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Abstract

This paper proposes a new approach to model-based clustering under prior knowl-
edge. The proposed formulation can be interpreted from two different angles: as
penalized logistic regression, where the class labels are only indirectly observed
(via the probability density of each class); as finite mixture learning under a group-
ing prior. To estimate the parameters of the proposed model, we derive a (gener-
alized) EM algorithm with a closed-form E-step, in contrast with other recent
approaches to semi-supervised probabilistic clustering which require Gibbs sam-
pling or suboptimal shortcuts. We show that our approach is ideally suited for
image segmentation: it avoids the combinatorial nature Markov random field pri-
ors, and opens the door to more sophisticated spatial priors (e.g., wavelet-based)
in a simple and computationally efficient way. Finally, we extend our formulation
to work in unsupervised, semi-supervised, or discriminative modes.

1 Introduction

Most approaches tosemi-supervised learning(SSL) see the problem from one of two (dual) per-
spectives: supervised classification with additional unlabelled data (see [20] for a recent survey);
clustering with prior information or constraints (e.g., [4, 10, 11, 15, 17]). The second perspective,
usually termedsemi-supervised clustering(SSC), is usually adopted when labels are totaly absent,
but there are (usually pair-wise) relations that one wishes to enforce or encourage.

Most SSC techniques work by incorporating the constrains (or prior) into classical algorithms such
as K-means or EM for mixtures. Thesemi-supervisionmay be hard (i.e., grouping constraints
[15, 17]), or have the form of a prior under which probabilistic clustering is performed [4, 11]. The
later is clearly the most natural formulation for cases where one wishes to encourage, not enforce,
certain relations; an obvious example is image segmentation, seen as clustering under a spatial
prior, where neighboring sites should be encouraged, but not constrained, to belong to the same
cluster/segment. However, the previous EM-type algorithms for this class of methods have a major
drawback: the presence of the prior makes the E-step non-trivial, forcing the use of expensive Gibbs
sampling [11] or suboptimal methods such as theiterated conditional modesalgorithm [4].

In this paper, we introduce a new approach to mixture-based SSC, leading to a simple, fully deter-
ministic, generalized EM (GEM) algorithm. The keystone is the formulation of SSC as a penalized
logistic regression problem, where the labels are only indirectly observed. The linearity of the
resulting complete log-likelihood, w.r.t. the missing group labels, underlies the simplicity of the
resulting GEM algorithm. When applied to image segmentation, our method allows using spatial
priors which are typical of image estimation problems (e.g., restoration/denoising), such as Gaussian



fields or wavelet-based priors. Under these priors, the M-step of our GEM algorithm reduces to a
simple image denoising procedure, for which there are several extremely efficient algorithms.

2 Formulation

We start from the standard formulation of finite mixture models:X = {x1, ...,xn} is an observed
data set, where eachxi ∈ IRd was generated (independently) according to one of a set ofK prob-
ability (density or mass) functions{p(·|φ(1)), ..., p(·|φ(K))}. In image segmentation, eachxi is a
pixel value (gray scale,d = 1; color,d = 3) or a vector of local (e.g., texture) features. Associated
with X , there is a hidden label setY = {y1, ...,yn}, whereyi = [y

(1)
i , ..., y

(K)
i ]T ∈ {0, 1}K , with

y
(k)
i = 1 if and only ifxi was generated by sourcek (the so-called “1-of-K” binary encoding). Thus,
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whereφ = (φ(1), ...,φ(K)) is the set of parameters of the generative models of classes.

In standard mixture models, all theyi are assumed to be independent and identically distrib-
uted samples following a multinomial distribution with probabilities{η(1), ..., η(K)}, i.e., P (Y) =
∏

i

∏
k(η(k))y

(k)
i . This is the part of standard mixture models that has to be modified in order to

insert grouping constraints [15] or a grouping priorp(Y) [4, 11]. However, this prior destroys the
simplicity of the standard E-step for finite mixtures, which is critically based on the independence
assumption. We follow a different route to avoid that roadblock.

Let the hidden labelsY = {y1, ...,yn} depend on a new set of variablesZ = {z1, ..., zn}, where
eachzi = [z

(1)
i , ..., z

(K)
i ]T ∈ IRK, following a multinomial logistic model [5]:
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n∏
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(k)
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)y
(k)
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, where P [y
(k)
i = 1|zi] =

ez
(k)
i

∑K

l=1 ez
(l)
i

. (2)

Due to the normalization, we can set (w.l.o.g.)z
(K)
i = 0, for i = 1, ..., n [5]. We’re thus left with

n (K − 1) real variables,i.e.,Z = {z(1), ..., z(K−1)}, wherez(k) = [z
(k)
1 , ..., z

(k)
n ]T ; of course,Z

can be seen as ann× (K − 1) matrix, wherez(k) is thek-th column andzi is thei-th row.

With this formulation, certain grouping preferences may be expressed by a priorp(Z). For example,
preferred pair-wise relations can be easily embodied in a Gaussian prior

p(Z) ∝

K−1∏
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

−1

4
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2
(z(k))T ∆ z(k)

]
, (3)

whereA is a matrix (with a null diagonal) encoding pair-wise preferences (Ai,j > 0 expresses
preference, with strength proportional toAi,j , for having pointsi andj in the same cluster) and∆
is the well-known graph-Laplacian matrix [20],

∆ = diag
{∑n

j=1 A1,j , ...,
∑n

j=1 An,j

}
−A. (4)

For image segmentation, eachz(k) is an image with real-valued elements and a natural choice for
A is to haveAi,j = λ, if i andj are neighbors, and zero otherwise. Assuming periodic boundary
conditions for the neighborhood system,∆ is a block-circulant matrix with circulant blocks [2].
However, as shown below, other more sophisticated priors (such as wavelet-based priors) can also
be used at no additional computational cost [1].

3 Model Estimation

3.1 Marginal Maximum A Posteriori and the GEM Algorithm

Based on the formulation presented in the previous section, SSC is performed by estimatingZ
and φ, seeingY as missing data. The marginalmaximum a posterioriestimate is obtained by



marginalizing out the hidden labels (over all the possible label configurations),
(
Ẑ, φ̂

)
= arg max

Z,φ

∑

Y

p(X ,Y,Z|φ) = arg max
Z,φ

∑

Y

p(X|Y,φ)P (Y|Z) p(Z), (5)

where we’re assuming a flat prior forφ. One of the key advantages of this approach is that (5) is
a continuous (not combinatorial) optimization problem. This is in contrast Markov random field
approaches to image segmentation, which lead to hard combinatorial problems, since they perform
optimization directly with respect to the (discrete) label variablesY. Finally, notice that once in
possession of an estimatêZ, one may computeP (Y|Ẑ) which gives the probability that each data
point belongs to each class. By findingarg maxk P [y

(k)
i = 1|zi], for everyi, one may obtain a hard

clustering/segmentation.

We handle (5) with a generalized EM (GEM) algorithm [13],i.e., by applying the following iterative
procedure (until some convergence criterion is satisfied):

E-step: Compute the conditional expectation of the complete log-posterior, given the current esti-
mates(Ẑ, φ̂) and the observationsX :

Q(Z,φ|Ẑ, φ̂) = EY

[
log p(Y,Z,φ|X )

∣∣∣Ẑ, φ̂,X
]
. (6)

M-step: Update the estimate:(Ẑ, φ̂)← (Ẑnew, φ̂new), with new values such that

Q(Ẑnew, φ̂new|Ẑ, φ̂) ≥ Q(Ẑ, φ̂|Ẑ, φ̂). (7)

Under mild conditions, it is well known that GEM algorithms converge to a local maximum of the
marginal log-posterior [18].

3.2 E-step

The complete log-posterior is

log p(Y,Z,φ|X )
.
= log p(X|Y,φ) + log P (Y|Z) + log p(Z)

.
=

n∑

i=1

K∑
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y
(k)
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(k)) +

n∑

i=1

[
K∑

k=1

y
(k)
i z

(k)
i − log
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k=1

ez
(k)
i

]
+ log p(Z) (8)

where
.
= stands for “equal up to an additive constant”. The key observation is that this function is lin-

ear w.r.t. the hidden variablesy(k)
i . Consequently, the E-step reduces to computing their conditional

expectations, which are then plugged into (8).

As in standard mixtures, each missingy
(k)
i is binary, thus its expectation (denotedŷ

(k)
i ) equals its

posterior probability of being equal to one, easily obtained via Bayes law:

ŷ
(k)
i ≡ E[y

(k)
i |Ẑ, φ̂,X ] = P [y

(k)
i = 1|ẑi, φ̂,xi] =

p(xi|φ̂
(k)

)P [y
(k)
i = 1|ẑi]

∑K

j=1 p(xi|φ̂
(j)

)P [y
(j)
i = 1|ẑi]

. (9)

Notice that this is the same as the E-step for a standard finite mixture, where the probabilities
P [y

(k)
i = 1|ẑi] (given by (2)) play the role of the probabilities of the classes/components. Finally,

theQ function is obtained by plugging the expectationsŷ
(k)
i into (8).

3.3 M-Step

It’s clear from (8) that the maximization w.r.t.φ can be performed separately w.r.t. to eachφ(k),

φ̂
(k)

new = arg max
φ(k)

n∑

i=1

ŷ
(k)
i log p(xi|φ

(k)). (10)

This is the familiar weighted maximum likelihood criterion, exactly as it appears in EM for standard
mixtures. The explicit form of this update depends on the choice ofp(·|φ(k)); e.g., this step can be
easily applied to any finite mixture of exponential family densities [3].



In supervised image segmentation, these parameters are known (e.g., previously estimated from
training data) and thus it’s not necessary to estimate them; the M-step reduces to the estimation of
Z. In unsupervised image segmentation,φ is unknown and (10) will have to be applied.

To update the estimate ofZ, we need to maximize (or at least improve, see (7))

L(Z|Ŷ) ≡

n∑

i=1

[
K∑

k=1

ŷ
(k)
i z

(k)
i − log

K∑

k=1

ez
(k)
i

]
+ log p(Z). (11)

Without the prior, this would be a simplelogistic regression(LR) problem, with an identity design
matrix [5]; however, instead of the usual hard labelsy

(k)
i ∈{0, 1}, we have “soft” labelŝy(k)

i ∈ [0, 1].

Arguably, the two standard approaches to maximum likelihood LR are the Newton-Raphson al-
gorithm (a.k.a.iteratively reweighted least squares– IRLS [7]) and theminorize-maximize(MM)
approach (formerly known asbound optimization) [5, 9]. We will show below that the MM approach
can be easily modified to accommodate the presence of a prior.

Let’s briefly review the MM approach for maximizing a twice differentiable concave functionE(θ)
with bounded Hessian [5, 9]. Let the HessianH(θ) of E(θ) be bounded below by−B (that is,
H(θ) � −B, in the matrix sense, meaning thatH(θ)+B is positive definite), whereB is a positive
definite matrix. It’s trivial to show thatE(θ)−R(θ, θ̂) has a minimum atθ = θ̂, where

R(θ, θ̂) = −
1

2

(
θ − θ̂ −B−1g(θ̂)

)T

B
(
θ − θ̂ −B−1g(θ̂)

)
, (12)

with g(θ̂) denoting the gradient ofE(θ) at θ̂. Thus, the iteration

θ̂new = arg max
θ

R(θ, θ̂) = θ̂ + B−1g(θ̂) (13)

is guaranteed to monotonically improveE(θ), i.e.,E(θ̂new) ≥ E(θ̂).

It was shown in [5] that the gradient and the Hessian of the logistic log-likelihood function,i.e., (11)
without the log-prior, verify (withIa denoting ana× a identity matrix and1a a vector ofa ones)

g(z) = ŷ − η(z) and H(z) � −
1

2

(
IK−1 −

1K−1 1T
K−1

K

)
⊗ In ≡ −B, (14)

wherez = [z
(1)
1 , ..., z

(1)
n , z

(2)
1 , ..., z

(K−1)
n ]T denotes the lexicographic vectorization ofZ, ŷ denotes

the corresponding lexicographic vectorization ofŶ, andη(z) = [p
(1)
1 , ..., p

(1)
n , p

(2)
1 , ..., p

(K−1)
n ]T

with p
(k)
i = P [y

(k)
i = 1|zi].

Definingv = ẑ + B−1(ŷ − η(ẑ)), the MM update equation for solving (11) is thus

ẑnew(v) = arg min
z

{
1

2
(z− v)

T
B (z− v)− log p(z)

}
, (15)

wherep(z) is equivalent top(Z), becausez is simply the lexicographic vectorization ofZ.

We now summarize our GEM algorithm:

E-step: computêy, using (9), for alli = 1, ..., n andk = 1, ...,K − 1.

(Generalized) M-step: Apply one or more iterations (15), keepinĝy fixed, that is, loop through
the following two steps:v← ẑ + B−1(ŷ − η(ẑ)) andẑ← ẑnew(v).

3.4 Speeding Up the Algorithm

In image segmentation, the MM update equation (15) is formally equivalent to the MAP estimation
of an image withn pixels inIRK−1, under priorp(z), wherev plays the role of observed image, and
B is the inverse covariance matrix of the noise. Due to the structure ofB, even if the prior models
the severalz(k) as independent,i.e., if log p(z) = log p(z(1))+ · · ·+ log p(z(K−1)), (15) can not be
decoupled into the several components{z(1), ..., z(K−1)}. We sidestep this difficulty, at the cost of
using a less tight bound in (14), based the following lemma:



Lemma 1 Let ξK = 1/2, if K > 2, andξK = 1/4, if K = 2. Then,B � ξK In(K−1).

Proof: InsertingK = 2 in (14) yieldsB = I/4, which proves the caseK = 2. For K > 2, the
inequalityI/2 � B is equivalent toλmin(I/2 − B) ≥ 0, which is equivalent toλmax(B) ≤ (1/2).
Since the eigenvalues of the Kronecker product are the products of the eigenvalues of the matrices,
λmax(B) = λmax(I− (1/K)11T )/2. Since11T is a rank-1 matrix with eigenvalues{0, ..., 0,K −
1}, the eigenvalues of(I − (1/K)11T ) are{1, ..., 1, 1/K}, thusλmax(I − (1/K)11T ) = 1, and
λmax(B) = 1/2.

This lemma allows replacingB with ξK In(K−1) in (15) which (assuming independent priors, as is
the case of (3)) becomes decoupled, leading to

ẑ(k)
new(v

(k)) = arg min
z
(k)

{
ξK

2

∥∥∥z(k) − v(k)
∥∥∥

2

− log p(z(k))

}
, for k = 1, ...,K − 1, (16)

wherev(k) = ẑ(k) +(1/ξK)(ŷ(k)−η(k)(ẑ(k))). Moreover, the “noise” in each of these “denoising”
problems is white and Gaussian, of variance1/ξK .

3.5 Stationary Gaussian Field Priors

Consider a Gaussian prior of form (3), whereAi,j only depends on the relative position ofi andj and
the neighborhood system defined byA has periodic boundary conditions. In this case, bothA and∆
are block-circulant matrices, with circulant blocks [2], thus diagonalizable by a 2D discrete Fourier
transform (2D-DFT). Formally,∆ = UHDU, whereD is diagonal,U is the orthogonal matrix
representing the 2D-DFT, and(·)H denotes conjugate transpose. The log-prior is then expressed in
the DFT domain,log p(z(k))

.
= 1

2 (Uz(k))HD(Uz(k)), and the solution of (16) is

ẑ(k)
new(v

(k)) = ξK UH [ξKIn + D]
−1

U v(k), for k = 1, ...,K − 1. (17)

Observe that (17) corresponds to filtering each imagev(k), in the DFT domain, with a fixed filter
with frequency response[ξKIn + D]

−1; this inversion can be computed off-line and is trivial be-
causeξKIn + D is diagonal. Finally, it’s worth stressing that the matrix-vector products byU and
UH are not carried out explicitly but more efficiently via the FFT algorithm, with costO(n log n).

3.6 Wavelet-Based Priors for Segmentation

It’s known that piece-wise smooth images have sparse wavelet-based representations (see [12]
and the many references therein); this fact underlies the state-of-the-art denoising performance of
wavelet-based methods. Piece-wise smoothness of thez(k) translates into segmentations in which
pixels in each class tend to form connected regions. Consider a wavelet expansion of eachz(k)

z(k) = Wθ(k), k = 1, ...,K − 1, (18)

where theθ(k) are sets of coefficients andW is the matrix representation of an inverse wavelet
transform;W may be orthogonal or have more columns than lines (over-complete representations)
[12]. A wavelet-based prior forz(k) is induced by placing a prior on the coefficientsθ(k). A classical
choice forp(θ(k)) is a generalized Gaussian [14]. Without going into details, under this class of
priors (and others), (16) becomes a non-linear wavelet-based denoising step, which has been widely
studied in the image processing literature. For several choices ofp(θ(k)) andW, this denoising
step has a very simple closed form, which essentially corresponds to computing a wavelet transform
of the observations, applying a coefficient-wise non-linear shrinkage/thresholding operation, and
applying the inverse transform to the processed coefficients. This is computationally very efficient,
due to the existence of fast algorithms for computing direct and inverse wavelet transforms;e.g.,
O(n) for an orthogonal wavelet transform orO(n log n) for a shift-invariant redundant transform.

4 Extensions

4.1 Semi-Supervised Segmentation

For semi-supervised image segmentation, the user defines regions in the image for which the true
label is known. Our GEM algorithm is trivially modified to handle this case: if at locationi the label



is known to be (say)k, we freezêy(k)
i = 1, andŷ

(j)
i = 0, for j 6= k. The E-step is only applied to

those locations for which the label is unknown. The M-step remains unchanged.

4.2 Discriminative Features

Our formulation (as most probabilistic segmentation methods) adopts a generative perspective,
where eachp(·|φ(k)) models the data generation mechanism in the corresponding class. However,
discriminative methods (such as support vector machines) are seen as the current state-of-the-art in
classification [7]. We will now show how a pre-trained discriminative classifier can be used in our
GEM algorithm instead of the generative likelihoods.

The E-step (see (9)) obtains the posterior probability thatxi was generated by thek-th model, by

combining (via Bayes law) the corresponding likelihoodp(xi|φ̂
(k)

) with the local prior probability
P [y

(k)
i = 1|ẑi]. Consider that, instead of likelihoods derived from generative models, we have a

discriminative classifier,i.e., one that directly provides estimates of the posterior class probabilities
P [y

(k)
i = 1|xi]. To use these values in our segmentation algorithm, we need a way to bias these

estimates according to the local prior probabilitiesP [y
(k)
i = 1|ẑi], which are responsible for encour-

aging spatial coherence. Let us assume that we know that the discriminative classifier was trained
usingmk samples from thek-th class. It can thus be assumed that these posterior class probabilities
verify P [y

(k)
i = 1|xi] ∝ mk p(xi|y

(k)
i = 1). It is then possible to “bias” these classifiers, with the

local prior probabilitiesP [y
(k)
i = 1|ẑi], simply by computing

P [y
(k)
i = 1|xi] =

P [y
(k)
i = 1|xi] P [y

(k)
i = 1|ẑi]

mk




K∑

j=1

P [y
(j)
i = 1|xi] P [y

(j)
i = 1|ẑi]

mj




−1

.

5 Experiments

In this section we will show experimental results of image segmentation in supervised, unsupervised,
semi-supervised, and discriminative modes. Assessing the performance of a segmentation method
is not a trivial task. Moreover, the performance of segmentation algorithms depends more critically
on the adopted features (which is not the focus of this paper) than on the spatial coherence prior. For
these reasons, we will not present any careful comparative study, but simply a set of experimental
examples testifying for the promising behavior of the proposed approach.

5.1 Supervised and Unsupervised Image Segmentation

The first experiment, reported in Fig. 1, illustrates the algorithm on a synthetic gray scale image
with four Gaussian classes of means 1, 2, 3, and 4, and standard deviation 0.6. For this image, both
supervised and unsupervised segmentation lead to almost visually indistinguishable results, so we
only show the supervised segmentation results. In the Gaussian prior, matrixA corresponds to a
first order neighborhood, that is,Ai,j = γ if and only if j is one of the four nearest neighbors of
i. For wavelet-based segmentation, we have used undecimated Haar wavelets and the Bayes-shrink
denoising procedure [6].

Figure 1: From left to right: observed image, maximum likelihood segmentation, GEM result with
Gaussian prior, GEM result with wavelet-based prior.



5.2 Semi-supervised Image Segmentation

We illustrate the semi-supervised mode of our approach on two real RGB images, shown in Fig. 2.
Each region is modelled by a single multivariate Gaussian density in RGB space. In the example
in the first row, the goal is to segment the image into skin, cloth, and background regions; in the
second example, the goal is to segment the horses from the background. These examples show how
the semi-supervised mode of our algorithm is able to segment the image into regions which “look
like” the seed regions provided by the user.

Figure 2: From left to right (in each row): observed image withregions indicated by the user as
belonging to each class, segmentation result, region boundaries.

5.3 Discriminative Texture Segmentation

Finally, we illustrate the behavior of the algorithm when used with discriminative classifiers by
applying it to texture segmentation. We build on the work in [8], where SVM classifiers are used
for texture classification (see [8] for complete details about the kernels and texture features used).
Fig. 3 shows two experiments; one with a two-texture256×512 image and the other with a 5-texture
256×256 image. In the two-class case, one binary SVM was trained on1000 random patterns from
each class. For the 5-class case, 5 binary SVMs were trained in the “1-vs-all” mode, with 500
samples from each class. In the 2-class and 5-class cases, the error rates of the SVM classifier are
12.69% and 13.92%, respectively. Our GEM algorithm achieves 0.51% and 2.22%, respectively.
These examples show that our method is able to take class predictions produced by a classifier
lacking any spatial prior and produce segmentations with a high degree of spatial coherence.

6 Conclusions

We have introduced an approach to probabilistic semi-supervised clustering which is particularly
suited for image segmentation. The formulation allows supervised, unsupervised, semi-supervised,
and discriminative modes, and can be used with classical standard image priors (such as Gaussian
fields, or wavelet-based priors). Unlike the usual Markov random field approaches, which involve
combinatorial optimization, our segmentation algorithm consists of a simple generalized EM algo-
rithm. Several experimental examples illustrated the promising behavior of our method. Ongoing
work includes a thorough experimental comparison with state-of-the-art segmentation algorithms,
namely, spectral methods [16] and techniques based on “graph-cuts” [19].

Acknowledgement: This work was partially supported by the (Portuguese)Fundaç̃ao para a
Ciência e Tecnologia(FCT), grant POSC/EEA-SRI/61924/2004.



Figure 3: From left to right (in each row): observed image, direct SVM segmentation, segmentation
produced by our algorithm.
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