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Abstract

We rigorously establish a close relationship between message passing algorithms
and models of neurodynamics by showing that the equations of a continuous Hop-
field network can be derived from the equations of belief propagation on a binary
Markov random field. As Hopfield networks are equipped with a Lyapunov func-
tion, convergence is guaranteed. As a consequence, in the limit of many weak con-
nections per neuron, Hopfield networks exactly implement a continuous-time vari-
ant of belief propagation starting from message initialisations that prevent from
running into convergence problems. Our results lead to a better understanding of
the role of message passing algorithms in real biological neural networks.

1 Introduction

Real brain structures employ inference algorithms as a basis of decision making. Belief Propagation
(BeP) is a popular, widely applicable inference algorithm that seems particularly suited for a neu-
ral implementation. The algorithm is based on message passing between distributed elements that
resembles the signal transduction within a neural network. The analogy between BeP and neural net-
works is emphasised if BeP is formulated within the framework of Markov random fields (MRF).
MREF are related to spin models [1] that are often used as abstract models of neural networks with
symmetric synaptic weights. If a neural implementation of BeP can be realised on the basis of MRF,
each neuron corresponds to a message passing element (hidden node of a MRF) and the synaptic
weights reflect their pairwise dependencies. The neural activity then would encode the messages
that are passed between connected nodes. Due to the highly recurrent nature of biological neural
networks, MRF obtained in this correspondence to a neural network are naturally very “loopy”.
Convergence of BeP on loopy structures is, however, a delicate matter [1]-[2] .

Here, we show that BeP on binary MRF can be reformulated as continuous Hopfield networks along
the lines of the sketched correspondence. More precisely, the equations of a continuous Hopfield
network are derived from the equations of BeP on a binary MREF, if there are many, but weak con-
nections per neuron. As a central result in this case, attractive fixed points of the Hopfield network
provide very good approximations of BeP fixed points of the corresponding MRF. In the Hopfield
case a Lyapunov function guarantees the convergence towards these fixed points. As a consequence,
Hopfield networks implement BeP with guaranteed convergence. The result of the inference is di-
rectly represented by the activity of the neurons in the steady state. To illustrate this mechanism,
we compare the magnetisations obtained in the original BeP framework to that from the Hopfield
network framework, for a symmetric ferromagnetic model.

Hopfield networks may also serve as a guideline for the implementation or the detection of BeP
in more realistic, e.g., spiking, neural networks. By giving up the symmetric synaptic weights
constraints, we may generalise the original BeP inference algorithm towards capturing neurally
inspired message passing.



2 A Quick Review on Belief Propagation in Markov Random Fields

MREF have been used to formulate inference problems, e.g. in Boltzmann machines (which actually
are MRF [3]) or in the field of computer vision [4] and are related to Bayesian networks. In fact, both
concepts are equivalent variants of graphical models [1]. Typically, from a given set of observations
{y}, we want to infer some hidden quantities {x} that, in our case, take on either of the two values
{—1,1}. For instance, the pixel values of a grey-scaled image may be represented by {y}, whereas
a particular variable z; describes whether pixel 7 belongs to an object (z; = 1) or to the background
(z; = —1). The natural question that emerges in this contextis: Given the observations {y;}, what is
the probability for x; = 1? The relation between {y} and {z} is usually given by a joint probability,
written in the factorised form
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where the functions {t} describe the pairwise dependencies of the hidden variables {z} and the
functions {¢} give the evidences from {y}. Z is the normalisation constant [1]. (1) can directly be
reformulated as an Ising system with the Energy
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where the Boltzmann distribution provides the probability p(s) of a spin configuration s,
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A comparison with (l) yields S; = Iy, Jij (Si, Sj)/T =1In ’(bi]‘ ([Ei, .Z'j) and hl (SZ)/T =1In (ﬁ(ﬂ:‘l, yi)-
In many cases, it is reasonable to assume that J;;(s;,s;) = Jijsis; = J;;8;8; and that h;(s;) =
h;s;, where J;; and h; are real-valued constants, so that (2) transforms into the familiar Ising Hamil-
tonian [5]. For convenience, we set T' = 1.

The inference task inherent to MRF amounts to extracting marginal probabilities
piz) = Y p({z}). “
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An exact evaluation of p; according to Eq. (4) is generally very time-consuming. BeP provides
us with approximated marginals within a reasonable time. This approach is based on the idea that
connected elements (where a connection is given by J;; # 0) interchange messages that contain a

recommendation about what state the other elements should be in [1]. Given the set of messages
{m!;(x;)} at time ¢, the messages at time t + 1 are determined by
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Here, m;; denotes the message sent from the hidden variable (or node) i to node j. N(i)\j denotes
the set of all neighbouring nodes of ¢ without 5. Usually, the messages are normalised at every time
step, i.e., mt J(l) + m J( 1) = 1. After (5) has converged, the marginals p; are approximated by
the so called beliefs b; that are calculated according to

bi(z:) = koi(zi,y:) H m;i(z:), (6)
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where k is a normalisation constant. In particular in connection with Ising systems, one is primarily
interested in the quantity m; = b;(1) — b;(—1), the so-called local magnetisation.

For a detailed introduction of BeP on MRF we refer to [1].

3 BeP and the Neurodynamics of Hopfield Networks

The goal of this section is to establish the relationship between the update rule (5) and the dynamical
equation of a continuous Hopfield network,
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Here v; is some quantity describing the activity of neuron ¢ (e.g., the membrane potential) and
f(z) is the activation function, typically implemented in a sigmoid form, such as f(z) = tanh(x).
w;; = wy; are the connection (synaptic) weights which need to be symmetric in the Hopfield model.
The connectivity might be all-to-all or sparse.K; (%) is an external signal or bias (see, e.g., [6] for a
general introduction to Hopfield networks). According to the sketched picture, each neuron repre-
sents a node x;, whereas the messages are encoded in the variables v; and w;;. The exact nature of
this encoding will be worked out below. The Hopfield architecture implements the point attractor
paradigm, i.e., by means of the dynamics the network is driven into a fixed point. At the fixed point,
the beliefs b; can be read out. In the MRF picture, this corresponds to (5) and (6). We will now
realise the translation from MRF into Hopfield networks as follows:

(1) Reduction of the number of messages per connection from m;;(1) and m;;(—1) to one reparam-
eterised variable n;;.

(2) Translation into a continuous system.

(3) Translation of the obtained equations into the equations of a Hopfield network, where we find
the encoding of the variables n;; in terms of v; and w;;.

This will establish the exact relationship between Hopfield and BeP.

3.1 Reparametrisation of the messages

In the case of binary variables z;, the messages m j;(x;) can be reparameterised [2] according to
tanh Nij = Myj (.’L‘j = 1) — Mgy (.’L‘j = —1). (8)

By this, the update rules (5) transform into update rules for the new “messages” n;;

f(n): nf;rl =tanh™" [tanh(J;;) tanh Z nk;+hi || . 9)
kEN (i)\j

For each connection ¢ — j we obtain one single message n;;. We can now directly calculate the
local magnetisation according to m; = tanh (), c n, ki + hi) [2]. The Jacobian of (9) in a point n
. Bn:’.H

is denoted by df (n) = (Wiz)ln

The used reparametrisation translates the update rules into an additive form (“log domain”) which
is a basic assumption of most models of neural networks.

3.2 Translation into a time-continuous system

Eq. (9) can be translated into the equivalent time-continuous system

= 9ij (n(t)) = _nij(t) + tanh ™! tanh(Jij) tanh Z nk,-(t) + h,(t) , (10)
kEN(i)\j

where h;(t) = h; is time-independent. The corresponding Jacobian in a point n is denoted by
dg(n) = —Id + df (n), where Id is the |n|-dimensional identity matrix (|n| is the number of mes-
sages n;j). Obviously, (9) and (10) have the same fixed points ng, which are given by

ng = tanh ™! tanh(Jij) tanh Z Nk + h; , (11)
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with identical stability properties in both frameworks: For stability of (9) it is required that the real
part of the largest eigenvalue of the Jacobian df (ng,) be smaller than 1, whereas for the stability of
(10) the condition is that the real part of the largest eigenvalue of dg(ng,) = —Id + df (ng) must
be smaller than 0. It is obvious that both conditions are identically satisfied.



3.3 Translation into a Hopfield network

The comparison between Eq. (7) and Eq. (10) does not lead to a direct identification of v; with n;;.
Rather, under certain conditions, we can identify n;; with w;;v;. That is, a message corresponds
to the presynaptic neural activity weighted by the synaptic strength. Formally, we may define a

variable v} by n;; = w;;v] and rewrite Eq. (10) as
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where we set w;; = tanh(J;;).! In the following, we assume that the synaptic weights w;; are rela-
tively small, i.e., w;; < 1. Hence tanh™'(z) can be approximated by tanh ™' (z) ~ 2. Moreover,
if a neuron receives many inputs (number of connections g; >> 1) then the single contribution wjz-vj-
can be neglected. Thus (12) simplifies to
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Upon a division by w;;, we arrive at the equation
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which for a uniform initialisation v} (0) = v2(0) = ... = v{*(0) for all i preserves this uniformity
through time, i.e., v} (£) = vZ(t) = ... = v} (t). In other words, the subset defined by v} = v7 =

7 is invariant under the dynamics of (14). For such an initialisation we can therefore replace for

aqall vf by a single variable v;, which leads to the equation
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Using tanh(z + y) ~ tanh(z) + tanh(y) if y < 1, and with y = h; we end up with the pos-
tulated equation (7). After the convergence to an attractor fixed point, the local magnetisation is
simply the activity v;. This is because the fixed point and the read out equations collapse under the
approximation tanh(} ", wx;vg + h;) ~ tanh(}", wrive) + Kj, ie., v;(t = 00) = m;.

In summary, we can emulate the original BeP procedure by a continuous Hopfield network provided
that (I) the single weights w;; and the external fields h;(t) are relatively weak, (II) that each neuron

receives many inputs and (III) that the original messages have been initialised according to vfl 0) =

Niky [ Wik, = va (0) = Ny JWiky = ... = vf‘” (0) = Nik,, /wikqi. From a biological point of view,

the first two points seem reasonable. The effect of a single synapse is typically small compared
to the totality of the numerous synaptic inputs of a cell [7]-[8]. In this sense, single weights are
considered weak. In order to establish a firm biological correspondence, particular consideration
will be required for the last point. In the next section, we show that Hopfield networks are guaranteed
to converge and thus, the required initialisation can be considered a natural choice for BeP on MRF
with the properties (I) and (II).

3.4 Guarantee of convergence

A basic Hopfield model of the form
dz;(t)
dt

= —z;(t) + Y wjif (a;() + I, (16)

with f(z) = tanh(x), has the same attractor structure as the model (7) described above (see [6]
and references therein). For the former model, an explicit Lyapunov function has been constructed

"Hence the synaptic weights wj; are automatically restricted to the interval | — 1, 1.
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Figure 1: The magnetisation mn as a function of 7" and w for the symmetric ferromagnetic model. The
results for the original BeP (grey stars) and for the Hopfield network (black circles) are compared.

[9] which assures that these networks and with them the networks considered by us are globally
asymptotically stable [6].

Moreover, the time-continuous model (7) can be translated back into a time-discrete model, yielding

vi(t+1) =tanh [ > wjiv;(t) | + Ki(t). (17)
J

This equation is the proper analogue of Eq. (9).

4 Results for the Ferromagnetic Model

In this section, we evaluate the Hopfield-based inference solution m; = v;(t = oo) for networks
with a simple connectivity structure: We assume constant positive synaptic weights w = w;; (fer-
romagnetic couplings) and a constant number of connections per neuron g. We furthermore abstain
from an external field and set K; = 0. To realise this symmetric model, we may either think of an
infinitely extended network or of a network with some spatial periodicity, e.g., a network on a torus.
According to the last section, w is related to J in a spin model via w = tanh(J) = tanh(1/T),
where, for convenience, we reintroduced a quasi-temperature 7" as a scaling parameter.

From Eq. (7), it is clear that vgy = (Vfp,Vsp, ..., Vsp) is a fixed point of the system if vyp =
tanh(qwvy,). This equation has always a solution vy, = vg = 0. However, the stability of vg is
restricted to T' > Tchﬁt, where the bifurcation point is given by

1
Thn — - 18
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This follows from the critical condition %ﬁqu)lvzvo = 1. For T < T, two additional and
stable fixed points v1 emerge which are symmetric with respect to the origin. After the convergence
to a stable fixed point, v4. for T < TE% and vy for T > TA%, | the obtained magnetisation m =

tanh(qwvy,) equal to vy, is shown in dependence of 7" in Fig. la (black circles), for ¢ = 20. The
critical point is found at a temperature 77 = 1/tanh ™ *(1/20) = 19.98

crit —
The result is compared to the result obtained on the basis of the original BeP equations (5) (grey
stars in Fig 1a). We see that the critical point is slightly lower in the original BeP case. This can be
understood from Eq. (9), for which the point given by the messages ng = (0, 0, 0...) looses stability
at the critical temperature

1
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For the value ¢ = 20, this yields 7°% = 18.98. T °?

it = it 18 in fact the critical temperature for Ising

grids obtained in the Bethe-Peierls approximation (for ¢ = 4, we get TP — 2.88539 [5D. In

crit



this way, we casually come across the deep relationship of BeP and Bethe-Peierls which has been
established by the theorem stating that stable BeP fixed points are local minima of the Bethe free
energy functional [1],[10].

In the limit of small weights, i.e. large T', the results for Hopfield nets and BeP must be identical.
This, in fact, is certainly true for 7' > TC"T’}t, where m = 0 in both cases. For very large weights,
i.e., small 7', the results are also identical in the case of the ferromagnetic couplings studied here,
asm — 1. It is only around the critical values, where the two results seem to differ. A comparison
of the results against the synaptic weight w, however, shows an almost perfect agreement for all w.

The differences can be made arbitrarily small for larger g.

5 Discussion and Outlook

In this report, we outlined the general structural affinity between belief propagation on binary
Markov random fields and continuous Hopfield networks. According to this analogy, synaptic
weights correspond to the pairwise dependencies in the MRF and the neuronal signal transduc-
tion corresponds to the message exchange. In the limit of many synaptic connections per neuron,
but comparatively small individual synaptic weights, the dynamics of the Hopfield network is an
exact mirror of the BeP dynamics in its time-continuous form. To achieve the agreement, the choice
of initial messages needs to be confined. From this we can conclude that Hopfield network attrac-
tors are also BeP attractors (whereas the opposite does not necessarily hold). Unlike BeP, Hopfield
networks are guaranteed to converge to a fixed point. We may thus argue that Hopfield networks
naturally implement useful message initialisations that prevent trapping into a limit cycle. As a fur-
ther benefit, the local magnetisations, as the result of the inference process, are just reflected in the
asymptotic neural activity. The binary basis of the implementation is not necessarily a drawback,
but could simply reflect the fact that many decisions have a yes-or-no character.

Our work so far has preliminary character. The Hopfield network model is still a crude simplification
of biological neural networks and the relevance of our results for such real-world structures remains
somewhat open. However, the search for a possible neural implementation of BeP is appealing and
different concepts have already been outlined [11]. This approach shares our guiding idea that the
neural activity should directly be interpreted as a message passing process. Whereas our approach
is a mathematically rigorous intermediate step towards more realistic models, the approach chosen
in [11] tries to directly implement BeP with spiking neurons. In accordance with the guiding idea,
our future work will comprise three major steps. First, we take the step from Hopfield networks to
networks with spiking elements. Here, the question is to what extent can the concepts of message
passing be adapted or reinterpreted so that a BeP implementation is possible. Second, we will give
up the artificial requirement of symmetric synaptic weights. To do this, we might have to modify
the original BeP concept, while we still may want to stick to the message passing idea. After
all, there is no obvious reason why the brain should implement exactly the BeP algorithm. It rather
seems plausible that the brain employs inference algorithms that might be conceptually close to BeP.
Third, the context and the tasks for which such algorithms can actually be used must be elaborated.
Furthermore, we need to explore how the underlying structure could actually be learnt by a neural
system.

Message passing-based inference algorithms offer an attractive alternative to traditional notions of
computation inspired by computer science, paving the way towards a more profound understanding
of natural computation [12]. To judge its eligibility, there is - ultimately - one question: How can
the usefulness (or inappropriateness) of the message passing concept in connection with biological
networks be verified or challenged experimentally?
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