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Abstract

Starting with the work of Jaakkola and Haussler, a variety of approaches have been
proposed for coupling domain-specific generative models with statistical learning
methods. The link is established by a kernel function which provides a similarity
measure based inherently on the underlying model. In computational biology, the
full promise of this framework has rarely ever been exploited, as most kernels are
derived from very generic models, such as sequence profiles or hidden Markov
models. Here, we introduce the MTreeMix kernel, which is based on a generative
model tailored to the underlying biological mechanism. Specifically, the kernel
quantifies the similarity of evolutionary escape from antiviral drug pressure be-
tween two viral sequence samples. We compare this novel kernel to a standard,
evolution-agnostic amino acid encoding in the prediction of HIV drug resistance
from genotype, using support vector regression. The results show significant im-
provements in predictive performance across 17 anti-HIV drugs. Thus, in our
study, the generative-discriminative paradigm is key to bridging the gap between
population genetic modeling and clinical decision making.

1 Introduction

Kernels provide a general framework of statistical learning that allows for integrating problem-
specific background knowledge via the geometry of a feature space. Owing to this unifying char-
acteristic, kernel methods enjoy increasing popularity in many application domains, particularly in
computational biology [1]. Unfortunately, despite some basic results on the derivation of novel ker-
nels from existing kernels or from more general similarity measures (e.g. via the empirical kernel
map [1]), the field suffers from a lack of well-characterized design principles. As a consequence,
most novel kernels are still developed in an ad hoc manner.

One of the most promising developments in the recent search for a systematic kernel design method-
ology is the generative-discriminative paradigm [2], also known under the more general term of
model-dependent feature extraction (MDFE) [3]. The central idea of MDFE is to derive kernels
from generative probabilistic models of a given process or phenomenon. Starting with Jaakkola and
Haussler [2] and the seminal work of Amari [4] on the differential geometric structure of probabilis-
tic models, a number of studies have contributed to an emerging theoretical foundation of MDFE.
However, the paradigm is also of immediate intuitive appeal, because mechanistic models of a pro-
cess that are consistent with observed data and that provide falsifiable predictions often allow for
more profound insights than purely discriminative approaches. Moreover, entities that are similar
according to a mechanistic model should be expected to exhibit similar behavior in any related prop-
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erties. From this perspective, MDFE provides a natural bridge between mathematical modeling and
statistical learning.

To date, a variety of generic MDFE procedures have been proposed, including the Fisher kernel
[2] and, more generally, marginalized kernels [5], as well as the TOP [3], heat [6], and probability
product kernels [7], along with a number of variations. Surprisingly, however, instantiations of these
procedures in bioinformatics have been confined to a very limited number of classical problems,
namely protein fold recognition, DNA splice site prediction, exon detection, and phylogenetics.
Furthermore, most approaches are based on standard graphical models, such as amino acid sequence
profiles or hidden Markov models, that are not adapted in any specific way to the process at hand. For
example, a first-order Markov chain along the primary structure of a protein is hardly related to the
causal mechanisms underlying polypeptide evolution. Thus, the potential of combining biological
modeling with kernelization in the framework of MDFE remains vastly unexplored.

This paper is motivated by a regression problem from clinical bioinformatics that has recently at-
tracted substantial attention due to its pivotal role in anti-HIV therapy: the prediction of phenotypic
drug resistance from viral genotype (reviewed in [8]). Drug resistant viruses present a major cause
of treatment failure and their occurrence renders many of the available drugs ineffective. Therefore,
knowing the precise patterns of drug resistance is an important prerequisite for the choice of optimal
drug combinations [9, 10].

Drug resistance arises as a virus population evolves under partially suppressive antiviral therapy.
The extreme evolutionary dynamics of HIV quickly generate viral genetic variants that are selected
for their ability to replicate in the presence of the applied drug cocktail. These advantageous mu-
tants eventually outgrow the wild type population and lead to therapy failure. Thus, the resistance
phenotype is determined by the viral genotype. The genotype-phenotype prediction problem is of
considerable clinical relevance, because genotyping is much faster and cheaper, while treatment
decisions are ultimately based on the viral phenotype (i.e. the level of resistance).

From the perspective of MDFE, the interesting feature of HIV drug resistance lies in the structure of
the underlying generative process. The development of resistance involves the stochastic accumu-
lation of mutations in the viral genome along certain mutational pathways. Here, we demonstrate
how to exploit this evolutionary structure in genotype-phenotype prediction by deriving a Fisher
kernel for mixtures of mutagenetic trees, a family of graphical models designed to represent such
genetic accumulation processes. The remainder of this paper is organized as follows. In the next
section, we briefly summarize the mutagenetic trees mixture (MTreeMix) model, originally intro-
duced in [11]. The Fisher kernel is derived in Section 3. In Section 4, the kernel is applied to the
genotype-phenotype prediction problem introduced above. We conclude with some of the broader
implications of our study, including directions for future work.

2 Mixture models of mutagenetic trees

Consider n genetic events {1, ...,n}. With each event v, we associate the binary random variable
Xy, such that {X,, = 1} indicates the occurrence of v. In our applications, the set {1,...,n} will
denote the mutations conferring resistance to a specific anti-HIV drug. Syntactically, a mutagenetic
tree for n genetic events is a connected branching ' = (V, E) on the vertices V = {0,1,...,n}
and rooted at 0, where E C V' x V denotes the edge set of 7. Semantically, the mutagenetic tree
model induced by T" and the parameter vector 6 = (64, ...,6,) € (0,1)™ is the Bayesian network
on T with constrained conditional probability tables of the form

0 1
0 1 0
Yy = 1 (1_9U HU)’ v=1,...n.
Thus, a mutagenetic tree model is the family of distributions of X = (X, ..., X,,) that factor as
Pr(X =z | 0) = [ [ Po.wpaiuysen)-
v=1

Here, zo := 1 (indicating the wild type state without any resistance mutations), and pa(v) denotes
the parent of vertex v in T'. Figure 1 shows a mutagenetic tree for the development of resistance to
the protease inhibitor nelfinavir.
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Figure 1: Mutagenetic tree for the development of resistance to the HIV protease inhibitor nelfinavir
(NFV). Vertices of the tree are labeled with amino acid changes in the protease enzyme. Edges are
labeled with conditional probabilities. The tree represents one component of the 6-trees mixture
model estimated for this evolutionary process.

The probability tables impose the constraint that a mutation can only be present if its predecessor
in the topology is also present. This restriction sets mutagenetic trees apart from standard Bayesian
networks in that it allows for an evolutionary interpretation of the tree topology. In particular, the
model implies the existence of certain mutational pathways with distinct probabilities. Each path-
way is required to respect the order of mutation accumulation that is encoded in the tree. Mutational
patterns which do not respect these order constraints have probability zero in the model. We shall ex-
clude these genotypes from the state space of the model. The state space then becomes the following
subset of {0,1}",

C={rc{0,1}" | (zpa(), o) # (0,1), forall veV},
and the factorization of the joint distribution simplifies to

Pr(X=xl0)= [] 6r@—06,)"".
{v|Zpa)=1}

The mutational pathway metaphor, originating in the virological literature, is generally considered
to be a reasonable approximation to HIV evolution under drug pressure. However, sets of mutational
patterns that support different tree topologies are commonly seen in clinical HIV databases. Thus, in
order to allow for increased flexibility in modeling evolutionary pathways and to account for noise in
the observed data, we consider the larger model class of mixtures of mutagenetic trees. Intuitively,
these mixture models correspond to the assumption that a variety of evolutionary forces contribute
additively in shaping HIV genetic variability in vivo.

Consider & mutagenetic trees 71, .. ., Tk with weights A1, ..., Ax_1,and Ag = 1 — S5 1Ay,
respectively, such that 0 < X\, < 1forall k = 1,..., K. Each tree T} has parameters 6, =
Ok, v)v=1,...n. The mutagenetic trees mixture model is the family of distributions of X of the form

K
Pr(X =z |)0)=> MPr(X =x|0).
k=1

The state space C of this model is the union of the state spaces of the single tree models induced by
T,...,Tk. In our applications, we will always fix the first tree to be a star, such that C = {0,1}"
(i.e., all mutational patterns have non-zero probability). The star accounts for the spontaneous and
independent occurrence of genetic events.

3 TheMTreeMix Fisher kernd

We now derive a Fisher kernel for the mutagenetic trees mixture models introduced in the previ-
ous section. In this paper, our primary motivation is to improve the prediction of drug resistance
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Table 1: Mutagenetic tree Fisher kernels for the three trees on the vertices {0,1,2}. The value of
the kernel K (x, 2') is displayed for all possible pairs of mutational patterns (z, z’). Empty cells are
indexed with genotypes that are not compatible with the tree.

from viral genotype. However, we defer application-specific details to Section 4, to emphasize the
broader applicability of the kernel itself, for example in kernelized principal components analysis or
multidimensional scaling.

As Jaakkola and Haussler [2] have suggested, the gradient of the log-likelihood function induced by
a generative probabilistic model provides a natural comparison between samples. This is because the
partial derivatives in the direction of the model parameters describe how each parameter contributes
to the generation of that particular sample. Intuitively, two samples should be considered similar
from this perspective, if they influence the likelihood surface in a similar way. The natural inner
product for the statistical manifold induced by the log-likelihood gradient is given by the Fisher
information matrix [4]. The computation of this matrix is straightforward, but for practical purposes,
the Euclidean dot product (-, - ) provides a suitable substitute for the Fisher metric [2] .

We first derive the Fisher kernel for the single mutagenetic tree model. The log-likelihood of ob-
serving a mutational pattern = € {0, 1}™ under this model is

G0) = > wylog(fy) + (1 —xy)log(l—6,).
{vlzpacw)=1}
Hence, the feature mapping of binary mutational patterns into Euclidean n-space,
A(0) I (0)
06, 7 00, >’
is given by the Fisher score consisting of the partial derivatives

¢:C—R", x»—>V€z(9):<

0,1 if (x Tyw) = (1,1)

0, (60 w ) pa(w)s tw 5
Pel0) e (B~ 17710200 = (B = 17 0 (o) = (1.0
v 0, if (l’pa(w),xw) = (0,0).

Thus, we can define the mutagenetic tree Fisher kernel as

K(z,2') = (Ve (0), Ve (0)) = > 7o) (g, — 1)(moFo0)=2 027 (ot £,
v=1
For example, the Fisher kernels for the three mutagenetic trees on n. = 2 genetic events are displayed
in Table 1.

To better understand the operation of the novel kernel, we rewrite the kernel function K as follows:

n

K(SE, I,) = Z 5(911)(zpa(v),mu),(m;a(m,ﬂu) 3

v=1
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Figure 2: Non-zero entries of the matrix «(t) that defines the mutagenetic tree Fisher kernel. The
three graphs are indexed in the same way as the matrix, namely by pairs ((zpa(v): o), (#],4(> T5))

denoting the value of two genotypes « and z’ at an edge (pa(v), v) of the mutagenetic tree. The
graphs illustrate that the largest contributions stem from shared, unlikely mutations (positive effect,
solid and dashed line) and from differing, likely or unlikely mutations (negative effect, dash-dot
line).

with x defined as

(0,0) (1,0) (1,1)
(0,0) 0 0 0
k(t) = (1,0) < 0 t-1)7"2 t7Yt— 1)—1>
(1,1) 0 tig-1t 2

The matrix r(t) is indexed by pairs of pairs ((zpa(w); %), (€},,(,) ,)). The non-zero entries of «
are displayed in Figure 2 as functions of the parameter ¢. An edge contributes strongly to the kernel
value, if the two genotypes agree on it, but the common event (occurrence or non-occurrence of the
mutation) was unlikely (Figure 2, solid and dashed line). If the two genotypes disagree, the edge
contributes negatively, especially for extreme parameters 6, close to zero or one (Figure 2, dash-dot
line), which make one of the events very likely and the other very unlikely. Thus, the application of
the Fisher kernel idea to mutagenetic trees leads to a kernel that measures similarity of evolutionary
escape in a way that corresponds well to virological intuition.

Due to the linear mixing process, extending the Fisher kernel from a single mutagenetic tree to a
mixture model is straightforward. Let ¢, (\,0) = log Pr(z | A, 6)) be the log-likelihood function,
and denote by

)\1 PI‘(I ‘ 01)
Pr(z | A\, 0)
the responsibility of tree component 7; for the observation . Then the partial derivatives with

respect to @ can be expressed in terms of the partials obtained for the single tree models, weighted
by the responsibilities of the trees,

0l (A, 0)
00,

(@[ A, 0) =

= ’Yl(x | )\79) ael °

Differentiation with respect to A yields

0l (A, 0)  Pr(xz|60;)—Pr(z|0k)
oNn Pr(z | A, 0) '




We obtain the mutagenetic trees mixture (MTreeMix) Fisher kernel
K(z,z") = (VL (N, 0), V(N 0))

_ Ki [Pr(z | 61) — Pe(x | 650)] [Pr(s’ | 61) — Pr(a’ | 6xc)]
=1 Pr(z | A,0)Pr(z’ | A, 0)

K n
0 @ XN | A O)R(O1,0) (w20 () )

=1 w=1
4 Experimental results

In this section, we use the Fisher kernel derived from mutagenetic tree mixtures for predicting HIV
drug resistance from viral genotype. Briefly, resistance is the ability of a virus to replicate in the
presence of drug. The degree of resistance is usually communicated as a non-negative number. This
number indicates the fold-change increase in drug concentration that is necessary to inhibit viral
replication by 50%, as compared to a fully susceptible reference virus. Thus, higher fold-changes
correspond to increasing levels of resistance. We consider all fold-change values on a log;, scale.

Information on phenotypic resistance strongly affects treatment decisions, but the experimental pro-
cedures are too expensive and time-consuming for routine clinical diagnostics. Instead, at the time
of therapy failure, the genotypic makeup of the viral population is determined using standard se-
quencing methods, leaving the challenge of inferring the phenotypic implications from the observed
genotypic alterations. It is also desirable to minimize the number of sequence positions required for
reliable determination of drug resistance. With a small number of positions, sequencing could be
replaced by the much cheaper line-probe assay (LiPA) technology [12], which focuses on the deter-
mination of mutations at a limited number of pre-selected sites. This method could bring resistance
testing to resource-poor settings in which DNA sequencing is not affordable.

All approaches to this problem described to date are based on a direct correlation between genotype
and phenotype, without any further modelling involved. Application of the Fisher kernel to this task
is motivated by the hypothesis that the traces of evolution present in the data and modelled by mu-
tagenetic trees mixture models can provide additional information, leading to improved predictive
performance. In a recent comparison of several statistical learning methods, support vector regres-
sion attained the highest average predictive performance across all drugs [13]. Accordingly, we have
chosen this best-performing method to compare to the novel kernel.

Specifically, our experimental setup is as follows. For each drug, we start with a genotype-phenotype
data set [14] of size 305 to 858 (Table 2, column 3). Based on a list of resistance mutations main-
tained by the International AIDS Society [15], we extract the residues listed in column 2. The
number indicates the position in the viral enzyme (reverse transcriptase for the first two groups of
drugs, and protease for the third group), and the amino acids following the number denote the muta-
tions at the respective site that are considered resistance-associated. For example, the feature vector
for the drug zidovudine (ZDV) consists of six variables representing the reverse transcriptase mu-
tations 41L, 67N, 70R, 210W, 215F or Y, and 219E or Q. In the naive indicator representation, a
mutational pattern within these six mutations is transformed to a binary vector of length six, each
entry encoding the presence or absence of the respective mutation.

The Fisher kernel requires a mutagenetic trees mixture model for each of the evaluated drugs. Us-
ing the MTreeMix software package!, these models were estimated from an independent set of
sequences derived from patients failing a therapy that contained the specific drug of interest. In 100
replicates of ten-fold cross-validation for each drug model, we then recorded the squared correlation
coefficient (72) of indicator variable-based versus Fisher kernel-based support vector regression.
Avoiding both costly double cross-validation with the limited amount of data and overfitting with
single cross-validation, we fixed standard parameters for both SVMs. As suggested by Jaakkola
and Haussler [2], the Fisher kernel may be combined with additional transformations. Thus, we
evaluated the standard kernels for both setups. For the indicator representation, the linear kernel
performed best, whereas the Fisher scores performed best when combined with a Gaussian RBF
kernel. We used these two kernels in the final comparison reported in Table 2.

Yhttp://mtreemix.bioinf.mpi-sb.mpg.de



The results displayed in columns 5 and 6 of Table 2 show the improvements attained via the Fisher
kernel method as estimated by the squared correlation coefficient, 2. After correction for multiple
comparisons, the null hypothesis of equal mean was rejected (P < 0.01, Wilcoxon test) in 15 out of
17 cases, a ratio that is highly unlikely to occur by chance (P < 0.0025, binomial test). The most
drastic improvements were obtained for the drugs 3TC, NVP and NFV. Slight decreases were ob-
served for ddC and APV. Interestingly, when we combined both feature vectors, the cross-validated
performance of the combined predictor was consistently at least as good as the best individual pre-
dictor (data not shown). We obtained similar results when evaluating performance by the mean
squared error instead of the correlation coefficient (data not shown).

Table 2: Comparison of support vector regression performance for the MTreeMix Fisher kernel (F)
versus a naive amino acid indicator () representation. The drugs (first column) are grouped into the
three classes of nucleoside/nucleotide reverse transcriptase inhibitors (rows 1-7), nonnucleoside re-
verse transcriptase inhibitors (rows 8-10), and protease inhibitors (rows 11-17). MTreeMix models
were estimated based on the mutations listed in the second column. The third column indicates the
number N of available genotype-phenotype pairs, and the number K of trees in the mixture model is
shown in column 4. Columns 5 and 6 indicate the squared correlation coefficients, averaged across
100 replicates of 10-fold cross-validation. P-values (last column) are obtained from Wilcoxon rank
sum tests, correcting for multiple testing using the Benjamini-Hochberg method.

DRUG MUTATIONS N K ra 7 log,o P
ZDV 41L, 67N, 70R, 210W, 215FY, 219EQ 856 5 0.61 057 < —15.0
3TC 44D, 118, 1841V 817 5 071 0.64 < —15.0
ddl 65R, 67N, 70R, 74V, 184V, 210W, 215FY, 219EQ 858 4 028 024 < -15.0
ddc 41L, 65R, 67N, 70R, 74V, 184V 53 2 025 0.26 —-0.3
d4T 41L, 67N, 70R, 75TMSA, 210W, 215YF, 219QE 857 4 022 021 —2.7
ABC 41L, 65R, 67N, 70R, 74V, 115F, 184V, 210W, 215YF 846 7 0.57 0.55 -9.0
TDF 41L, 65R, 67N, 70R, 210W, 215YF, 219QE 527 3 045 0.43 —~7.0
NVP 1001, 103N, 106A, 108I, 181CI, 188CLH, 190A 857 5 058 049 < —15.0
EFV 1001, 103N, 108l, 181Cl, 188L, 190SA 843 4 060 056 < —15.0
DLV 103N, 181C 856 2 049 0.48 —1.7
IDV 10IRV, 20MR, 241, 32I, 361, 46IL, 54V, 71VT, 73SA, 851 4 0.65 0.63 —143
771, 82AFT, 84V, 90M
SQV 10IRV, 48V, 54VL, 71VT, 73S, 771, 82A, 84V, 90M 854 4 0.68 0.66 —8.6
RTV 10FIRV, 20MR, 241, 321, 33F, 361, 46IL, 54VL, 71VT, 855 4 0.77 0.75 -12.0
771, 82AFTS, 84V, 90M
NFV 10FI, 30N, 361, 461L, 71VT, 771, 82AFTS, 84V, 88DS 853 6 0.62 0.55 < —15.0
APV 10FIRV, 321, 461L, 47V, 50V, 54LVM, 73S, 84V, 90M 665 3 0.58 0.59 —2.0
LPV 10FIRV, 20MR, 241, 321, 33F, 46IL, 47V, 50V, 53L, 507 5 0.73 0.69 < —15.0
54LV, 63P, 71VT, 73S, 82AFTS, 84V, 90M
ATV 321, 461, 50L, 54L, 71V, 73S, 82A, 84V, 88S, 90M 305 2 054 0.52 —2.4

5 Conclusions

The Fisher kernel derived in this paper allows for leveraging stochastic models of HIV evolution
in many kernel-based scenarios. To our knowledge, this is the first study in which a probabilis-
tic model tailored to a specific biological mechanism (namely, the evolution of drug resistance) is
exploited in a discriminative context. Using the example of inferring drug resistance from viral
genotype, we showed that significant improvements in predictive performance can be obtained for
almost all currently available antiretroviral drugs. These results provide strong incentive for further
exploitation of evolutionary models in clinical decision making. Moreover, they also underline the
potential benefits from integrating several sources of data (genotype-phenotype, evolutionary). The
high correlation that can be observed with a relatively small number of mutations was unexpected
and suggests that reliable resistance predictions can also be obtained on the basis of LiPA assays
which are much cheaper than standard sequencing technologies. While our choice of mutations
was based on a selection from the literature, an interesting problem would be to design dedicated
LiPA assays containing a set of mutations that allow for optimal prediction performance in this
generative-discriminative setting. Finally, mixtures of mutagenetic trees have already been applied



in other contexts, for example to model progressive chromosomal alterations in cancer [16], and we
expect kernel methods to play an important role in this context, too.
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