Adaptor Grammars: A Framework for Specifying
Compositional Nonparametric Bayesian Models

Mark Johnson Thomas L. Griffiths
Microsoft Research / Brown University University of California, Berkeley
Mar k_Johnson@ar own. edu TomGiffiths@Berkel ey. edu

Sharon Goldwater
Stanford University
sgwat er @nai | . com

Abstract

This paper introduces adaptor grammars, a class of probabilistic models of lan-
guage that generalize probabilistic context-free grammars (PCFGs). Adaptor
grammars augment the probabilistic rules of PCFGs with “adaptors” that can in-
duce dependencies among successive uses. With a particular choice of adaptor,
based on the Pitman-Yor process, nonparametric Bayesian models of language
using Dirichlet processes and hierarchical Dirichlet processes can be written as
simple grammars. We present a general-purpose inference algorithm for adaptor
grammars, making it easy to define and use such models, and illustrate how several
existing nonparametric Bayesian models can be expressed within this framework.

1 Introduction

Probabilistic models of language make two kinds of substantive assumptions: assumptions about
the structures that underlie language, and assumptions about the probabilistic dependencies in the
process by which those structures are generated. Typically, these assumptions are tightly coupled.
For example, in probabilistic context-free grammars (PCFGs), structures are built up by applying a
sequence of context-free rewrite rules, where each rule in the sequence is selected independently at
random. In this paper, we introduce a class of probabilistic models that weaken the independence
assumptions made in PCFGs, which we ealaptor grammars. Adaptor grammars insert addi-

tional stochastic processes calbthptorsinto the procedure for generating structures, allowing the
expansion of a symbol to depend on the way in which that symbol has been rewritten in the past.
Introducing dependencies among the applications of rewrite rules extends the set of distributions
over linguistic structures that can be characterized by a simple grammar.

Adaptor grammars provide a simple framework for defining nonparametric Bayesian models of
language. With a particular choice of adaptor, based on the Pitman-Yor process [1, 2, 3], simple
context-free grammars specify distributions commonly used in nonparametric Bayesian statistics,
such as Dirichlet processes [4] and hierarchical Dirichlet processes [5]. As a consequence, many
nonparametric Bayesian models that have been used in computational linguistics, such as models of
morphology [6] and word segmentation [7], can be expressed as adaptor grammars. We introduce a
general-purpose inference algorithm for adaptor grammars, which makes it easy to define nonpara-
metric Bayesian models that generate different linguistic structures and perform inference in those
models.

The rest of this paper is structured as follows. Section 2 introduces the key technical ideas we
will use. Section 3 defines adaptor grammars, while Section 4 presents some examples. Section 5
describes the Markov chain Monte Carlo algorithm we have developed to sample from the posterior

distribution over structures generated by an adaptor gran®oftware implementing this algorithm
is available from http://cog.brown.edu/"mj/Software.htm.

2 Background

In this section, we introduce the two technical ideas that are combined in the adaptor grammars

discussed here: probabilistic context-free grammars, and the Pitman-Yor process. We adopt a non-
standard formulation of PCFGs in order to emphasize that they are a kind of recursive mixture, and

to establish the formal devices we use to specify adaptor grammars.

2.1 Probabilistic context-free grammars

A context-free grammar (CFG) is a quadrupléN, W, R, S) whereN is a finite set ohonterminal
symbols, W is a finite set ofterminal symbols disjoint from IV, R is a finite set of productions or
rules of the formA — 3 whereA € N andg € (N U W)* (the Kleene closure of the terminal and
nonterminal symbols), anf € N is a distinguished nonterminal called titart symbol. A CFG
associates with each symhéle N U W a set7, of finite, labeled, ordered trees. Afis a terminal
symbol then7, is the singleton set consisting of a unit tree (i.e., containing a single node) labeled
A. The sets of trees associated with nonterminals are defined recursively as follows:

Ty = U TREEA(TB,,...,TB,)
A—B;,...B,€ERA

where R4 is the subset of productions iR with left-hand sideA, and TREEs(75,,..., 7B,) iS
the set of all trees whose root node is labeledhat haver immediate subtrees, and where ftte
subtree is a member Gis,. The set of trees generated by the CFGgsand the language generated
by the CFG is the setY IELD(t) : t € T} of terminal strings or yields of the trefg.

A probabilistic context-free grammar (PCFG) is a quintupléN, W, R, S, 0), where(N, W, R, S) is
a CFG and) is a vector of non-negative real numbers indexed by producfibsisch that

Z GAH,B = 1.
A—BERA

Informally, 6 4_, 3 is the probability of expanding the nonterminhusing the productiost — (. 6
is used to define a distributiahl 4 over the treeg 4 for each symboH. If A is a terminal symbol,
thenG 4 is the distribution that puts all of its mass on the unit tree labdled@he distributions= 4
for nonterminal symbols are defined recursively d¥gras follows:

Ga = > 0a.p,. B, TREEDISTA(Gp,,...,GB,) (1)
A—Bi1..Bn€Ra
where TREEDISTA(Gp,, ..., GBp,) is the distribution over REE4 (73, , ..., 7,) satisfying:

t ..t

That is, TREEDISTA (G, - .., G,) is a distribution over trees where the root node is labelehd
each subtree; is generated independently fro@; it is this assumption that adaptor grammars
relax. The distribution over trees generated by the PCK&sisand the probability of a string is the
sum of the probabilities of all trees with that string as their yields.

A n
TREEDISTA(Gl,...,Gn)< — > = HGi(tz)

2.2 The Pitman-Yor process

The Pitman-Yor process [1, 2, 3] is a stochastic process that generates partitions of integers. It is
most intuitively described using the metaphor of seating customers at a restaurant. Assume we have
a humbered sequence of tables, anohdicates the number of the table at which ttrecustomer is

seated. Customers enter the restaurant sequentially. The first customer sits at the fiest tabile,

and then + 1st customer chooses a table from the distribution

ma+b nk—a
Zn+1‘21,... y R m+1 + Z (2)

wherem is the number of different indices appearing in the sequenee(zy, ..., z,), ng is the
number of timesk appears inz, andd;, is the Kronecker delta function, i.e., the distribution that
puts all of its mass ot. The process is specified by two real-valued parameters, [0, 1] and

b > 0. The probability of a particular sequence of assignmentsiith a corresponding vector of
table countsr = (ny,...,ny,) IS

[T (alk = 1) +b) [17' (G —a)
[T (i +b)

From this it is easy to see that the distribution produced by the Pitman-Yor proeazskasgeable,

with the probability ofz being unaffected by permutation of the indices of the

Pz) = PY(n|a,b) = 3)

Equation 2 instantiates a kind of “rich get richer” dynamics, with customers being more likely to sit

at more popular tables. We can use the Pitman-Yor process to define distributions with this character
on any desired domain. Assume that every table in our restaurant has ayalaeed on it, with

those values being generated from an exchangeable distribtifieorhich we will refer to as the
generator. Then, we can sample a sequence of variaples(yi, . . ., y,) by using the Pitman-Yor
process to produce and settingy; = x.,. Intuitively, this corresponds to customers entering the
restaurant, and emitting the values of the tables they choose. The distribution defipdyy ohis

process will be exchangeable, and has two interesting special cases that depend on the parameters
of the Pitman-Yor process. When= 1, every customer is assigned to a new table, and,tlaee

drawn fromG. Whena = 0, the distribution on they; is that induced by the Dirichlet process [4],

a stochastic process that is commonly used in nonparametric Bayesian statistics, with concentration
parameteb and base distributio6.

We can also identify another scheme that generates the distribution outlined in the previous para-
graph. LetH be a discrete distribution produced by generating a set of atdinesn G and weights

on those atoms from the two-parameter Poisson-Dirichlet distribution [2]. We could then generate a
sequence of samplgsfrom H. If we integrate over values dff, the distribution ory is the same

as that obtained via the Pitman-Yor process [2, 3].

3 Adaptor grammars

In this section, we use the ideas introduced in the previous section to give a formal definition of
adaptor grammars. We first state this definition in full generality, allowing any choice of adaptor,
and then consider the case where the adaptor is based on the Pitman-Yor process in more detail.

3.1 A general definition of adaptor grammars

Adaptor grammars extend PCFGs by inserting an additional component caléeldzar into the
PCFG recursion (Equation 1). An adapt@ris a function from a distributiordz to a distribution
over distributions with the same support@sAn adaptor grammar is a sextuplé N, W, R, S, 0, C)
where(N, W, R, S, 6) is a PCFG and the adaptor vec@ris a vector of (parameters specifying)
adaptors indexed bjv. That is,C'4 maps a distribution over tre&s, to another distribution over
T4, for eachA € N. An adaptor grammar associates each symbol with two distribu@lopand

H 4 over7y. If Ais aterminal symbol thet 4 and H 4 are distributions that put all their mass on
the unit tree labeled!, while G4 and H 4 for nonterminal symbols are defined as follotvs:

Gy = Z 0a_B,. B, TREEDISTA(HB,,...,GH,) (4)
A—B1...B,ERA

Hy ~ Ca(Ga)

The intuition here is thafr 4 instantiates the PCFG recursion, while the introductiof/gaf makes

it possible to modify the independence assumptions behind the resulting distribution through the
choice of the adaptol'4. If the adaptor is the identity function, with 4 = G4, the result is

just a PCFG. However, other distributions over trees can be defined by choosing other adaptors. In
practice, we integrate ovéf 4, to define a single distribution on trees for any choice of adajgtors

1This definition allows an adaptor grammar to include self-recursive or mutually recursive CFG productions
(eg,.X - XYorX —Y Z,Y — X W). Such recursion complicates inference, so we restrict ourselves
to grammars where the adapted nonterminals are not recursive.

3.2 Pitman-Yor adaptor grammars

The definition given above allows the adaptors to be any appropriate process, but our focus in the

remainder of the paper will be on the case where the adaptor is based on the Pitman-Yor process.
Pitman-Yor processes can cache, i.e., increase the probability of, frequently occurring trees. The ca-
pacity to replace the independent selection of rewrite rules with an exchangeable stochastic process
enables adaptor grammars based on the Pitman-Yor process to define probability distributions over
trees that cannot be expressed using PCFGs.

A Pitman-Yor adaptor grammar (PYAG) is an adaptor grammar where the adap@re based on

the Pitman-Yor process. A Pitman-Yor adapfr(G 4) is the distribution obtained by generating a
set of atoms from the distributio 4 and weights on those atoms from the two-parameter Poisson-
Dirichlet distribution. A PYAG has an adapt6f, with parameters 4 andb 4 for each non-terminal

A € N. As noted above, ifi4 = 1 then the Pitman-Yor process is the identity function, A
expanded in the standard manner for a PCFG. Each adé@ptavill also be associated with two
vectors,x4 andny, that are needed to compute the probability distribution over tregsis the
sequence of previously generated subtrees with root nodes labeldaving been “cached” by the
grammar, these now have higher probability than other subtreghsts the counts associated with
the subtrees i 4. The adaptor state can thus be summarizedas- (a4,b4,%x4,104).

A Pitman-Yor adaptor grammar analysis u = (¢,¢) is a pair consisting of a parse treec 7g
together with an index functiof(-). If ¢ is a nonterminal node inlabeledA, then¢(q) gives the
index of the entry inx 4 for the subtree’ of ¢ rooted alg, i.e., such thak 4,(,) = t'. The sequence

of analysean = (uq,...,u,) generated by an adaptor grammar contains sufficient information to
compute the adaptor sta€&(u) after generatingr: the elements ok 4 are the distinctly indexed
subtrees ofx with root label A, and their frequencies 4 can be found by performing a top-down
traversal of each analysis in turn, only visiting the children of a npaéen the subanalysis rooted
atq is encountered for the first time (i.e., when it is addest £9.

4 Examples of Pitman-Yor adaptor grammars

Pitman-Yor adaptor grammars provide a framework in which it is easy to define compositional non-
parametric Bayesian models. The use of adaptors based on the Pitman-Yor process allows us to
specify grammars that correspond to Dirichlet processes [4] and hierarchical Dirichlet processes
[5]. Once expressed in this framework, a general-purpose inference algorithm can be used to calcu-
late the posterior distribution over analyses produced by a model. In this section, we illustrate how
existing nonparametric Bayesian models used for word segmentation [7] and morphological anal-
ysis [6] can be expressed as adaptor grammars, and describe the results of applying our inference
algorithm in these models. We postpone the presentation of the algorithm itself until Section 5.

4.1 Dirichlet processes and word segmentation

Adaptor grammars can be used to define Dirichlet processes with discrete base distributions. It is
straightforward to write down an adaptor grammar that defines a Dirichlet process over all strings:

Word — Chars
Chars — Char (5)
Chars — Chars Char

The productions expandir@har to all possible characters are omitted to save space. The start sym-
bol for this grammar iSVord. The parameterscy,,, andacpas are set tol, so the adaptors for
Char andChars are the identity function anfl ¢,..s = Gcnars iS the distribution over words pro-
duced by sampling each character independently (i.e., a “monkeys at typewriters” model). Finally,
awordq IS Set to0, so the adaptor foWord is a Dirichlet process with concentration paramétes, .

This grammar generates all possible strings of characters and assigns them simple right-branching
structures of no particular interest, but ¥Werd adaptor changes their distribution to one that reflects

the frequencies of previously generated words. Initially, Wed adaptor is empty (i.eXxworq iS

empty), so the first word; generated by the grammar is distributed accordingd¢q..s- However,

the second word can be generated in two ways: either it is retrieved from the adaptor’s cache (and

hence iss;) with probability1/(1 4 bwora), OF else with probabilitywora /(1 + bword) it is @ new
word generated b¥7cy..s. After n words have been emittedlyord puts massi/(n + bworda) ON
those words and reserves mags,a/(n + bwora) for new words (i.e., generated Bhars).

We can extend this grammar to a simple unigram word segmentation model by adding the following
productions, changing the start labeM®rds and settingiweras = 1.

Words — Word
Words — Word Words

This grammar generates sequence®ofd subtrees, so it implicitly segments strings of terminals
into a sequence of words, and in fact implements the word segmentation model of [7]. We applied the
grammar above with the algorithm described in Section 5 to a corpus of unsegmented child-directed
speech [8]. The input strings are sequences of phonemes sWAt>. A typical parse might
consist ofWords dominating threéVord subtrees, each in turn dominating the phoneme sequences
Wat Iz and It respectively. Using the sampling procedure described in Section Sbwithy =

30, we obtained a segmentation which identified words in unsegmented input with 0.64 precision,
0.51 recall, and 0.56 f-score, which is consistent with the results presented for the unigram model
of [7] on the same data.

4.2 Hierarchical Dirichlet processes and morphological analysis

An adaptor grammar with more than one adapted nonterminal can implement a hierarchical Dirichlet
process. A hierarchical Dirichlet process that usesihed process as a generator can be defined

by adding the productiofVordl — Word to (5) and makingVord1 the start symbol. Informally,
Word1 generates words either from its own cachg,.q1 or from theWord distribution. Word

itself generates words either fragjy,.q or from the “monkeys at typewriters” mod€hars.

A slightly more elaborate grammar can implement the morphological analysis described in [6].
Words are analysed into stem and suffix substrings; e.g., the jwordingis analysed as a stem

jump and a suffixing. As [6] notes, one of the difficulties in constructing a probabilistic account

of such suffixation is that the relative frequencies of suffixes varies dramatically depending on the
stem. That paper used a Pitman-Yor process to effectively dampen this frequency variation, and
the adaptor grammar described here does exactly the same thing. The productions of the adaptor
grammar are as follows, wheféhars is “monkeys at typewriters” once again:

Word — Stem Suffix
Word — Stem

Stem — Chars
Suffix — Chars

We now give an informal description of how samples might be generated by this grammar. The
nonterminalsWord, Stem andSuffix are associated with Pitman-Yor adaptors. Stems and suffixes
that occur in many words are associated with highly probable cache entries, and so have much higher
probability than under th€hars PCFG subgrammar.

Figure 1 depicts a possible state of the adaptors in this adaptor grammar after generating the three
wordswalking, jumpingandwalked Such a state could be generated as follows. Before any strings
are generated all of the adaptors are empty. To generate the first word we must samleyfam

as there are no entries in tord adaptor. Sampling fronflyy,.q requires sampling fronfr e,

and perhaps als@sumx, and eventually from th€hars distributions. Supposing that these return

walk anding asStem and Suffix strings respectively, the adaptor entries after generating the first
word walking consist of the first entries fdVord, Stem andSuffix.

In order to generate anoth&/ord we first decide whether to select an existing word from the
adaptor, or whether to generate the word ugiRg,.q. Suppose we choose the latter. Then we must
sample fromHsq.,,, and perhaps also frofig,mx. Suppose we choose to generate the new stem
Jjumpfrom Ggter, (resulting in the second entry in tBeem adaptor) but choose to reuse the existing
Suffix adaptor entry, resulting in the wojdmping The third wordwalkedis generated in a similar
fashion: this time the stem is the first entry in $@em adaptor, but the suffiedis generated from
Gsumx @nd becomes the second entry in fhefix adaptor.

Word

N

Word

N
Suffix \
TN

Word
Word:

- Stem Suffix<

Stem:

7 / /
/ /
Suffix: o 0o 0

Figure 1: A depiction of a possible state of the Pitman-Yorpaols in the adaptor grammar of
Section 4.2 after generatingalking, jumpingandwalked

The model described in [6] is more complex than the one just described because it uses a hidden
“morphological class” variable that determines which stem-suffix pair is selected. The morpholog-
ical class variable is intended to capture morphological variation; e.g., the present continuous form
skippingis formed by suffixingoinginstead of theng form using inwalkingandjumping This can

be expressed using an adaptor grammar with productions that instantiate the following schema:

Word — Word, Stem, — Chars
Word, — Stem, Suffix, Suffix, — Chars
Word, — Stem,

Here c ranges over the hidden morphological classes, and the productions exp&heirgand
Char are as before. We set the adaptor paramejg,q = 1 for the start nonterminal symbol
Word, so we adapt th&ord,, Stem,. andSuffix, nonterminals for each hidden class

Following [6], we used this grammar with six hidden classés segment 170,015 orthographic

verb tokens from the Penn Wall Street Journal corpus, and seb andb = 500 for the adapted
nonterminals. Although we trained on all verbs in the corpus, we evaluated the segmentation pro-
duced by the inference procedure described below on just the verbs whose infinitival stems were a
prefix of the verb itself (i.e., we evaluate#tippingbut ignoredwrote since its stenwrite is not a

prefix). Of the 116,129 tokens we evaluated, 70% were correctly segmented, and of the 7,170 verb
types, 66% were correctly segmented. Many of the errors were in fact linguistically plausible: e.g.,
easedvas analysed as a stezasfollowed by a suffixed permitting the grammar to also generate
easingaseasplusing.

5 Bayesian inference for Pitman-Yor adaptor grammars

The results presented in the previous section were obtained by using a Markov chain Monte Carlo
(MCMC) algorithm to sample from the posterior distribution over PYAG analyses(u1, . . ., uy)

given strings = (s1, ..., s,), wheres; € W* andu; is the analysis of,. We assume we are given

a CFG(N, W, R, S), vectors of Pitman-Yor adaptor parametarandb, and a Dirichlet prior with
hyperparameters over production probabilitieg, i.e.:

1
P = || || 04_5%4—2"1 where:
AEN A—BERA

HA—»ﬁeRA F(O‘Aﬂﬁ)

F(ZA—»[E‘ERA aA-p)

with T'(z) being the generalized factorial function, amd is the subsequence afindexed byR 4
(i.e., corresponding to productions that expaf)d The joint probability ofu under this PYAG, in-

tegrating over the distributiond 4 generated from the two-parameter Poisson-Dirichlet distribution
associated with each adaptor, is

Pala,a,b) = []
AeN
where f4_.3(x.4) is the number of times the root node of a treexin is expanded by production
A — 3, andf4(x4) is the sequence of such counts (indexed lay R 4). Informally, the first term
in (6) is the probability of generating the topmost node in each analysis in adapt(ihe rest of
the tree is generated by another adaptor), while the second term (from Equation 3) is the probability
of generating a Pitman-Yor adaptor with counts.

B(aa)

B(OzA + fA(XA))

Bl P (ma(wla. b ©)

The posterior distribution over analysagjiven stringss is obtained by normalizing Ry «, a, b)

over all analysea that haves as their yield. Unfortunately, computing this distribution is intractable.
Instead, we draw samples from this distribution using a component-wise Metropolis-Hastings sam-
pler, proposing changes to the analysjsfor each strings; in turn. The proposal distribution is
constructed to approximate the conditional distribution ayegivens; and the analyses of all other
stringsu_;, P(u;|s;, u_;). Since there does not seem to be an efficient (dynamic programming) al-
gorithm for directly sampling from R(|s;, u_;),? we construct a PCFG’(u_;) on the fly whose

parse trees can be transformed into PYAG analyses, and use this as our proposal distribution.

5.1 The PCFG approximationG'(u_;)

A PYAG can be viewed as a special kind of PCFG which adapts its production probabilities depend-
ing on its history. The PCFG approximatiéfi(u_;) = (N, W, R’, S, ¢’) is a static snapshot of the
adaptor grammar given the sentenses(i.e., all of the sentences inexcepts;). Given an adaptor
grammarH = (N, W, R, S, C), let:

R = RU |J{A— YELD(z): 2 €xa}
AEN
, [maaa+ba fasp(xa) +aasp N4, —aA
o - oy (e
ng+ba mA+ZA—>6€RA A3 na+ba

E:YIELD(X 4,)=8

where YiELD(z) is the terminal string or yield of the treeandm 4 is the length ok 4. R’ contains

all of the productionsR, together with productions representing the adaptor engkrie$or each

A € N. These additional productions rewrite directly to strings of terminal symbols, and their
probability is the probability of the adaptéts generating the corresponding valug, .

The two terms to the left of the summation specify the probability of selecting a production from
the original productiong?. The first term is the probability of adaptét, generating a new value,

and the second term is the MAP estimate of the production’s probability, estimated from the root
expansions of the trees,.

It is straightforward to map parses of a stringroduced byG’ to corresponding adaptor analyses

for the adaptor grammal (it is possible for a single production dt’' to correspond to several
adaptor entries so this mapping may be non-deterministic). This means that we can use the PCFG
G’ with an efficient PCFG sampling procedure [9] to generate possible adaptor grammar analyses
for u;.

5.2 A Metropolis-Hastings algorithm

The previous section described how to sample adaptor analylsgsa strings from a PCFG ap-
proximationG’ to an adaptor grammadi. We use this as our proposal distribution in a Metropolis-

2The independence assumptions of PCFGs play an important role in making dynamic programming possi-
ble. In PYAGS, the probability of a subtree adapts dynamically depending on the other subtigginding
those inu,;.

Hastings algorithm. Ii; is the current analysis 6f andu) # u; is a proposal analysis sampled
from P(U;]s;, G'(u_;)) we accept the proposa} with probability A(u;, u}), where:
) P'|a,a,b)P(u;|s;, G'(u_;))
A i / — 1 5 9
(s,) mm{ " P(ula,a,b) P(u] | s;, G'(u_,))
whereu’ is the same aa except that, replaces;. Except when the number of training strings

is very small, we find that only a tiny fraction (less thHit) of proposals are rejected, presumably
because the probability of an adaptor analysis does not change significantly within a single string.

Our inference procedure is as follows. Given a set of training stgnge choose an initial set of
analyses for them at random. At each iteration we pick a skjrfgpom s at random, and sample a
parse fors; from the PCFG approximatio@’ (u_;), updatingu when the Metropolis-Hastings pro-
cedure accepts the proposed analysis. At convergeneegtaduced by this procedure are samples
from the posterior distribution over analyses givwerand samples from the posterior distribution
over adaptor stategS(u) and production probabilitie® can be computed from them.

6 Conclusion

The strong independence assumptions of probabilistic context-free grammars tightly couple com-
positional structure with the probabilistic generative process that produces that structure. Adaptor
grammars relax that coupling by inserting an additional stochastic component into the generative
process. Pitman-Yor adaptor grammars use adaptors based on the Pitman-Yor process. This choice
makes it possible to express Dirichlet process and hierarchical Dirichlet process models over dis-
crete domains as simple context-free grammars. We have proposed a general-purpose inference
algorithm for adaptor grammars, which can be used to sample from the posterior distribution over
analyses produced by any adaptor grammar. While our focus here has been on demonstrating that
this algorithm can be used to produce equivalent results to existing nonparametric Bayesian models
used for word segmentation and morphological analysis, the great promise of this framework lies in
its simplification of specifying and using such models, providing a basic toolbox that will facilitate

the construction of more sophisticated models.

Acknowledgments

This work was performed while all authors were at the Cognitive and Linguistic Sciences Depart-
ment at Brown University and supported by the following grants: NIH R01-MH60922 and RO1-

DC000314, NSF 9870676, 0631518 and 0631667, the DARPA CALO project and DARPA GALE

contract HR0011-06-2-0001.

References
[1] J. Pitman. Exchangeable and partially exchangeable random partifrvolsability Theory and Related
Fields, 102:145-158, 1995.

[2] J. Pitman and M. Yor. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator.
Annals of Probability, 25:855-900, 1997.

[3] H. Ishwaran and L. F. James. Generalized weighted Chinese restaurant processes for species sampling
mixture models Satistica Snica, 13:1211-1235, 2003.

[4] T. Ferguson. A Bayesian analysis of some nonparametric probl&hesAnnals of Statistics, 1:209-230,
1973.

[5] Y. W. Teh, M. Jordan, M. Beal, and D. Blei. Hierarchical Dirichlet processksirnal of the American
Satistical Association, to appear.

[6] S. Goldwater, T. L. Griffiths, and M. Johnson. Interpolating between types and tokens by estimating power-
law generators. Idvancesin Neural |nformation Processing Systems 18, 2006.

[7] S. Goldwater, T. L. Griffiths, and M. Johnson. Contextual dependencies in unsupervised word segmenta-
tion. In Proceedings of the 44th Annual Meeting of the Association for Computational Linguistics, 2006.

[8] M. Brent. An efficient, probabilistically sound algorithm for segmentation and word discoteghine
Learning, 34:71-105, 1999.

[9] J. Goodman. Parsing inside-out. PhD thesis, Harvard University, 1998. available from
http://research.microsoft.com/"joshuago/.

