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Abstract

By adopting Gaussian process priors a fully Bayesian solution to the problem
of integrating possibly heterogeneous data sets within a classification setting is
presented. Approximate inference schemes employing Variational & Expectation
Propagation based methods are developed and rigorously assessed. We demon-
strate our approach to integrating multiple data sets on a large scale protein fold
prediction problem where we infer the optimal combinations of covariance func-
tions and achieve state-of-the-art performance without resorting to anyad hoc
parameter tuning and classifier combination.

1 Introduction

Various emerging quantitative measurement technologies in the life sciences are producing genome,
transcriptome and proteome-wide data collections which has motivated the development of data in-
tegration methods within an inferential framework. It has been demonstrated that for certain predic-
tion tasks within computational biology synergistic improvements in performance can be obtained
via the integration of a number of (possibly heterogeneous) data sources. In [2] six different data
representations of proteins were employed for fold recognition of proteins using Support Vector
Machines (SVM). It was observed that certain data combinations provided increased accuracy over
the use of any single dataset. Likewise in [9] a comprehensive experimental study observed im-
provements in SVM based gene function prediction when data from both microarray expression and
phylogentic profiles were manually combined. More recently protein network inference was shown
to be improved when various genomic data sources were integrated [16] and in [1] it was shown that
superior prediction accuracy of protein-protein interactions was obtainable when a number of di-
verse data types were combined in an SVM. Whilst all of these papers exploited the kernel method
in providing a means of data fusion within SVM based classifiers it was initially only in [5] that
a means of estimating an optimal linear combination of the kernel functions was presented using
semi-definite programming. However, the methods developed in [5] are based on binary SVM’s,
whilst arguably the majority of important classification problems within computational biology are
inherently multiclass. It is unclear how this approach could be extended in a straightforward or
practical manner to discrimination over multiple-classes. In addition the SVM is non-probabilistic
and whilstpost hocmethods for obtaining predictive probabilities are available [10] these are not
without problems such as overfitting. On the other hand Gaussian Process (GP) methods [11], [8]
for classification provide a very natural way to both integrate and infer optimal combinations of
multiple heterogeneous datasets via composite covariance functions within the Bayesian framework
an idea first proposed in [8].

In this paper it is shown that GP’s can indeed be successfully employed on general classification
problems, without recourse toad hocbinary classification combination schemes, where there are
multiple data sources which are also optimally combined employing full Bayesian inference. A



large scale example of protein fold prediction [2] is provided where state-of-the-art predictive perfor-
mance is achieved in a straightforward manner without resorting to any extensivead hocengineering
of the solution (see [2], [13]). As an additional important by-product of this work inference em-
ploying Variational Bayesian (VB) and Expectation Propagation (EP) based approximations for GP
classification over multiple classes are studied and assessed in detail. It has been unclear whether EP
based approximations would provide similar improvements in performance in the multi-class setting
over the Laplace approximation and this work provides experimental evidence that both Variational
and EP based approximations perform as well as a Gibbs sampler consistently outperforming the
Laplace approximation. In addition we see that there is no statistically significant practical advan-
tage of EP based approximations over VB approximations in this particular setting.

2 Integrating Data with Gaussian Process Priors

Let us denote each ofJ independent (possibly heterogeneous) feature representations,Fj(X), of
an objectX by xj ∀ j = 1 · · · J . For each object there is a corresponding polychotomous re-
sponse target variable,t, so to model this response we assume an additive generalized regression
model. Each distinct data representation ofX, Fj(X) = xj , is nonlinearly transformed such that
fj(xj) : Fj 7→ R and a linear model is employed in this new space such that the overall nonlinear
transformation isf(X) =

∑

j βjfj(xj).

2.1 Composite Covariance Functions

Rather than specifying an explicit functional form for each of the functionsfj(xj) we assume that
each nonlinear function corresponds to a Gaussian process (GP) [11] such thatfj(xj) ∼ GP (θj)
whereGP (θj) corresponds to a GP with trend and covariance functionsmj(xj) andCj(xj ,x

′
j ;θj)

whereθj denotes a set of hyper-parameters associated with the covariance function. Due to the
assumed independence of the feature representations the overall nonlinear function will also be a
realization of a Gaussian process defined asf(X) ∼ GP (θ1 · · ·θJ , β1 · · ·βJ ) where now the
overall trend and covariance functions follow as

∑

j βjmj(xj) and
∑

j β2
j Cj(xj ,x

′
j ;θj). For N

object samples,X1 · · ·XN , each defined by theJ feature representations,x1
j · · ·x

N
j , denoted by

Xj , with associated class specific responsefk = [fk(X1) · · · fk(XN )]T the overall GP prior is a
multivariate Normal such that

fk | Xj=1···J ,θ1k, · · ·θJ k, α1k · · ·αJ k ∼ Nfk

(

0,
∑

j
αjkCjk(θjk)

)

(1)

The positive random variablesβ2
jk are denoted byαjk, zero-trend GP functions have been assumed

and eachCjk(θjk) is anN ×N matrix with elementsCj(x
m
j ,xn

j ;θjk). A GP functional prior, over
all possible responses (classes), is now available where possibly heterogeneous data sources are
integrated via the composite covariance function. It is then, in principle, a straightforward matter
to perform Bayesian inference with this model and no further recourse toad hocbinary classifier
combination methods or ancillary optimizations to obtain the data combination weights is required.

2.2 Bayesian Inference

As we are concerned with classification problems over possibly multiple classes we employ a multi-
nomial probit likelihood rather than a multinomial logit as it provides a means of developing a
Gibbs sampler, and subsequent computationally efficient approximations, for the GP random vari-
ables. The Gibbs sampler is to be preferred over the Metropolis scheme as no tuning of a proposal
distribution is required. As in [3] the auxiliary variablesynk = fk(Xn) + εnk, εnk ∼ N (0, 1) are
introduced and theN ×1 dimensional vector of target class values associated with eachXn is given
ast where each elementtn ∈ {1, · · · ,K}. TheN × K matrix of GP random variablesfk(Xn) is
denoted byF. We represent theN × 1 dimensional columns ofF by F·,k and the corresponding
K × 1 dimensional vectors,Fn,·, which are formed by the indexed rows ofF . TheN × K matrix
of auxiliary variablesynk is represented asY, where theN × 1 dimensional columns are denoted
by Y·,k and the correspondingK × 1 dimensional vectors are obtained from the rows ofY asYn,·.
The multinomial probit likelihood [3] is adopted which follows as

tn = j if ynj = argmax
1≤k≤K

{ynk} (2)



and this has the effect of dividingRK into K non-overlappingK-dimensional conesCk = {y :
yk > yi, k 6= i} whereR

K = ∪kCk and so eachP (tn = i|Yn,·) can be represented asδ(yni >
ynk ∀ k 6= i). Class specific independent Gamma priors, with parametersϕk, are placed on each
αjk and the individual components ofθjk (denoteΘk = {θjk, αjk}j=1···J ), a further Gamma prior
is placed on each element ofϕk with overall parametersa andb so this defines the full model
likelihood and associated priors.

2.3 MCMC Procedure

Samples from the full posteriorP (Y,F,Θ1···K ,ϕ1···K |X1···N , t,a,b) can be obtained from the
following Metropolis-within-Blocked-Gibbs Sampling scheme indexing over alln = 1 · · ·N and
k = 1 · · ·K.

Y
(i+1)
n,· |F

(i)
n,·, tn ∼ T N (F

(i)
n,·, I, tn) (3)

F
(i+1)
·,k |Y

(i+1)
·,k ,Θ

(i)
k , X1,··· ,N ∼ N (Σ

(i)
k Y

(i+1)
·,k ,Σ

(i)
k ) (4)

Θ
(i+1)
1 |F

(i+1)
·,1 ,Y

(i+1)
·,k ,ϕ

(i)
1 , X1,··· ,N ∼ P (Θ

(i+1)
k ) (5)

ϕ
(i+1)
k |Θ

(i+1)
k , ak, bk ∼ P (ϕ

(i+1)
k ) (6)

whereT N (Fn,·, I, tn) denotes a conic truncation of a multivariate Gaussian with location pa-
rametersFn,· and dispersion parametersI and the dimension indicated by the class value oftn
will be the largest. An accept-reject strategy can be employed in sampling from the conic trun-
cated Gaussian however this will very quickly become inefficient for problems with moderately
large numbers of classes and as such a further Gibbs sampling scheme may be required. Each
Σ

(i)
k = C

(i)
k (I+C

(i)
k )−1 and C

(i)
k =

∑

j=1 α
(i)
jk Cjk(θ

(i)
jk ) with the elements ofCjk(θ

(i)
jk ) defined

asCj(x
m
j ,xn

j ;θ
(i)
jk ). A Metropolis sub-sampler is required to obtain samples for the conditional

distribution over the composite covariance function parametersP (Θ
(i+1)
k ) and finallyP (ϕ

(i+1)
k )

is a simple product of Gamma distributions. The predictive likelihood of a test sampleX∗ is
P (t∗ = k|X∗, X1···N , t,a,b) which can be obtained by integrating over the posterior and predictive
prior such that

∫

P (t∗ = k|f∗)p(f∗|Ω, X∗, X1···N )p(Ω|X1···N , t,a,b)df∗dΩ (7)

whereΩ = Y,Θ1···K . A Monte-Carlo estimate is obtained by using samples drawn from the full
posterior1

S

∑S

s=1

∫

P (t∗ = k|f∗)p(f∗|Ω
(s), X∗, X1···N )df∗and the integral over the predictive prior

requires further conditional samples,f
(l|s)
∗ , to be drawn from eachp(f∗|Ω(s), X∗, X1···N ) finally

yielding a Monte Carlo approximation ofP (t∗ = k|X∗, X1···N , t,a,b)

1

LS

L
∑

l=1

S
∑

s=1

P
(

t∗ = k|f
(l|s)
∗

)

=
1

LS

L
∑

l=1

S
∑

s=1

Ep(u)







∏

j 6=k

Φ
(

u + f
(l|s)
∗,k − f

(l|s)
∗,j

)







(8)

MCMC procedures for GP classification have been previously presented in [8] and whilst this pro-
vides a practical means to perform Bayesian inference employing GP’s the computational cost in-
curred and difficulties associated with monitoring convergence and running multiple-chains on rea-
sonably sized problems are well documented and have motivated the development of computation-
ally less costly approximations [15]. A recent study has shown that EP is superior to the Laplace
approximation for binary classification [4] and that for multi-class classification VB methods are
superior to the Laplace approximation [3]. However the comparison between Variational and EP
based approximations for the multi-class setting have not been considered in the literature and so we
seek to address this issue in the following sections.

2.4 Variational Approximation

From the conditional probabilities which appear in the Gibbs sampler it can be seen that a mean field
approximation gives a simple iterative scheme which provides a computationally efficient alternative
to the full sampler (including the Metropolis sub-sampler for the covariance function parameters),



details of which are given in [3]. However given the excellentperformance of EP on a number of
approximate Bayesian inference problems it is incumbent on us to consider an EP solution here.
We should point out that only the top level inference on the GP variables is considered here and
the composite covariance function parameters will be obtained using another appropriate type-II
maximum likelihood optimization scheme if possible.

2.5 Expectation Propagation with Full Posterior Covariance

The required posterior can also be approximated by EP [7]. In this case the multinomial pro-
bit likelihood is approximated by a multivariate Gaussian such thatp(F|t, X1···N ) ≈ Q(F) =
∏

k p(F·,k|X1···N )
∏

n gn(Fn,·)
1 wheregn(Fn,·) = NFn,·

(µn,Λn), µn is a K × 1 vector and
Λn is a full K × K dimensional covariance matrix. Denoting the cavity density asQ\n(F) =
∏

k p(F·,k|X1···N )
∏

i,i6=n gi(Fi,·), EP proceeds by iteratively re-estimating the momentsµn,Λn

by moment matching [7] giving the following

µnew
n = Ep̂n

{Fn,·} and Λnew
n = Ep̂n

{Fn,·F
T
n,·} − Ep̂n

{Fn,·}Ep̂n
{Fn,·}

T, (9)

where p̂n = Z−1
n Q\n(Fn,·)p(tn|Fn,·), andZn is the required normalizing (partition) function

which is required to obtain the above mean and covariance estimates. To proceed an analytic form
for the partition functionZn is required. Indeed for binary classification employing a binomial pro-
bit likelihood an elegant EP solution follows due to the analytic form of the partition function [4].
However for the case of multiple classes with a multinomial probit likelihood the partition function
no longer has a closed analytic form and further approximations are required to make any progress.
There are two strategies which we consider, the first retains the full posterior coupling in the covari-
ance matricesΛn by employing Laplace Propagation (LP) [14] and the second assumes no posterior
coupling inΛn by setting this as a diagonal covariance matrix. The second form of approximation
has been adopted in [12] when developing a multi-class version of the Informative Vector Machine
(IVM) [6]. In the first case where we employ LP an additional significantO(K3N3) computational
scaling will be incurred however it can be argued that the retention of the posterior coupling is im-
portant. For the second case clearly we lose this explicit posterior coupling but, of course, do not
incur the expensive computational overhead required of LP. We observed in unreported experiments
that there is little of statistical significance lost, in terms of predictive performance, when assuming
a factorable form for eacĥpn. LP proceeds by propagating the approximate moments such that

µnew
n ≈ argmax

Fn,·

log p̂n and Λnew
n ≈

[

−
∂2 log p̂n

∂Fn,·∂FT
n,·

]−1

(10)

The required derivatives follow straightforwardly and details are included in the accompanying ma-
terial. The approximate predictive distribution for a new data pointx∗ requires a Monte Carlo
estimate employing samples drawn from aK-dimensional multivariate Gaussian for which details
are given in the supplementary material2.

2.6 Expectation Propagation with Diagonal Posterior Covariance

By assuming a factorable approximate posterior, as in the variational approximation [3], a dis-
tinct simplification of the problem setting follows, where now we assume thatgn(Fn,·) =
∏

k NFn,k
(µn,k, λn,k) i.e. is a factorable distribution. This assumption has already been made

in [12] in developing an EP based multi-class IVM. Now significant computational simplifica-
tion follows where the required moment matching amounts toµnew

nk = Ep̂nk
{Fn,k} andλnew

nk =
Ep̂nk

{F2
n,k} − Ep̂nk

{Fn,k}2 where the densitŷpnk has a partition function which now has the
analytic form

Zn = Ep(u)p(v)







K
∏

j=1,j 6=i

Φ





u + v

√

λ
\n

ni + µ
\n

ni − µ
\n

nj
√

1 + λ
\n

nj











(11)

1Conditioning on the covariance function parameters and associated hyper-parameters is implicit
2Supplementary material http://www.dcs.gla.ac.uk/people/personal/girolami/

pubs_2006/NIPS2006/index.htm



whereu and v are both standard Normal random variables (v
√

λ
\n

ni = Fn,i − µ
\n

ni ) with λ
\n

ni and

µ
\n

ni having the usual meanings (details in accompanying material). Derivatives of this partition
function follow in a straightforward way now allowing the required EP updates to proceed (details
in supplementary material). The approximate predictive distribution for a new data pointX∗ in this
case takes a similar form to that for the Variational approximation [3]. So we have

P (t∗ = k|X∗, X1···N , t) = Ep(u)p(v)







K
∏

j=1,j 6=k

Φ

(

u + v
√

λ∗
k + µ∗

k − µ∗
j

√

1 + λ∗
j

)







(12)

where the predictive mean and variance follow in standard form.

µ∗
j = (C∗

j )
T (Cj + Λj)

−1
µj and λ∗

j = c∗j − (C∗
j )

T (Cj + Λj)
−1

C∗
j (13)

It should be noted here that the expectation overp(u) andp(v) could be computed by using either
Gaussian quadrature or a simple Monte Carlo approximation which is straightforward as sampling
from a univariate standardized Normal only is required. The VB approximation [3] however only
requires a 1-D Monte Carlo integral rather than the 2-D one required here.

3 Experiments

Before considering the main example of data integration within a large scale protein fold predic-
tion problem we attempt to assess a number of approximate inference schemes for GP multi-class
classification. We provide a short comparative study of the Laplace, VB, and both possible EP
approximations by employing the Gibbs sampler as the comparative gold standard. For these exper-
iments six multi-class data sets are employed3, i.e., Iris (N = 150, K = 3), Wine (N = 178,K =
3), Soybean (N= 47,K = 4), Teaching (N= 151,K = 3), Waveform (N= 300,K = 3) and ABE
(N = 300,K = 3, which is a subset of theIsoletdataset using the letters ‘A’, ‘B’ and ‘E’,). A single
radial basis covariance function with one length scale parameter is used in this comparative study.
Ten-fold cross validation (CV) was used to estimate the predictive log-likelihood and the percentage
predictive error. Within each of the ten folds a further 10 CV routine was employed to select the
length-scale of the covariance function. For the Gibbs sampler, after a burn-in of 2000 samples,
the following 3000 samples were used for inference, and the predictive error and likelihood were
computed from the 3000 post-burn-in samples. For each data set and each method the percentage
predictive error and the predictive log-likelihood were estimated in this manner. The summary re-
sults given as the mean and standard deviation over the ten folds are shown in Table 1. The results
which cannot be distinguished from each other, under a Wilcoxon rank sum test with a 5% signifi-
cance level, are highlighted in bold. From those results, we can see that across most data sets used,
the predictive log-likelihood obtained from the Laplace approximation is lower than those of the
three other methods. In our observations, the predictive performance of VB and the IEP approxi-
mation are consistently indistinguishable from the performance achieved from the Gibbs sampler.
From the experiments conducted there is no evidence to suggest any difference in predictive perfor-
mance between IEP & VB methods in the case of multi-way classification. As there is no benefit
in choosing an EP based approximation over the Variational one we now select the Variational ap-
proximation in that inference over the covariance parameters follows simply by obtaining posterior
mean estimates using an importance sampler.

As a brief illustration of how the Variational approximation compares to the full Metropolis-within-
Blocked-Gibbs Sampler consider a toy dataset consisting of three classes formed by a Gaussian
surrounded by two annular rings having ten features only two of which are predictive of the class
labels [3]. We can compare the compute time taken to obtain reasonable predictions from the full
MCMC and the approximate Variational scheme [3]. Figure 1 (a) shows the samples of the co-
variance function parametersΘ drawn from the Metropolis subsampler4 and overlaid in black the
corresponding approximate posterior mean estimates obtained from the variational scheme [3]. It

3http://www.ics.uci.edu/ ˜ mlearn/MPRepository.html
4It should be noted that multiple Metropolis sub-chains had to be run in order to obtain reasonable sampling

of theΘ ∈ R
10
+



Table 1: Percentage predictive error (PE) and predictive log-likelihood (PL) for six data sets from
UCI computed using Laplace, Variational Bayes (VB), independent EP (IEP), as well as MCMC
using Gibbs sampler. Best results which are statistically indistinguishable from each other are high-
lighted in bold.

ABE Iris
PE PL PE PL

Laplace 4.000±3.063 -0.290±0.123 3.333±3.513 -0.132±0.052
VB 2.000±2.330 -0.164±0.026 3.333±3.513 -0.087±0.056
Gibbs 3.333±3.143 -0.158±0.037 3.333±3.513 -0.079±0.056
IEP 5.333±5.019 -0.139±0.050 3.333±3.513 -0.063±0.059

Wine Soybean
PE PL PE PL

Laplace 3.889±5.885 -0.258±0.045 0.000±0.000 -0.359±0.040
VB 2.222±3.884 -0.182±0.057 0.000±0.000 -0.158±0.034
Gibbs 4.514±5.757 -0.177±0.054 0.000±0.000 -0.158±0.039
IEP 3.889±5.885 -0.133±0.047 0.000±0.000 -0.172±0.037

Teach Wave
PE PL PE PL

Laplace 39.24±15.74 -0.836±0.072 17.50±9.17 -0.430±0.085
VB 41.12±9.92 -0.711±0.125 18.33±9.46 -0.410±0.100
Gibbs 42.41±6.22 -0.730±0.113 15.83±8.29 -0.380±0.116
IEP 42.54±11.32 -0.800±0.072 17.50±10.72 -0.383±0.107
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Figure 1: (a) Progression of MCMC and Variational methods in estimating covariance function
parameters, vertical axis denotes eachθd, horizontal axis is time (all log scale) (b) percentage er-
ror under the MCMC (gray) and Variational (black) schemes, (c) predictive likelihood under both
schemes.

is clear that after 100 calls to the sub-sampler the samples obtained reflect the relevance of the fea-
tures, however the deterministic steps taken in the variational routine achieve this in just over ten
computational steps of equal cost to the Metropolis sub-sampler. Figure 1 (b) shows the predictive
error incurred by the classifier and under the MCMC scheme 30,000 CPU seconds are required to
achieve the same level of predictive accuracy under the variational approximation obtained in 200
seconds (a factor of 150 times faster). This is due, in part, to the additional level of sampling from
the predictive prior which is required when using MCMC to obtain predictive posteriors. Because of
these results we now adopt the variational approximation for the following large scale experiment.

4 Protein Fold Prediction with GP Based Data Fusion

To illustrate the proposed GP based method of data integration a substantial protein fold classifica-
tion problem originally studied in [2] and more recently in [13] is considered. The task is to devise a
predictor of 27 distinct SCOP classes from a set (N= 314) of low homology protein sequences. Six
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Figure 2: (a) The prediction accuracy for each individual data set and the corresponding combi-
nations, (MA) employing inferred weights and (MF) employing a fixed weighting scheme (b) The
predictive likelihood achieved for each individual data set and with the integrated data (c) The pos-
terior mean values of the covariance function weightsα1 · · ·α6.

different data representations (each comprised of around 20 features) are available characterizing
(1) Amino Acid composition (AA); (2) Hydrophobicity profile (HP); (3) Polarity (PT); (4) Polariz-
ability (PY); (5) Secondary Structure (SS); (6) Van der Waals volume profile of the protein (VP).
In [2] a number of classifier and data combination strategies were employed in devising a multiway
classifier from a series of binary SVM’s. In the original work of [2] the best predictive accuracy
obtained on an independent set (N= 385) of low sequence similarity proteins was 53%. It was
noted after extensive careful manual experimentation by the authors that a combination of Gaussian
kernels each composed of the (AA), (SS) and (HP) datasets significantly improved predictive accu-
racy. More recently in [13] a heavily tunedad hocensemble combination of classifiers raised this
performance to 62% the best reported on this problem. We employ the proposed GP based method
(Variational approximation) in devising a classifier for this task where now we employ a composite
covariance function (shared across all 27 classes), a linear combination of RBF functions for each
data set. Figure (2) shows the predictive performance of the GP classifier in terms of percentage
prediction accuracy (a) and predictive likelihood on the independent test set (b). We note a sig-
nificant synergistic increase in performance when all data sets are combined and weighted (MA)
where the overall performance accuracy achieved is 62%. Although the 0-1 loss test error is the
same for an equal weighting of the data sets (MF) and that obtained using the proposed inference
procedure (MA) for (MA) there is an increase in predictive likelihood i.e. more confident correct
predictions being made. It is interesting to note that the weighting obtained (posterior mean forα)
Figure (2.c) weights the (AA) & (SS) with equal importance whilst other data sets play less of a role
in performance improvement.

5 Conclusions

In this paper we have considered the problem of integrating data sets within a classification setting, a
common scenario within many bioinformatics problems. We have argued that the GP prior provides
an elegant solution to this problem within the Bayesian inference framework. To obtain a computa-
tionally practical solution three approximate approaches to multi-class classification with GP priors,
i.e. Laplace, Variational and EP based approximations have been considered. It is found that EP and
Variational approximations approach the performance of a Gibbs sampler and indeed their predictive
performances are indistinguishable at the 5% level of significance. The full EP (FEP) approximation
employing LP has an excessive computational cost and there is little to recommend it in terms of
predictive performance over the independent assumption (IEP). Likewise there is little to distinguish
between IEP and VB approximations in terms of predictive performance in the multi-class classifi-
cation setting though further experiments on a larger number of data sets is desirable. We employ
VB to infer the optimal parameterized combinations of covariance functions for the protein fold
prediction problem over 27 possible folds and achieve state-of-the-art performance without recourse
to anyad hoctinkering and tuning and the inferred combination weights are intuitive in terms of
the information content of the highest weighted data sets. This is a highly practical solution to the
problem of heterogenous data fusion in the classification setting which employs Bayesian inferen-



tial semantics throughout in a consistent manner. We note that on the fold prediction problem the
best performance achieved is equaled without resorting to complex andad hocdata and classifier
weighting and combination schemes.
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