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Abstract

Selective attention is the strategy used by biological sensory systems to solve
the problem of limited parallel processing capacity: salient subregions of the in-
put stimuli are serially processed, while non–salient regions are suppressed. We
present an mixed mode analog/digital Very Large Scale Integration implementa-
tion of a building block for a multi–chip neuromorphic hardware model of selec-
tive attention. We describe the chip’s architecture and its behavior, when its is part
of a multi–chip system with a spiking retina as input, and show how it can be used
to implement in real-time flexible models of bottom-up attention.

1 Introduction

Biological systems interact with the outside world in real-time, reacting to complex stimuli in few
milliseconds. This is a highly demanding computational task, that requires either very high speed
sequential computation or fast massively parallel processing. Real systems however have to cope
with limited resources. Biological systems solve this issue by sequentially allocating computational
resources on small regions of the input stimuli, for analyzing them in parallel, with a strategy known
as Selective Attention, that takes advantage of both sequential and parallel processing.

A wise approach to the design of artificial systems that need to interact with the real world in real
time is to take inspiration from the strategies developed by biological systems.

The psychophysical study of selective attention distinguished two complementary strategies for the
selection of salient regions of the input stimuli, one depending on the physical (bottom-up) charac-
teristic of the input, the other depending on its semantic (top-down) and task related properties.

Much of the applied research has focused on modeling the bottom-up aspect of selective attention.
As a consequence, several software [1, 2, 3] and hardware models [4, 5, 6, 7] based on the concept
of saliency map, winner-takes-all (WTA) competition, and inhibition of return (IOR) [8] have been
proposed.

We focus on HW implementation of such selective attention systems on compact, low-power, ana-
logue VLSI chips. Previous implementations focused on either very abstract object/attention WTA
architectures with dedicated single-chip solutions [6], or on very detailed models of spike-based
competitive networks [9]; we propose a multi-chip solution that combines the advantages of spike-
based solutions for communicating signals across chips, with a dedicated and compact WTA archi-
tecture for implementing competition among a large number of elements in parallel. Specifically
we present a new chip with 32× 32 cells, that can sequentially select the most active regions of the
input stimuli, the Selective Attention Chip (SAC). It is a transceiver chip employing a spike-based
representation (AER, Address-Event-Representation [10]). Its input signals topographically encode
the local conspicuousness of the input over the entire visual scene. Its output signals can be used in



real time to drive motors of active vision systems or to select subregions of images captured from
wide field-of-view cameras. The AER communication protocol and the 2D structure of the network
make it particularly suitable for processing signals from silicon spiking retinas.

The basic circuits of the chip we present have already been proposed in [11]. The chip we present
here comprises improvements in the basic circuits, and additional dynamic components that will
be described in Section 3. The chip’s improvements over previous implementations arise from the
design of new AER interfacing circuits, both for the input decoding stage and the output arbitration,
and new synaptic circuits: the Diff-Pair Integrator (DPI) described in [12]. The DPI is a log-domain
compact circuit that reproduces the time course of biological post-synaptic currents. Besides having
easily and independently tunable gain and time constant, it produces mean currents proportional
to the input frequencies, more suitable for the input of the current-mode WTA cell employed as
core computational unit in the SAC. This new circuit allows the analysis of the properties of the
chip, including the effect of the introduction of additional dynamic properties to the circuits, such as
Short-Term Depression (STD) [13, 14] in the input synapses and spike frequency adaptation in the
output Integrate and Fire (I&F ) neurons [15].

In the next sections we describe the chip’s architecture and present experimental results from a two
chip system comprising the SAC and a silicon “transient” retina that produces spikes in response to
temporal changes in scene contrast.

2 The Selective Attention Chip

We fabricated a prototype of the SAC in standard AMS 0.35µm CMOS technology. The chip com-
prises an array of 32 × 32 pixels, each one is 90 × 45µm2 and the whole chip with AER digital
interface and pads occupies an area of 10mm2. The basic functionality of the SAC is to scan the in-
put in order of decreasing activity. The chip input and output signals are asynchronous digital pulses
(spikes) that use the Address Event Representation (AER) [16]. The input spikes to each pixel are
translated into a current (see Iex of Fig.1) by a circuit that models the dynamics of a biological exci-
tatory synapse [12]. A current mode hysteretic Winner–Take–All (WTA) competitive cell compares
the input currents of each pixel; the winning cell sources a constant current to the correspondent out-
put leaky Integrate and Fire (I&F) neuron [15]. The spiking neuron in the array then signals which
pixel is winning the competition for saliency, and therefore the pixel that receives the highest input
frequency. The output spikes of the I&F neuron are sent also to a feedback inhibitory synapse (see
Fig. 1), that subtracts current (Iior) from the input node of the WTA cell; the net input current to
the winner pixel is then decreased, and a new pixel can eventually be selected. This self-inhibition
mechanism is known as Inhibition of Return (IOR) and allows the network to select sequentially the
most salient regions of input images, reproducing the attentional scan path.
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Figure 1: Block diagram of a basic cell of the 32 × 32 selective attention architecture.



This basic functionality of the SAC is augmented by the introduction of dynamic properties such
as Short-Term Depression (STD) in the input synapses and spike frequency adaptation in the output
neuron. STD is a property observed in physiological recordings[17] of synapses that decrease their
efficacy when they receive consecutive stimulations. In our synapse the effect of a single spike on
the integrated current depends on a voltage, the synaptic weight. The initial weight of the synapse is
set by an external voltage reference, then as the synapse receives spikes the effective synaptic weight
decreases. STD is a local gain control, that increases sensitivity to changes in the input and makes
the synapse insensitive to constant stimulation. Spiking frequency adaptation is another property of
neurons that when stimulated with constant input decrease their output firing rate with time. The
spiking frequency of the silicon I&F neuron is monotonic with its input current, the adaptation
neuron’s mechanism decreases the neuron’s firing rate with time [15]. We exploit this property to
decrease the output bandwidth of the SAC.

The SAC has been designed with tunable parameters that allow to modify the strength of synaptic
contributions, the dynamics of synaptic short term depression and of neuronal adaptation, as well as
the spatial extent of competition and the dynamics of IOR. All these parameters enrich the dynamics
of the network that can be exploited to model the complex selective attention scan path.

3 Multi–Chip Selective Attention System

The SAC uses the asynchronous AER SCX (Silicon Cortex) protocol, that allows multiple AER
chips to communicate using spikes, just like the cortex, and can be used in multi–chip systems, with
multiple senders and multiple receivers [18, 19]. Using this representation the SAC can exchange
data, while processing signals in parallel, in real time [20]. The communication protocol used
and the SAC’s bidimensional architecture make it particularly suitable for processing visual inputs
coming from artificial spiking retinas. We built a two chip system, connecting a silicon retina [21]
to the SAC input. The retina is an AER asynchronous imager that responds to contrast variations, it
has 64× 64 pixels that respond to on and off transients. A dedicated PCI-AER board [18] connects
the retina to the SAC, via a look-up table that maps the activity of the 64× 64 pixels of the retina to
the 32× 32 pixels of the SAC. In this setup the mapping is linear grouping 4 retina pixels to 1 SAC
pixel, more complex mappings, as for example the foveal mapping, will be tested in the future. The
board allows also to monitor the activity of both chips on a Linux desktop.

4 Experimental Data

We performed preliminary experiments with the two chips setup described in the previous section.
We stimulated the retina with two black squares flashing at 6Hz on a white background, on a LCD
screen, using the matlab PsychoToolbox [22] as shown in Fig. 2. In Fig. 3 we show the response of
the two chips to this stimulus: each dot represents the mean firing rate of the correspondent pixel in
the chips. The pixels of the retina that focus on the black squares are active and show a high mean
firing rate, some other pixels in the array have spontaneous activity. To show the mapping between
the retina and the SAC we performed a control experiment: we turned off the competition and the
IOR and also we disabled STD and the neuronal adaptation, in this way all the pixels that receive
an input activity will be active. All the pixels that receive the input from the pixels of the retina
that we stimulate with the black squares are active, more over the spontaneous activity (noise) of the
other pixels are ”cleaned”, thanks to the filtering property of the input synapses. In the next figures
we show the response of the system to the stimulus described above, while changing the settings
of the SAC. In all the figures the top and bottom boxes show raster plots, respectively of the retina
and the SAC: each dot corresponds to a spike emitted by a pixel (or neuron) (y axis) at a certain
time (x axis). The middle trace shows the voltage Vnet, that is proportional to the total input current
(Iex − Iior of Fig. 1) to the WTA cell that receives input from one of the most active pixels of the
retina.

In Fig. 4(a) we show the same data of Fig. 3, the retina sends many spikes every time the black
squares appear and disappear from the screen, the WTA input node, with this settings, receives
only the excitatory current from the input synapse, as shown by the increase of the voltage Vnet in
correspondence of the retinal spikes. Since in our control experiment there is no competition, all
the stimulated pixels are active, as shown in the SAC raster plot. In Fig. 4(b) we show the effect of



Figure 2: Multi-chip system: The retina (top-right box) is stimulated with an LCD screen, its output
is sent to the SAC (bottom-right box) via the PCIAER board (bottom-left box). The activity of the
two chips is monitored via the PCIAER board on a Linux desktop.
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Figure 3: Response of the two chips to an image. (a) The silicon retina is stimulated, via an LCD
screen, with two flashing (6Hz) black squares on a white background (see Fig. 2). We show the
mean firing output of each pixel of the retina. The pixels corresponding to the black squares in the
image have higher firing rate than the others, some of the pixels of the retina are spontaneously firing
at lower frequencies. (b) The activity of the retina is the input of the SAC: the 64× 64 pixels of the
retina are mapped with a ratio 4 : 1 to the 32× 32 pixels of the SAC. We show the mean firing rate
of the SAC pixels in response to the retinal stimulation, when the Winner-Takes-All competition is
disabled. In this case the SAC output reflects the input, with some suppression of the noisy pixels
due to the filtering properties of the input synaptic circuits.

introducing spike frequency adaptation: in this case the output frequency of each neuron decreases,
reducing the output bandwidth and the AER-bus traffic. In Fig. 5 we show the effect of competition
and Inhibition of Return. When we turn on the WTA competition only one pixel is selected at any
time, therefore only one neuron is firing, as shown in the raster plot of Fig. 5(a); on the node Vnet we
can observe that when the correspondent neuron is winning there is an extra input current, because
it doesn’t reset to its resting value when the synapse is not active. This positive current implements
a form of self-excitation that gives hysteretic properties to the network dynamics, and stabilizes the
WTA network. If we turn on the inhibitory synapse (Fig. 5(b)), as soon as the neuron starts to fire,
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Figure 4: Time response to black squares flashing on a white background: we use the same stimu-
lation and setup described in Fig 3. The top figure shows the raster plot of the retina output, one dot
corresponds to a spike produced by one pixel at a specific time. The retina produces events every
time the squares appear on or disappear from the screen. The middle plot shows the voltage Vnet of
the input node of the WTA cell correspondent to the synapse that receives input from one of the most
active pixel of the retina. The bottom figure shows the raster plot of the SAC neurons. (a) We show
the ”control” experiment (same as in Fig 3): the competition, IOR, and all the other features of the
SAC are turned off, the output of the chip reproduces the input, with some suppression of the pixels
that receive very low activity from the retina, thanks to the input synapses filtering properties. In
the middle plot Vnet reflects the effect of the sole input current from the synapse, that integrates the
spikes received from the correspondent pixel of the retina. In this case, since the lateral inhibitory
connections are switched off, there is no competition and all the output I&F neurons correspondent
to the stimulated input synapses are active. (b) We add spike frequency adaptation to the previous
experiment settings, the output firing rate of the neurons is decreased, reducing the bandwidth of the
SAC output.

the inhibitory current decreases the total input current to the correspondent WTA cell: the voltage
Vnet reflects this mechanism as it is reset to its resting value even before the input from the retina
ceases. The WTA cell is then deselected and the output neuron stops firing, while another neuron is
selected and starts firing, as shown in the SAC raster plot. The inhibitory synapse time constant is
tunable and when it is slow the effect of inhibition lasts for hundreds of milliseconds after the I&F
stopped firing, in this way we prevent that pixel to be reselected immediately and we can have scan
path with many different pixels.

5 Conclusions

In this paper we presented a neuromorphic device implementing a Winner–Take–All network com-
prising dynamic synapses and adaptive neurons. This device is designed to be a part of a multi–chip
system for Selective Attention: via an AER communication system it can be interfaced to silicon
spiking retinas and to software implementations of associative memories.

We built a multi–chip system with the SAC and a silicon transient retina. The real time measure-
ments allowed by the physical realization of the system are certainly a powerful method to explore
the network behavior by changing its parameters. Preliminary experiments confirmed the basic
functionality of the SAC and the robustness of the system; the analysis will be extended with the
systematic study of STD, IOR, adaptation and lateral excitatory coupling among the nearby cells.
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