardsr′(·, ·) satisfy for all statess, s′ and actionsa

r′(s, a) ≤ r̂t(s, a) +
√

log(2tα|S||A|)
2Nt(s,a) , and (3)

|p′(s, a, s′)− p̂t(s, a, s′)| ≤
√

log(4tα|S|2|A|)
2Nt(s,a) . (4)

Conditions (3) and (4) describe confidence bounds on the rewards and transition probabilities of the
true MDPM such that (2) is implied (cf. Section 3.1 below). The intuition behind the algorithm is
that if a non-optimal policy is followed, then this is eventually observed and something about the
MDP is learned. In the proofs we show that this learning happens sufficiently fast to approach an
optimal policy with only logarithmic regret.

As switching policies too often may be harmful, and estimates don’t change very much after few
steps, our algorithm discards the policyπ̃t only if there was considerable progress concerning the es-
timatesp̂(s, π̃t(s), s′) or r̂(s, π̃t(s)). That is, UCRL sticks to a policy until the length of some of the
confidence intervals given by conditions (3) and (4) is halved. Only then a new policy is calculated.
We will see below (cf. Section 3.3) that this condition limits the number of policy changes without
paying too much for not changing to an optimal policy earlier. Summing up, Figure 1 displays our
algorithm.

Remark 1. The optimal policỹπ in the algorithm can be efficiently calculated by a modified version
of value iteration (cf. [15]).

3 Analysis for Unichain MDPs

3.1 An Upper Bound on the Optimal Reward

We show that with high probability the true MDPM is contained in the setMt of plausible MDPs.



Notation:
Setconfp(t, s, a) := min

{
1,

√
log(4tα|S|2|A|)

2Nt(s,a)

}
andconfr(t, s, a) := min

{
1,

√
log(2tα|S||A|)

2Nt(s,a)

}
.

Initialization:
• Sett = 0.
• SetN0(s, a) := R0(s, a) := P0(s, a, s′) = 0 for all s, a, s′.
• Observe first states0.

For roundsk = 1, 2, . . . do

Initialize round k:

1. Settk := t.
2. Recalculate estimateŝrt(s, a) andp̂t(s, a, s′) according to

r̂t(s, a) := Rt(s,a)
Nt(s,a) , and p̂t(s, a, s′) := Pt(s,a,s′)

Nt(s,a) ,

provided thatNt(s, a) > 0. Otherwise set̂rt(s, a) := 1 andp̂t(s, a, s′) := 1
|S| .

3. Calculate new policy

π̃tk
:= arg max

π
{ρ(M,π) : M ∈Mt},

whereMt consists of plausible unichain MDPsM ′ with rewards

r′(s, a)− r̂t(s, a) ≤ confr(t, s, a)

and transition probabilities

|p′(s, a, s′)− p̂t(s, a, s′)| ≤ confp(t, s, a).

Execute chosen policỹπtk
:

4. While confr(t, S,A) > confr(tk, S,A)/2 and
confp(t, S,A) > confp(tk, S,A)/2

do
(a) Choose actionat := π̃tk

(st).
(b) Observe obtained rewardrt and next statest+1.
(c) Update:

• SetNt+1(st, at) := Nt(st, at) + 1.
• SetRt+1(st, at) := Rt(st, at) + rt.
• SetPt+1(st, at, st+1) := Pt(st, at, st+1) + 1.
• All other valuesNt+1(s, a), Rt+1(s, a), andPt+1(s, a, s′) are set to

Nt(s, a), Rt(s, a), andPt(s, a, s′), respectively.
(d) Sett := t + 1.

Figure 1: The UCRL algorithm.

Lemma 1. For anyt, any rewardr(s, a) and any transition probabilityp(s, a, s′) of the true MDP
M we have

P
{

r̂t(s, a) < r(s, a)−
√

log(2tα|S||A|)
2Nt(s,a)

}
<

t−α

2|S||A|
, (5)

P
{
|p̂t(s, a, s′)− p(s, a, s′)| >

√
log(4tα|S|2|A|)

2Nt(s,a)

}
<

t−α

2|S|2|A|
. (6)

Proof. By Chernoff-Hoeffding’s inequality.



Using the definition ofMt as given by (3) and (4) and summing over alls, a, ands′, Lemma
1 shows thatM ∈ Mt with high probability. This implies that the maximal average rewardρ̃∗t
assumed by our algorithm when calculating a new policy at stept is an upper bound onρ∗(M) with
high probability.

Corollary 1. For anyt: P {ρ∗ > ρ̃∗t } < t−α.

3.2 Sufficient Precision and Mixing Times

In order to upper bound the loss, we consider the precision needed to guarantee that the policy
calculated by UCRL is (ε-)optimal. This sufficient precision will of course depend onε or – in case
one wants to compete with an optimal policy – the minimal difference betweenρ∗ and the average
reward of some suboptimal policy,

∆ := min
π:ρ(M,π)<ρ∗

ρ∗ − ρ(M,π).

It is sufficient that the difference betweenρ(M̃t, π̃t) andρ(M, π̃t) is small in order to guarantee
that π̃t is an (ε-)optimal policy. For if|ρ(M̃t, π̃t) − ρ(M, π̃t)| < ε, then by Corollary 1 with high
probability

ε > |ρ(M̃t, π̃t)− ρ(M, π̃t)| ≥ |ρ∗(M)− ρ(M, π̃t)|, (7)

so thatπ̃t is already anε-optimal policy onM . Forε = ∆, (7) implies the optimality of̃πt.

Thus, we consider bounds on the deviation of the transition probabilities and rewards for the assumed
MDPM̃t from the true values, such that (7) is implied. This is handled in the subsequent proposition,
where we use the notion of the MDP’smixing time, which will play an essential role throughout the
analysis.

Definition 2. Given an ergodic Markov chainC, let Ts,s′ be thefirst passage timefor two statess,
s′, that is, the time needed to reachs′ when starting ins. Furthermore letTs,s the return timeto

states. LetTC := maxs,s′∈S E(Ts,s′), andκC := maxs∈S
maxs′ 6=s E(Ts′,s)

2E(Ts,s) . Then themixing time
of a unichain MDPM is TM := maxπ TCπ

, whereCπ is the Markov chain induced byπ on M .
Furthermore, we setκM := maxπ κCπ

.

Our notion ofmixing timeis different from the notion ofε-return mixing timegiven in [1, 2], which
depends on an additional parameterε. However, it serves a similar purpose.

Proposition 1. Let p(·, ·), p̃(·, ·) and r(·), r̃(·) be the transition probabilities and rewards of the
MDPsM andM̃ under the policỹπ, respectively. If for all statess, s′

|r̃(s)− r(s)| < εr :=
ε

2
and |p̃(s, s′)− p(s, s′)| < εp :=

ε

2κM |S|2
,

then|ρ(M̃, π̃)− ρ(M, π̃)| < ε.

The proposition is an easy consequence of the following result about the difference in the stationary
distributions of ergodic Markov chains.

Theorem 1 (Cho, Meyer[16]). Let C, C̃ be two ergodic Markov chains on the same state space
S with transition probabilitiesp(·, ·), p̃(·, ·) and stationary distributionsµ, µ̃. Then the difference
in the distributionsµ, µ̃ can be upper bounded by the difference in the transition probabilities as
follows:

max
s∈S

|µ(s)− µ̃(s)| ≤ κC max
s∈S

∑
s′∈S

|p(s, s′)− p̃(s, s′)|, (8)

whereκC is as given in Definition 2.

Proof of Proposition 1.By (8),∑
s∈S

|µ(s)− µ̃(s)| ≤ |S|κM max
s∈S

∑
s′∈S

|p̃(s, s′)− p(s, s′)| ≤ κM |S|2εp.



As the rewards are∈ [0, 1] and
∑

s µ(s) = 1, we have by (1)

|ρ(M̃, π̃)− ρ(M, π̃)| ≤
∑
s∈S

|µ̃(s)− µ(s)|r̃(s) +
∑
s∈S

|r̃(s)− r(s)|µ(s)

< κM |S|2εp + εr = ε.

Sinceεr > εp and the confidence intervals for rewards are smaller than for transition probabilities
(cf. Lemma 1), in the following we only consider the precision needed for transition probabilities.

3.3 Bounding the Regret

As can be seen from the description of the algorithm, we split the sequence of steps intorounds,
where a new round starts whenever the algorithm recalculates its policy. The following facts follow
immediately from the form of our confidence intervals and Lemma 1, respectively.

Proposition 2. For halving a confidence interval of a reward or transition probability for some
(s, a) ∈ S ×A, the numberNt(s, a) of visits in(s, a) has to be at least doubled.

Corollary 2. The number of rounds afterT steps cannot exceed|S||A| log2
T

|S||A| .

Proposition 3. If Nt(s, a) ≥ log(4tα|S|2|A|)
2θ2 , then the confidence intervals for(s, a) are smaller than

θ.

We need to consider three sources of regret: first, by executing a suboptimal policy in a round of
lengthτ , we may lose reward up toτ within this round; second, there may be some loss when chang-
ing policies; third, we have to consider the error probabilities with which some of our confidence
intervals fail.

3.3.1 Regret due to Suboptimal Rounds Proposition 3 provides an upper bound on the number
of visits needed in each(s, a) in order to guarantee that a newly calculated policy is optimal. This
can be used to upper bound the total number of steps in suboptimal rounds.

Consider all suboptimal rounds with|p̂tk
(s, a, s′) − p(s, a, s′)| ≥ εp for somes′, where a policy

π̃tk
with π̃tk

(s) = a is played. Letm(s, a) be the number of these rounds andτi(s, a) (i =
1, . . . ,m(s, a)) their respective lengths. The mean passage time between any states′′ ands is upper
bounded byTM . Then by Markov’s inequality, the probability that it takes more than2TM steps
to reachs from s′′ is smaller than1

2 . Thus we may separate each roundi into
⌊ τi(s,a)

2TM

⌋
intervals

of length≥ 2TM , in each of which the probability of visiting states is at least12 . Thus we may
lower bound the number of visitsNs,a(n) in (s, a) within n such intervals by an application of
Chernoff-Hoeffding’s inequality:

P
{

Ns,a(n) ≥ n

2
−

√
n log T

}
≥ 1− 1

T
. (9)

Sinceby Proposition 3,Nt(s, a) < 2 log(4T α|S|2|A|)
εp2 , we get

m(s,a)∑
i=1

⌊
τi(s, a)
2TM

⌋
< c

log(4Tα|S|2|A|)
εp2

with probability1 − 1
T for a suitable constantc < 11. This gives for the expected regret in these

rounds

E
( m(s,a)∑

i=1

τi(s, a)
)

< 2 c · TM
log(4Tα|S|2|A|)

εp2
+ 2 m(s, a)TM +

1
T

T.

Applying Corollary 2 and summing up over all(s, a), one sees that the expected regret due to
suboptimal rounds cannot exceed

2 c |S||A|TM
log(4Tα|S|2|A|)

εp2
+ 2TM |S|2|A|2 log2

T

|S||A|
+ |S||A|.



3.3.2 Loss by Policy Changes For any policyπ̃t there may be some states from which the ex-
pected average reward for the nextτ steps is larger than when starting in some other state. This does
not play a role ifτ →∞. However, as we are playing our policies only for a finite number of steps
before considering a change, we have to take into account that every time we switch policies, we
may need a start-up phase to get into such a favorable state. In average, this cannot take more than
TM steps, as this time is sufficient to reach any “good” state from some “bad” state. This is made
more precise in the following lemma. We omit a detailed proof.

Lemma 2. For all policiesπ, all starting statess0 and allT ≥ 0

E
( T−1∑

t=0

r(st, π(st))
)
≥ Tρ(π,M)− TM .

By Corollary 2, the corresponding expected regret afterT steps is≤ |S||A|TM log2
T

|S||A| .

3.3.3 Regret if Confidence Intervals Fail Finally, we have to take into account the error prob-
abilities, with which in each round a transition probability or a reward, respectively, is not contained
in its confidence interval. According to Lemma 1, the probability that this happens at some stept

for a given state-action pair is< t−α

2|S||A| + |S| t−α

2|S|2|A| = t−α

|S||A| . Now let t1 = 1, t2, . . . , tN ≤ T

be the steps in which a new round starts. As the regret in each round can be upper bounded by its
length, one obtains for the regret caused by failure of confidence intervals

N−1∑
i=1

t−α
i

|S||A|
(ti+1 − ti) ≤

N−1∑
i=1

t−α
i

|S||A|
cti <

∞∑
t=1

c
t1−α

|S||A|
< c′,

using thatti+1 − ti < cti for a suitable constantc = c(|S|, |A|, TM ) and provided thatα > 2.

3.3.4 Putting Everything Together Summing up over all the sources of regret and replacing for
εp yields the following theorem, which is a generalization of similar results that were achieved for
the multi-armed bandit problem in [8].

Theorem 2. On unichain MDPs, the expected total regret of the UCRL algorithm with respect to an
(ε-)optimal policy afterT > 1 steps can be upper bounded by

E(Rε
T ) < const· |A|TMκ2

M |S|5

ε2
log T + 3TM |S|2|A|2 log2

T

|S||A|
, and

E(RT ) < const· |A|TMκ2
M |S|5

∆2
log T + 3TM |S|2|A|2 log2

T

|S||A|
.

4 Remarks and Open Questions on Multichain MDPs

In a multichainMDP a policyπ may split up the MDP into ergodic subchainsSπ
i . Thus it may

happen during the learning phase that one goes wrong and ends up in a part of the MDP that gives
suboptimal return but cannot be left under no policy whatsoever. As already observed by Kearns,
Singh [1], in this case it seems fair to compete withρ∗(M) := maxπ minSπ

i
ρ(Sπ

i , π).

Unfortunately, the original UCRL algorithm may not work very well in this setting, as it is im-
possible for the algorithm to distinguish between a very low probability for a transition and its
impossibility. Here the “optimism in the face of uncertainty” idea fails, as there is no way to falsify
the wrong belief in a possible transition.

Obviously, if we knew for each policy which subchains it induces onM (the MDP’sergodic struc-
ture), UCRL could choose an MDP̃Mt and a policyπ̃t that maximizes the reward among all plau-
sible MDPs with the given ergodic structure. However, only theempiric ergodic structure(based
on the observations so far) is known. As the empiric ergodic structure may not be reliable, one may
additionally explore the ergodic structures of all policies. Alas, the number of additional exploration
steps will depend on the smallest positive transition probability. If the latter is not known, it seems
that logarithmic online regret bounds can be no longer guaranteed.



However, we conjecture that for a slightly modified algorithm the logarithmic online regret bounds
still hold forcommunicatingMDPs, in which for any two statess, s′ there is a suitable policyπ such
thats is reachable froms′ underπ (i.e.,s, s′ are contained in the same subchainSπ

i ). As Theorem
1 does not hold for communicating MDPs in general, a proof would need a different analysis.

5 Conclusion and Outlook

Beside the open problems on multichain MDPs, it is an interesting question whether our results
also hold when assuming for the mixing time not the slowest policy for reaching any state but
the fastest. Another research direction is to consider value function approximation and continuous
reinforcement learning problems.

For practical purposes, using the variance of the estimates will reduce the width of the upper confi-
dence bounds and will make the exploration even more focused, improving learning speed and regret
bounds. In this setting, we have experimental results comparable to those of the MBIE algorithm
[10], which clearly outperforms other learning algorithms like R-Max orε-greedy.
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