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Abstract

Independent Component Analysis (ICA) is a popular method for extracting inde-
pendent features from visual data. However, as a fundamentally linear technique,
there is always nonlinear residual redundancy that is not captured by ICA. Hence
there have been many attempts to try to create a hierarchical version of ICA, but so
far none of the approaches have a natural way to apply them more than once. Here
we show that there is a relatively simple technique that transforms the absolute val-
ues of the outputs of a previous application of ICA into a normal distribution, to
which ICA maybe applied again. This results in a recursive ICA algorithm that
may be applied any number of times in order to extract higher order structure from
previous layers.

1 Introduction

Linear implementations of Barlow’s efficient encoding hypothesis', such as ICA [1] and sparse cod-
ing [2], have been used to explain the very first layers of auditory and visual information processing
in the cerebral cortex [1, 2, 3]. Nevertheless, many interesting structures are nonlinear functions of
the stimulus inputs, which are unlikely to be captured by a linear model. For example, for natural
images, it has been observed that there is still significant statistical dependency between the variance
of the filter outputs [4]. Several extensions of the linear ICA algorithm [5, 6, 7, 8] have been pro-
posed to reduce such residual nonlinear redundancy, with an explicit or implicit aim of explaining
higher perceptual layers, such as complex cells in V1. However, none of these extensions are obvi-
ously recursive, so it is unclear how to generalize them to multi-layer models in order to account for
even higher perceptual layers.

In this paper, we propose a hierarchical redundancy reduction model in which the problem of mod-
eling the residual nonlinear dependency is transformed into another LEE problem, as illustrated in
Figure 1. There are at least two reasons why we want to do this. First, this transforms a new and
hard problem into an easier and previously solved problem. Second, different parts of the brain share
similar anatomical structures and it is likely that they are also working under similar computational
principles. For example, fMRI studies have shown that removal of one sensory modality leads to
neural reorganization of the remaining modalities [9], suggesting that the same principles must be
at work across modalities. Since the LEE model has been so successful in explaining the very first
layer of perceptual information processing in the cerebral cortex, it seems reasonable to hypothesize
that higher layers might also be explained by a LEE model.

The problem at hand is then how to transform the problem of modeling the residual nonlinear de-
pendency into a LEE problem. To achieve this goal, we need to first make clear what the input
constraints are that are imposed by the LEE model. This is done in Section 2. After that, we will
derive the transformation function that “prepares” the output of ICA for its recursive application,
and then test this model on natural images.

"We refer to such algorithms as linear efficient encoding (LEE) algorithms throughout this paper.
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Figure 1: The RICA (Recursive ICA) model. After the first layer of linear efficient encoding,
sensory inputs X are now represented by S. The signs of S are discarded. Then coordinate-wise
nonlinear activation functions g¢; are applied to each dimension of S, so that the input of the next
layer X’ = ¢(|S]) satisfies the input constraints imposed by the LEE model. The statistical structure
among dimensions of X’ are then extracted by the next layer of linear efficient encoding.

2 Bayesian Explanation of Linear Efficient Encoding

It has long been hypothesized that the functional role of perception is to capture the statistical struc-
ture of the sensory stimuli so that appropriate action decisions can be made to maximize the chance
of survival (see [10] for a brief review). Barlow provided the insight that the statistical structure
is measured by the redundancy of the stimuli and that completely independent stimuli cannot be
distinguished from random noise [11]. He also hypothesized that one way for the neural system to
capture the statistical structure is to remove the redundancy in the sensory outputs. This so-called
redundancy reduction principle forms the foundation of ICA algorithms.

Algorithms following the sparse coding principle are also able to find interesting structures when
applied to natural image patches [2]. Later it was realized that although ICA and sparse coding
algorithms started out from different principles and goals, their implementations can be summarized
in the same Bayesian framework [12]. In this framework, the observed data X is assumed to be
generated by some underlying signal sources S

X =AS+¢

where A is a linear mixing matrix and e is additive Gaussian noise. Also, it is assumed that the
features S; are independent from each other, and that the marginal distribution of \S; is sparse. For
the sparse coding algorithm described in [2], although it started from the goal of finding sparse fea-
tures, the algorithm’s implementation implicitly assumes the independence of S;’s. For the infomax
ICA algorithm [1], although it aimed at finding independent features, the algorithm’s implementa-
tion assumes a sparse marginal prior (p(S;) o sech(S;)). The energy-based ICA algorithm using a
student-t prior [13] can also be placed in this framework for complete representations.

The moral here, though, is that in practice, the samples available are always insufficient to allow
any efficient inference without making some assumptions about the data distribution. A sparseness
and independence assumption about the data distribution is appropriate because: (1) independence
allows the system to capture the statistical structure of the stimuli, as described above, and (2)
sparse distribution of the sensory outputs is energy-economic. This is important for the survival of
the biological system, considering the fact that human brain consists 2% of the body weight but
accounts for 20% of its resting metabolism [14]. The linear efficient encoding model captures the



important characteristics of sensory coding: capturing the statistical structure (independence) of
sensory stimuli with minimum cost (sparseness).

This generative model describes our assumption about the data. How well the algorithms perform
depends on how well this assumption matches the real data. Hence, it is very important to check
what kind of data the model generates. If the input data strongly deviate from what can be generated
by the model (in other words, the observed data strongly deviate from our assumption), the results
could be errant no matter how much effort we put into the model parameter estimation. As to the
LEE model, there is a clear constraint on the marginal distribution of X,.

Here we limit our study on those ICA algorithms that produce basis functions resembling the simple
cells’ receptive fields when applied on natural image patches. Such algorithms [1, 13, 15] typically
adopt a symmetric ? and sparse marginal prior for S;’s that can be well approximated by a gen-
eralized Gaussian distribution. In fact, if we apply linear filters resembling the receptive fields of
simple cells on natural images, the distribution of the filter responses can be well approximated by
a generalized Gaussian distribution.

Here we show that such a prior suggests that the X;’s should also be symmetric. A random variable
X is symmetric if and only if its characteristic function is real valued. In the above Bayesian
framework, we assume that S;’s are independent and the marginal distribution of S; is symmetric
about zero. The characteristic function is then given by:

E[e\/jltXi] _ E[e\/fltzj Ai,jsj} (X; = ZAZ"J'SJ') (1)
J
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J
Since A; ;S; is symmetric, it is easy to see that X; must also be symmetric.

A surprising fact about our perceptual system is that there does exist such a process that regular-
izes the marginal distribution of the sensory inputs. In the visual system, for example, the data is
whitened in the retina and the LGN before transmission to V1. The functional role of this process is
generally described as removing pairwise redundancy, as natural images (as well as natural sounds)
obey the 1/f power law in the frequency domain [16]. However, as shown in Figure 2, it also
regulates the marginal distribution of the input to follow a generalized-gaussian-like distribution®.

This phenomenon has long been observed. We believe that besides the functional role of removing
second-order redundancy, whitening might also serve as a role of formatting the sensory input for
the cortex. For example, it has been observed [1] that without pre-whitening the images, the learned
basis functions by ICA do not cover a broad range of spatial frequencies.

2 1 o 1 3 [ 1 0 1 2

Onginal image patch dhistnbution of pixel values in whitenied image patch distribution of prosl valies in
onginal image patch wihitened image patch

Figure 2: The distribution of pixel values of whiten images follows a generalized Gaussian distrib-
ution (see Section 2). The shape parameter of the distribution is about 1.094, which means that the
marginal distribution of the inputs to the LEE model is already very sparse.

2p(X) is symmetric if X and —X have the same distribution.

3For all the image patches we tried, the distribution of pixel values on whitened image patches can be well
fitted by a generalized Gaussian distribution. This is true even for small image patches. The only exception we
have discovered occurs when the original image contains only binomial noise.



In this work, we will make the assumption that the marginal distribution of the inputs to the LEE
model is a generalized gaussian distribution, as this enables the LEE model to work more efficiently.
Also, as just discussed, at least for sound and image processing, there is an effective way to achieve
this neurally.

3 Reducing Residual Redundancy

For the filter outputs S of a layer of LEE, we will first discard information that provides no interest-
ing structure (i.e., redundancy), and find an activation function such that the marginal distribution
obeys the input requirements of the next layer.

3.1 Discarding the Signs

It has been argued that the signs of the filter outputs do not carry any redundancy [5]. The models
proposed in [6, 7, 8] also implicitly or explicitly discard the signs. We have observed the usefulness
of this process in a study of natural image statistics. We applied the FastICA algorithm [15] to 20x20
natural image patches, and studied the joint distribution of the filter outputs. As shown in the left
plot of Figure 3, p(s;|s;) = p(si| — s;), i.e. the conditional probability of s; on s; only depends on
the absolute value of s;. In other words, the signs of S do not provide any dependency among the
dimensions. By removing the sign and applying our transformation (described in the next section),
the nonlinear dependency between the s;’s is exposed (see Figure 3, right).
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Figure 3: Left: s; and s, are ICA filter responses on natural image patches. The red dashed lines
plot the linear regression between them. Right: After the coordinate-wise nonlinear transformation,
the two features are no longer uncorrelated.

3.2 Nonlinear Activation Function

The only problem left is to find the coordinate-wise activation function g; for each dimension of S
such that X! = g;(].S;|) follows a generalized Gaussian distribution, as required by the next layer of
LEE. In this work, we make the transformed features have a normal distribution. By doing so, we
force the LEE model of the higher layer to set more A;l to nonzero values (so that the Central Limit
Theorem takes effect to make X/ a Gaussian distribution), which leads to more global structures at
the higher layer. We used two methods to find this activation function in our experiments.

Parametric Activation Function

Assume s approximately follows a generalized Gaussian distribution(GGD). The probability density
function of a GGD is given by:

0 s |9
f(S;UaQ):W eXP{*‘;‘ } 4

where o > 0 is a scale parameter and 6 > 0 is a shape parameter and I" denotes the gamma function.
These two parameters can be estimated efficiently by an iterative algorithm developed by [17].



s is then transformed into a normally distributed N (0, 1) random variable by the function g:
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where F' denotes the cumulative density function (cdf) of standard normal distribution and v denotes
the incomplete gamma function. This transformation can be seen as three consecutive steps:

u=g(|sl) = F~( )

|~

e Discard the sign: u < |s|, now u bears pdf g(u;o,6) =

|s
(kb

and cdf Wri

0
JFL(%)exp{—g Hho<u<oo

e Transform to a uniform distribution U0, 1] by applying its own cdf: u «— Wora)
o Transform to a Gaussian distribution by applying the inverse cdf of N (0,1): u « F~1(u).

Nonparametric Activation Function

When the number of samples /V is sufficiently large, a non-parametric activation function works
more efficiently. In this approach, all the samples |S;| are sorted in ascending order. For each sample

s, cdf (|s|) is approximated by the ratio of its ranking in the list with N. Then u = F‘l(c/@”(|s|))
will approximately follow the standard normal distribution. Note that since u; depends only on the
rank order of |s;|, the results would be the same if the signs are discarded by taking s?.

4 Experiments on Natural Images

To test the behavior of our model, we applied it to small patches taken from digitized natural images.
The image dataset is available on the World Wide Web from Bruno Olshausen #. It contains ten
512x512 pre-whitened images. We took 151,290 evenly distributed 20x20 image patches. We ran
the FastICA algorithm [15] and obtained 397 basis functions. As reported in other models, the basis
functions are Gabor-like filters (Figure 4).

The nonparametric method was used to transform the marginal distribution of the outputs’ absolute
values to a standard normal distribution. Then the FastICA algorithm was applied again to retrieve
100 basis functions>. We adopted the visualization method employed by [12] to investigate what
kind of structures the second layer units are fond of. The basis functions are fitted to Gabor filter
functions using a gradient descent algorithm [12]. The connection weights from a layer-2 unit to
layer-1 units are shown in Figure 5, arranged by either the center or frequency/orientation of the
fitted Gabor filters. The layer-2 units are qualitatively similar to those found in [18]. Some units
welcome strong activation of layer-1 units within a certain orientation range but have no preference
for locations, while others have a location preference but welcome activation of layer-1 units of all
frequencies and orientations, and some develop a picky appetite for both.

Again, the nonparametric method was used to transform the marginal distribution of the absolute
values of the outputs from the second layer to a standard normal distribution, and FastICA was
applied to retrieve 20 basis functions. We had no initial guess of what kind of statistical structure
these third layer units might capture. The activation map of a couple of these units, however, seemed
to suggest that they might be tuned to respond to complicated textures. In particular, one unit
seems more activated by seemingly blank background, while another seems to like textures of leaves
(Figure 6). We think that probably a larger database than merely 10 images, and larger image patches
would be helpful for producing cleaner high level units.

The same procedure can be repeated for multiple layers. However, at this point, until we develop
better methods for analyzing the representation developed by these deeply embedded units, we will
leave this for future work.

*http://redwood.berkeley.edu/bruno/sparsenet/
3This reduction in the number of units follows the example of [18]. In general, there appears to be less
information in later layers (as assessed by eigenvalue analysis), most likely due to the discarding of the sign.



Figure 4: A subset of the 397 ICA image basis functions. Each basis function is 20x20 pixels. They
are 2D Gabor like filters.
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Figure 5: Sample units from the second layer. The upper panel arranges the connection weights
from layer-2 units to layer-1 units by the centers of the fitted Gabor filters. Every point corresponds
to one basis function of the first layer, located at the center of the fitted Gabor filter. Warm colors
represent strong positive connections; cold colors represent negative connections. For example, the
leftmost unit prefers strong activation of layer-1 units located on the right and weak activation of
layer-1 units on the left. The lower panel arranges the connection weights by the frequencies and the
orientations of the fitted Gabor filters. Now every point corresponds to the Gabor filter’s frequency
and orientation (in polar coordinates). The third leftmost unit welcomes strong activation of Gabor
filters whose orientations are around %77 but prefers no/little activation from those whose orientations

are around 7.

5 Discussion

The key idea of our model is to transform the high-order residual redundancy to linear dependency
that can be easily exploited again by the LEE model. By using activation functions that are depen-
dent on the marginal distribution of the outputs, a normal Gaussian interface is provided at every
layer. This procedure can then repeat itself and a hierarchical model with same structure at every
level can thus be constructed. As the redundancy is reduced progressively along the layers, statistical
structures are also captured to progressively higher orders.

Our simulation of a three layer Recursive ICA shows the effectiveness of our model. The first layer,
not surprisingly, produces the Gabor like basis functions as linear ICA always does. The second
layer, however, produces basis functions that qualitatively resemble those produced by a previous
hierarchical generative model [7]. This is remarkable given that our model is essentially a filtering
model with no assumptions of underlying independent variables, but merely targeting redundancy
reduction. The advantage of our model is the theoretical simplicity of generalization to a third layer
or more. For the Karklin and Lewicki model, the assumption that the ultimate independent causal
variables are two layers away from the images has to be reworked for a three layer system. It is not
clear how the variables at every layer should affect the next when an extra layer is added. Osindero
et al. [8] employed an energy based model. The energy function used at the first layer made it
essentially a linear ICA algorithm, thus it also produces Gabor like filters. The first layer outputs
are squared to discard the signs and then fed to the next layer. The inputs for the second layer are
thus all positive and bear a very different marginal distribution from those for the first layer. The
energy function is changed accordingly and the second layer is essentially doing nonnegative ICA.
The output of this layer, however, will all be positive, which makes discarding the signs no longer an
effective way of exposing higher-order dependence. Thus, to extend to another layer, new activation
functions and new energy function must be derived.

The third layer of our model produces some interesting results in that some units seem to have
preferences for complicated textures (Figure 6). However, as the statistical structure represented
here must be of very high order, we are still looking for an effective visualization method. Also, as



Figure 6: Activation maps on two images (upper and lower panel respectively) for two units per
layer. The leftmost two images are the raw images. The second left column to the rightmost column
are activation maps of two units from the first layer to the third respectively. The first layer units
respond to small local edges, the second layer units respond to larger borders, and the third layer
units seem to respond to large area of textures.

units at the second layer have larger receptive field than those at the first layer, it is reasonable to
expect the third layer to bear even larger ones. We believe that a wider range of visual structure will
be picked up by the third layer units with a larger patch size on a larger training set.
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