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Abstract 
Although there has been substantial progress in understanding the neuro-
physiological mechanisms of stereopsis, how neurons interact in a network 
during stereo computation remains unclear. Computational models on 
stereopsis suggest local competition and long-range cooperation are impor-
tant for resolving ambiguity during stereo matching. To test these predic-
tions, we simultaneously recorded from multiple neurons in V1 of awake, 
behaving macaques while presenting surfaces of different depths rendered 
in dynamic random dot stereograms.  We found that the interaction between 
pairs of neurons was a function of similarity in receptive fields, as well as 
of the input stimulus. Neurons coding the same depth experienced common 
inhibition early in their responses for stimuli presented at their non-
preferred disparities. They experienced mutual facilitation later in their re-
sponses for stimulation at their preferred disparity. These findings are con-
sistent with a local competition mechanism that first removes gross mis-
matches, and a global cooperative mechanism that further refines depth es-
timates. 

1  Introduction 
The human visual system is able to extract three-dimensional (3D) structures in random 
noise stereograms even when such images evoke no perceptible patterns when viewed 
monocularly [1].  Bela Julesz proposed that this is accomplished by a stereopsis mechanism 
that detects correlated shifts in 2D noise patterns between the two eyes.  He also suggested 
that this mechanism likely involves cooperative neural processing early in the visual system.  
Marr and Poggio formalized the computational constraints for solving stereo matching (Fig. 
1a) and devised an algorithm that can discover the underlying 3D structures in a variety of 
random dot stereogram patterns [2].  Their algorithm was based on two rules: (1) each ele-
ment or feature is unique (i.e., can be assigned only one disparity) and (2) surfaces of objects 
are cohesive (i.e., depth changes gradually across space). To describe their algorithm in neu-
rophysiological terms, we can consider neurons in primary visual cortex as simple element 
or feature detectors. The first rule is implemented by introducing competitive interactions 
(mutual inhibition) among neurons of different disparity tuning at each location (Fig. 1b, 
blue solid horizontal or vertical lines), allowing only one disparity to be detected at each 
location. The second rule is implemented by introducing cooperative interactions (mutual 
facilitation) among neurons tuned to the same depth (image disparity) across different spatial 
locations (Fig. 1b, along the red dashed diagonal lines).   In other words, a disparity estimate 
at one location is more likely to be correct if neighboring locations have similar disparity 
estimates.  A dynamic system under such constraints can relax to a stable global disparity 
map.  Here, we present neurophysiological evidence of interactions between disparity-tuned 



neurons in the primary visual cortex that is consistent with this general approach.   We sam-
pled from a variety of spatially distributed disparity tuned neurons (see electrodes Fig. 1b) 
while displaying DRDS stimuli defined at various disparities (see stimulus Fig.1b).  We then 
measured the dynamics of interactions by assessing the temporal evolution of correlation in 
neural responses. 

Figure 1: (a) Left and right images of random dot stereogram (right image has been shifted 
to the right).  (b) 1D graphical depiction of competition (blue solid lines) and cooperation 
(red dashed lines) among disparity-tuned neurons with respect to space as defined by Marr 
and Poggio’s stereo algorithm [2]. 

2  Methods 

2 .1  Recording  and  s t imula t ion  

Recordings were made in V1 of two awake, behaving macaques.  We simultaneously re-
corded from 4-8 electrodes providing data from up to 10 neurons in a single recording ses-
sion (some electrodes recorded from as many as 3 neurons).  We collected data from 112 
neurons that provided 224 pairs for cross-correlation analysis.  For stimuli, we used 12 Hz 
dynamic random dot stereograms (DRDS; 25% density black and white pixels on a mean 
luminance background) presented in a 3.5-degree aperture.  Liquid crystal shutter goggles 
were used to present random dot patterns to each eye separately.  Eleven horizontal dispari-
ties between the two eyes, ranging from ±0.9 degrees, were tested.  Seventy-four neurons 
(66%) had significant disparity tuning and 99 pairs (44%) were comprised of neurons that 
both had significant disparity tuning (1-way ANOVA, p<0.05). 

 

Figure 2: (a) Example recording session from five electrodes in V1.  (b) Receptive field 
(white box—arrow represents direction preference) and random dot stereogram locations for 
same recording session (small red square is the fixation spot). 
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2 .2  Data  ana lys i s  

Interaction between neurons was described as "effective connectivity" defined by cross-
correlation methods [3].  First, the probability of all joint spikes (x and y) between the two 
neurons was calculated for all times from stimulus onset (t1 and t2) including all possible lag 
times (t1 - t2) between the two neurons (2D joint peristimulus time histogram—JPSTH).  
Next, the cross-product of each neuron’s PSTH (joint probabilities expected from chance) 
was subtracted from the JPSTH; this difference is referred to as the cross-covariance histo-
gram.  Finally, the cross-covariance histogram was normalized by the geometric mean of the 
auto-covariance histograms:    
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This normalized cross-covariance histogram is a 2D matrix of Pearson’s correlation coeffi-
cients between the two neurons where the axes represent time from stimulus onset (Figure 
3).  The principal diagonal also represents time from stimulus onset for correlation and the 
opposite diagonal represents lag time between the two neurons.  We derived three measure-
ments from this matrix to describe the “effective connectivity” between neuron pairs.  Using 
bootstrapped samples of stimulus trials, we estimated 95% confidence intervals for these 
three measurements [4].  We first integrated along the principal diagonal to produce correla-
tion versus lag time (i.e., the traditional cross-correlation histogram—CCH).  We used CCHs 
to find significant correlation at or near 0 ms lag times (suggesting synaptic connectivity 
between the neurons).  Second, we integrated under the half-height full bandwidth of signifi-
cant correlation peaks to quantify effective connectivity.  Figure 4 shows the population av-
erage of normalized CCHs (n = 27) and 95% confidence intervals.  Finally, we repeated this 
integration along the principal diagonal to obtain the temporal evolution of effective connec-
tivity (computed with a running 100 ms window). 

Figure 3: Example normalized cross-covariance histogram. 

In computing effective connectivity with Equation 1, we assume trial-to-trial stationarity. If 
this is not true (e.g., due to difference in attentional effort in different trials), correlation 
peaks can emerge that are not due to effective connectivity [5].  We applied a correction to 
equation 1 [5,6] based on the average firing rate for each trial.  However, no significant dif-
ference in correlation peaks was observed. In addition, changes in DRDS properties other 
than disparity did not cause significant changes to correlation peak properties.  Finally, al-
ternative cross-correlation methods (CCG) [7] using responses to the same exact random dot 
pattern to predict correlation expected from chance, again, lead to no significant difference 
in correlation peak properties. These observations justify our assumption that the effective 
connectivity computed in our case does not arise due to trial-to-trial non-stationarity. 
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Figure 4: (a) Population average CCH for 27 neuron pairs with a significant correlation 
peak.  (b) Same as (a), but zoomed into ±50 ms lag times with statistics of peak properties 
(mean ± s.e.m.). 

3  Interaction depends on tuning properties  
The primary indicator of whether or not a neuron pair had a significant correlation peak at or 
near a 0 ms lag time, for this class of stimuli, was similarity in disparity tuning between the 
two neurons.  Neuron pairs with significant correlation peaks (n = 27; 27%) tended to have 
more similar disparity peaks, bandwidths, and frequencies (determined from fitted Gabor 
functions) than neuron pairs that did not have significant correlation peaks.  We quantified 
similarity in tuning using the similarity index (SI), which is Pearson’s product-moment cor-
relation [8]: 

 

               (2) 

where i is each point on the disparity tuning curve, x and y are the firing rates at each point 
for each neuron, and x and y are the mean firing rates across the tuning curve.                                       
Figure 5a and 5b clearly show that both the probability of correlation and strength in correla-
tion increase with greater SI (n = 27 pairs).  This relationship is limited to long-range inter-
actions among neurons because our electrodes were all at least 1 mm apart.  This suggests 
they are likely mediated by the well known long-range intracortical connections in V1 that 
link neurons of similar orientation across space [9]. Our results suggest that these connec-
tions might also be shared to link similar disparity neurons together.  Because connectivity 
also depended on orientation (Figure 5c), V1 connectivity among neurons appears to depend 
on similarity across multiple cue dimensions. 

Figure 5: (a) Likelihood of significant correlation peak with respect to similar disparity tun-
ing.  (b) Strength of correlation increases with similarity.  (c) Correlation is also more likely 
if orientation preference is similar.  
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From the 12 pairs of neurons recorded on a single electrode, correlation was observed among 
neuron pairs with very similar disparity tuning as well as among neurons with nearly oppo-
site disparity tuning (see also [8]). This suggests that antagonistic disparity-tuned neurons 
tend to spatially coexist, and their interactions are likely competitive. 

4  Interaction is  st imulus-dependent 
The interaction between pairs of neurons was not simply a function of the similarity between 
their receptive field properties but was also a function of the input stimuli (or stimulus dis-
parity in our case). The effective connectivity was significantly modulated (1-way ANOVA, 
p<0.05) by the stimulus disparity for 25 out of the 27 pairs. We are not suggesting synaptic 
connections physically change, but rather that the effectiveness of those connections can 
change depending on the spiking activity and therefore the stimulus input.  For neuron pairs 
with similar disparity tuning, the strongest correlation was observed at their shared preferred 
disparity, i.e. the peak of the disparity tuning curves based on firing rate (as shown in Figure 
6). This suggests facilitation is strongest when a frontal parallel plane activated these neu-
rons simultaneously at their preferred depth.  As the stimulus plane moved away from this 
depth, the effective connectivity between the neurons became weaker.  This was observed in 
10 pairs (e.g., Figure 6c).  For the other 17 pairs (e.g., Figure 6d), the correlation or effective 
connectivity was again strongest at the neuron pair's shared preferred disparity.  However, 
these pairs in addition exhibited secondary correlation peaks for disparity stimuli that pro-
duced the lowest firing rates (even below the baseline for DRDSs). 

Figure 6: Top row are disparity tuning curves based on firing rates (mean ± s.e.m.).  Bottom 
row are disparity tuning curves based on correlation for the corresponding pairs of neurons 
in the top row.  Error bars are 95% confidence intervals and dashed lines represent 95% con-
fidence of the mean correlation.  

Cross-correlation peaks are interpreted as a result of effective circuits that may represent any 
combination of a variety of synaptic connections that may have a bias in direction (one neu-
ron drives the other) or may not have a bias in direction (zero lag time; both neurons receive 
a common drive) [10].  As correlation peaks become broader, as in our case (mean = 42 ms), 
this interpretation becomes more ambiguous (more possible circuits).  The broader positive 
correlation peaks can even be caused by common inhibitory circuitry.  One way to poten-
tially disambiguate our interpretations is to consider firing rate behavior. The positive corre-
lation measured at the preferred disparity suggests that the interaction was likely facilitatory 
in nature based on the increased firing of the neurons.  The positive correlation measured at 
the disparity where both neurons' firing rates were depressed, i.e. at the valley of the firing-
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rate based disparity tuning curves, suggests that the correlation likely arose from common 
inhibition (presumably from neurons that preferred that disparity).  

5  Temporal  dynamics of  interaction 
We can compare the temporal dynamics of the correlation with the temporal dynamics of the 
firing rate of the neurons to gain more insight into the possible underlying circuitry. We 
computed the correlation every 1 msec over a 100 ms running window, and found that the 
correlation peak at the preferred disparity (based on firing rates) occurred at a later time 
(250-350 ms post-stimulus onset) than the correlation peaks at the non-preferred disparity 
(100-200 ms). Figure 7 illustrates the temporal dynamics of correlation for the example neu-
ron pair shown in Figure 6b and 6d.  The distinct interval in which correlation emerged at 
the preferred and the non-preferred disparities was consistently observed for all 27 pairs of 
neurons.  Even for the example shown in Figure 6c, there were peaks in correlation in the 
early part of the response at the most non-preferred disparities.  The timing of these two 
phases of correlation was also rather consistent over the population of pairs. 

Figure 7: Temporal dynamics of correlation for example neuron pair shown in Figure 6, 
right.  From left to right: Correlation versus time for preferred (red) and non-preferred (blue) 
disparities.  Contour map of correlation versus time and disparity.  Disparity tuning based on 
correlation for the early (blue) and late (red) portion of the response (95% confidence inter-
vals).  Correlation was calculated every 1 ms over 100 ms windows.  

By examining the interplay between firing rate and correlation, we were able to gain even 
greater insight about the interactions among neuron pairs. To summarize this interplay across 
our population, we compared the temporal evolution of the correlation at three distinct dis-
parities with the temporal evolution of the firing rates at the same disparities (also smoothed 
with 100 ms time windows).  The first disparity, the preferred disparity A, is where we 
measured the strongest correlation and was at or near the highest firing rate measured in in-
dividual neurons (see Figure 8, left).  The second important disparity, the most non-preferred 
disparity C, was where we measured secondary correlation peaks and coincided with the 
lowest firing rates observed in individual neurons.  Lastly, we looked at a disparity B that 
was in between disparities A and C.  

Figure 8 shows that neurons responded better to their preferred disparity over other dispari-
ties very early, resulting in immediate moderate firing rate-based disparity tuning. Then 
shortly after (100 ms), a correlation peak emerges at the least preferred disparity C.  This 
coincides with suppression of firing rate for all disparities (Figure 8, blue dashed line).  
However, the suppression in firing rate is much stronger for C where the firing rate diverges 
downward from the firing rates for A and B sharpening the disparity tuning (Figure 8, blue 
arrow; see also [11]).  The strong correlation coupled with the decrease in firing suggests 
strong common inhibition.   
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Figure 8: Population average of normalized correlation versus time (top) for three disparities 
shown on the left.  Population average of normalized PSTHs for same three disparities (bot-
tom).  Both correlation and firing rates were calculated every 1 ms over 100 ms windows. 

Once the correlation peak at C subsided (200 ms), the correlation increased for A (red 
dashed line). When the correlation for A peaked, the correlation decreased for B and C, lead-
ing to very sharp correlation-based disparity tuning (see also Figure 7).  This correlation-
based tuning can facilitate depth estimates by changing how effectively these signals are 
integrated downstream as a function of disparity [12]. 

Our interpretation is that the initial firing rate bias leads to antagonistic disparity-tuned neu-
rons generating common inhibition that suppresses firing at non-preferred disparities, re-
moving potential mismatches. The immediacy suggests that mutual inhibition was local, 
which is consistent with our observation that many opposing disparity-tuned neurons spa-
tially coexisted. The slower correlation peak at the preferred disparity A is indicative of mu-
tual facilitation that occurred when the depth estimates of spatially distinct neurons matched.  
This facilitation leads to a more precise estimate of depth.   

6  Discussion and conclusions 
The findings from this study provide support to Julesz’s proposal that cooperative and com-
petitive mechanisms in primary visual cortex are utilized for estimating global depth in ran-
dom dot stereograms [1], which was later described formally by Marr and Poggio [2]. More 
recent cooperative stereo computation models allow excitatory interaction between neurons 
of different disparities separated by long distance. This is used to accommodate the compu-
tation of slanted surfaces [13,14].  In this experiment, we only tested frontal parallel planes, 
thus, we cannot answer whether or not effective connections and facilitation exist between 
neurons with larger disparity differences over long distances. This will require further ex-
periments using planes with disparity gradients. 

The observation that initial correlation peaks occurred at disparities that evoked the lowest 
firing rates in neurons, suggests that correlation peaks emerged from common inhibition for 
non-preferred disparities. The observation that later correlation occurred at disparities that 
evoked the highest firing rates suggests that neurons were mutually exciting each other at 
their preferred disparity.  Our neurophysiological data reveal interesting dynamics between 
network-based (effective connectivity) and firing rate-based encoding of depth estimates. 
The observation that inhibition precedes facilitation suggests that competition is local (re-
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calling neurons at the same electrode tend to have opposite disparity tuning) and cooperation 
is more global (mediated through long-range connectivity). Local competition between neu-
rons encoding different depths is consistent with the uniqueness principle of Marr and Pog-
gio's algorithm [2].  In addition, cooperation among neurons encoding the same depth across 
space was predicted by the second rule of their algorithm: matter is cohesive.  These two 
interactions are robust at removing potential ambiguity during stereo matching and depth 
inference.   

Previous neurophysiological data had suggested that intracortical connectivity in primary 
visual cortex underlies competitive [15] and cooperative [16] mechanisms for improving 
estimates of orientation.  Our data suggests similar circuitry might play a role also in stereo 
matching [17].  However, this study is distinct in that it provides detailed empirical support 
for computational algorithms for solving stereo matching. It thus highlights the importance 
of computational algorithms in generating hypotheses to guide future neurophysiological 
studies.      
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