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Abstract

We present a local learning approach for clustering. The basic idea is that a good
clustering result should have the property that the cluster label of each data point
can be well predicted based on its neighboring data and their cluster labels, us-
ing current supervised learning methods. An optimization problem is formulated
such that its solution has the above property. Relaxation and eigen-decomposition
are applied to solve this optimization problem. We also briefly investigate the pa-
rameter selection issue and provide a simple parameter selection method for the
proposed algorithm. Experimental results are provided to validate the effective-
ness of the proposed approach.

1 Introduction

In the multi-class clustering problem, we are givenn data points,x1, . . . ,xn, and a positive integer
c. The goal is to partition the given dataxi (1 ≤ i ≤ n) into c clusters, such that different clusters
are in some sense “distinct” from each other. Herexi ∈ X ⊆ Rd is the input data,X is the input
space.

Clustering has been widely applied for data analysis tasks. It identifies groups of data, such that data
in the same group are similar to each other, while data in different groups are dissimilar. Many clus-
tering algorithms have been proposed, including the traditional k-means algorithm and the currently
very popular spectral clustering approach [3, 10].

Recently the spectral clustering approach has attracted increasing attention due to its promising
performance and easy implementation. In spectral clustering, the eigenvectors of a matrix are used
to reveal the cluster structure in the data. In this paper, we propose a clustering method that also has
this characteristic. But it is based on the local learning idea. Namely, the cluster label of each data
point should be well estimated based on its neighboring data and their cluster labels, using current
supervised learning methods. An optimization problem is formulated whose solution can satisfy this
property. Relaxation and eigen-decomposition are applied to solve this problem. As will be seen
later, the proposed algorithm is also easy to implement while it shows better performance than the
spectral clustering approach in the experiments.

The local learning idea has already been successfully applied in supervised learning problems [1].
This motivates us to incorporate it into clustering, an important unsupervised learning problem.
Adapting valuable supervised learning ideas for unsupervised learning problems can be fruitful. For
example, in [9] the idea of large margin, which has proved effective in supervised learning, is applied
to the clustering problem and good results are obtained.

The remaining of this paper is organized as follows. In section 2, we specify some notation that will
be used in later sections. The details of our local learning based clustering algorithm are presented
in section 3. Experimental results are then provided in section 4, where we also briefly investigate
the parameter selection issue for the proposed algorithm. Finally we conclude the paper in the last
section.



2 Notations

In the following, “neighboring points” or “neighbors” ofxi simply refers the nearest neighbors of
xi according to some distance metric.

n the total number of data.
c the number of clusters to be obtained.
Cl the set of points contained in thel-th cluster,1 ≤ l ≤ c.
Ni the set of neighboring points ofxi, 1 ≤ i ≤ n, not includingxi itself.
ni |Ni| , i.e. the number of neighboring points ofxi.
Diag(M) the diagonal matrix with the same size and the same diagonal elements asM,

whereM is an arbitrary square matrix.

3 Clustering via Local Learning

3.1 Local Learning in Supervised Learning

In supervised learning algorithms, a model is trained with all the labeled training data and is then
used to predict the labels of unseen test data. These algorithms can be called global learning algo-
rithms as the whole training dataset is used for training. In contrast, in local learning algorithms
[1], for a given test data point, a model is built only with its neighboring training data, and then the
label of the given test point is predicted by this locally learned model. It has been reported that local
learning algorithms often outperform global ones [1] as the local models are trained only with the
points that are related to the particular test data. And in [8], it is proposed that locality is a crucial
parameter which can be used for capacity control, in addition to other capacity measures such as the
VC dimension.

3.2 Representation of Clustering Results

The procedure of our clustering approach largely follows that of the clustering algorithms proposed
in [2, 10]. We also use aPartition Matrix (PM) P = [pil] ∈ {0, 1}n×c to represent a clustering
scheme. Namelypil = 1 if xi (1 ≤ i ≤ n) is assigned to clusterCl (1 ≤ l ≤ c), otherwisepil = 0.
So in each row ofP, there is one and only one element that equals 1, all the others equal 0.

As in [2, 10], instead of computing the PM directly to cluster the given data, we compute aScaled
Partition Matrix (SPM)F defined by:F = P(P>P)−

1
2 . (The reason for this will be given later.)

As P>P is diagonal, thel-th (1 ≤ l ≤ c) column ofF is just thel-th column ofP multiplied by
1/

√
|Cl|. Clearly we have

F>F = (P>P)−
1
2 P>P(P>P)−

1
2 = I (1)

whereI is the unit matrix. Given a SPMF, we can easily restore the corresponding PMP with a
mappingP (·) defined as

P = P (F) = Diag(FF>)−
1
2 F (2)

In the following, we will also expressF as:F = [f1, . . . , f c] ∈ Rn×c, wheref l = [f l
1, . . . , f

l
n]> ∈

Rn, 1 ≤ l ≤ c, is thel-th column ofF.

3.3 Basic Idea

The good performance of local learning methods indicates thatthe label of a data point can be well
estimated based on its neighbors.Based on this, in order to find a good SPMF (or equivalently a
good clustering result), we propose to solve the following optimization problem:

min
F∈Rn×c

c∑
l=1

n∑
i=1

(f l
i − ol

i(xi))2 =
c∑

l=1

∥∥f l − ol
∥∥2

(3)

subject to F is a scaled partition matrix (4)



whereol
i(·) denotesthe output function of aKernel Machine(KM), trained with some supervised

kernel learning algorithms [5], using the training data{(xj , f
l
j)}xj∈Ni

, wheref l
j is used as the label

of xj for training this KM. In (3),ol = [ol
1(x1), . . . , ol

n(xn)]> ∈ Rn. Details on how to compute
ol

i(xi) will be given later. For the functionol
i(·), the superscriptl indicates that it is for thel-th

cluster, and the subscripti means the KM is trained with the neighbors ofxi. Hence apart fromxi,
the training data{(xj , f

l
j)}xj∈Ni also influence the value ofol

i(xi). Note thatf l
j (xj ∈ Ni) are also

variables of the problem (3)–(4).

To explain the idea behind problem (3)–(4), let us consider the following problem:

Problem 1. For a data pointxi and a clusterCl, given the values off l
j at xj ∈ Ni, what should be

the proper value off l
i at xi?

This problem can be solved by supervised learning. In particular, we can build a KM with the
training data{(xj , f

l
j)}xj∈Ni . As mentioned before, letol

i(·) denote the output function of this
locally learned KM, then the good performance of local learning methods mentioned above implies
thatol

i(xi) is probably a good guess off l
i , or the properf l

i should be similar asol
i(xi).

Therefore, a good SPMF should have the following property:For anyxi (1 ≤ i ≤ n) and any
clusterCl (1 ≤ l ≤ c), the value off l

i can be well estimated based on the neighbors ofxi. That is,
f l

i should be similar to the output of the KM that is trained locally with the data{(xj , f
l
j)}xj∈Ni .

This suggests that in order to find a good SPMF, we can solve the optimization problem (3)–(4).

We can also explain our approach intuitively as follows. A good clustering method will put the
data into well separated clusters. This implies that it is easy to predict the cluster membership of a
point based on its neighbors. If, on the other hand, a cluster is split in the middle, then there will be
points at the boundary for which it is hard to predict which cluster they belong to. So minimizing
the objective function (3) favors the clustering schemes that do not split the same group of data into
different clusters.

Moreover, it is very difficult to construct local clustering algorithms in the same way as for su-
pervised learning. In [1], a local learning algorithm is obtained by running a standard supervised
algorithm on a local training set. This does not transfer to clustering. Rather than simply applying
a given clustering algorithm locally and facing the difficulty to combine the local solution into a
global one, problem (3)–(4) seeks a global solution with the property that locally for each point,
its cluster assignment looks like the solution that we would obtain by local learning if we knew the
cluster assignment of its neighbors.

3.4 Computingol
i(xi)

Having explained the basic idea, now we have to make the problem (3)–(4) more specific to build
a concrete clustering algorithm. So we consider, based onxi and{(xj , f

l
j)}xj∈Ni , how to com-

puteol
i(xi) with kernel learning algorithms. It is well known that applying many kernel learning

algorithms on{(xj , f
l
j)}xj∈Ni

will result in a KM, according to whichol
i(xi) can be calculated as:

ol
i(xi) =

∑
xj∈Ni

βl
ijK(xi,xj) (5)

whereK : X × X → R is a positive definite kernel function [5], andβl
ij are the expansion coef-

ficients. In general, any kernel learning algorithms can be applied to compute the coefficientsβl
ij .

Here we choose the ones that make the problem (3)–(4) easy to solve. To this end, we adopt the
Kernel Ridge Regression(KRR) algorithm [6], with which we can obtain an analytic expression of
ol

i(xi) based on{(xj , f
l
j)}xj∈Ni

. Thus for eachxi, we need to solve the following KRR training
problem:

min
βl

i∈Rni

λ(βl
i)
>Kiβ

l
i +

∥∥∥Kiβ
l
i − f l

i

∥∥∥2

(6)

whereβl
i ∈ Rni is the vector of the expansion coefficients, i.e.βl

i = [βl
ij ]
> for xj ∈ Ni, λ > 0 is

the regularization parameter,f l
i ∈ Rni denotes the vector

[
f l

j

]>
for xj ∈ Ni, andKi ∈ Rni×ni is

the kernel matrix overxj ∈ Ni, namelyKi = [K(xu,xv)], for xu,xv ∈ Ni.



Solving problem (6) leads toβl
i = (Ki + λI)−1f l

i . Substituting it into (5), we have

ol
i(xi) = k>i (Ki + λI)−1f l

i (7)

whereki ∈ Rni denotes the vector[K(xi,xj)]> for xj ∈ Ni. Equation (7) can be written as a
linear equation:

ol
i(xi) = α>i f l

i (8)
whereαi ∈ Rni is computed as

α>i = k>i (Ki + λI)−1 (9)
It can be seen thatαi is independent off l

i and the cluster indexl, and it is different for differentxi.
Note thatf l

i is a sub-vector off l, so equation (8) can be written in a compact form as:

ol = Af l (10)

whereol and f l are the same as in (3), while the matrixA = [aij ] ∈ Rn×n is constructed as
follows: ∀xi andxj , 1 ≤ i, j ≤ n, if xj ∈ Ni, thenaij equals the corresponding element ofαi

in (9), otherwiseaij equals0. Similar asαi, the matrixA is also independent off l and the cluster
indexl.

Substituting (10) into (3) results in a more specific optimization problem:

min
F∈Rn×c

c∑
l=1

∥∥f l −Af l
∥∥2

=
c∑

l=1

(f l)>Tf l = trace(F>TF) (11)

subject to F is a scaled partition matrix (12)

where
T = (I−A)>(I−A) (13)

Thus, based on the KRR algorithm, we have transformed the objective function (3) into the quadratic
function (11).

3.5 Relaxation

Following the method in [2, 10], we relaxF into the continuous domain and combine the property
(1) into the problem (11)–(12), so as to turn it into a tractable continuous optimization problem:

min
F∈Rn×c

trace(F>TF) (14)

subject to F>F = I (15)

Let F? ∈ Rn×c denote the matrix whose columns consist ofc eigenvectors corresponding to thec
smallest eigenvalues of the symmetric matrixT. Then it is known that the global optimum of the
above problem is not unique, but a subspace spanned by the columns ofF? through orthonormal
matrices [10]:

{F?R : R ∈ Rc×c, R>R = I} (16)
Now we can see that working on the SPMF allows us to make use of the property (1) to construct a
tractable continuous optimization problem (14)–(15), while working directly on the PMP does not
have this advantage.

3.6 Discretization: Obtaining the Final Clustering Result

According to [10], to get the final clustering result, we need to find a true SPMF which is close to
the subspace (16). To this end, we apply the mapping (2) onF? to obtain a matrixP? = P (F?).
It can be easily proved that for any orthogonal matrixR ∈ Rc×c, we haveP (F?R) = P?R. This
equation implies that if there exists an orthogonal matrixR such thatF?R is close to a true SPM
F, thenP?R should also be near to the corresponding discrete PMP. To find such an orthogonal
matrixR and the discrete PMP, we can solve the following optimization problem [10]:

min
P∈Rn×c,R∈Rc×c

‖P−P?R‖2 (17)

subject to P ∈ {0, 1}n×c, P1c = 1n (18)

R>R = I (19)



where1c and1n denotethec dimensional and then dimensional vectors of all1’s respectively.

Details on how to find a local minimum of the above problem can be found in [10]. In [3], a method
using k-means algorithm is proposed to find a discrete PMP based onP?. In this paper, we adopt
the approach in [10] to get the final clustering result.

3.7 Comparison with Spectral Clustering

Our Local Learning based Clustering Algorithm(LLCA) also uses the eigenvalues of a matrix (T
in (13)) to reveal the cluster structure in the data, therefore it can be regarded as belonging to the
category of spectral clustering approaches.

The matrix whose eigenvectors are used for clustering plays the key role in spectral clustering. In
LLCA, this matrix is computed based on the local learning idea: a clustering result is obtained based
on whether the label of each point can be well estimated base on its neighbors with a well established
supervised learning algorithm. This is different from the graph partitioning based spectral clustering
method. As will be seen later, LLCA and spectral clustering have quite different performance in the
experiments.

LLCA needs one additional step: computing the matrixT in the objective function (14). The re-
maining steps, i.e. computing the eigenvectors ofT and discretization (cf. section 3.6) are the same
as in the spectral clustering approach. According to equation (13), to computeT, we need to com-
pute the matrixA in (10), which in turn requires calculatingαi in (9) for eachxi. We can see that
this is very easy to implement andA can be computed with time complexityO(

∑n
i=1 n3

i ).

In practice, just like in the spectral clustering method, the number of neighborsni is usually set to a
fixed small valuek for all xi in LLCA. In this case,A can be computed efficiently with complexity
O(nk3), which scales linearly with the number of datan. So in this case the main calculation is to
obtain the eigenvectors ofT. Furthermore, according to (13), the eigenvectors ofT are identical to
the right singular vectors ofI−A, which can be calculated efficiently because nowI−A is sparse,
each row of which contains justk + 1 nonzero elements. Hence in this case, we do not need to
computeT explicitly.

We conclude that LLCA is easy to implement, and in practice, the main computational load is to
compute the eigenvectors ofT, therefore the LLCA and the spectral clustering approach have the
same order of time complexity in most practical cases.1

4 Experimental Results

In this section, we empirically compare LLCA with the spectral clustering approach of [10] as well
as with k-means clustering. For the last discretization step of LLCA (cf. section 3.6), we use
the same code contained in the implementation of the spectral clustering algorithm, available at
http://www.cis.upenn.edu/∼jshi/software/.

4.1 Datasets

The following datasets are used in the experiments.

• USPS-3568: The examples of handwritten digits 3, 5, 6 and 8 from the USPS dataset.

• USPS-49: The examples of handwritten digits 4 and 9 from the USPS dataset.

• UMist: This dataset consists of face images of 20 different persons.

• UMist5: The data from the UMist dataset, belonging to class 4, 8, 12, 16 and 20.

1Sometimeswe are also interested in a special case:ni = n− 1 for all xi, i.e. all the data are neighboring
to each other. In this case, it can be proved thatT = Q>Q, whereQ = (Diag(B))−1B with B = I −
K(K + λI)−1, whereK is the kernel matrix over all the data points. So in this caseT can be computed with
time complexityO(n3). This is the same as computing the eigenvectors of the non-sparse matrixT. Hence the
order of the overall time complexity is not increased by the step of computingT, and the above statements still
hold.



• News4a: The text documents from the 20-newsgroup dataset, covering the topics inrec.∗,
which contains autos, motorcycles, baseball and hockey.

• News4b: The text documents from the 20-newsgroup dataset, covering the topics insci.∗,
which contains crypt, electronics, med and space.

Further details of these datasets are provided in Table 1.

Table 1: Descriptions of the datasets used in the experiments. For each dataset, the number of data
n, the data dimensionalityd and the number of classesc are provided.

Dataset USPS-3568 USPS-49 UMist UMist5 News4a News4b
n 3082 1673 575 140 3840 3874
d 256 256 10304 10304 4989 5652
c 4 2 20 5 4 4

In News4a and New4b, each document is represented by a feature vector, the elements of which are
relatedto the frequency of occurrence of different words. For these two datasets, we extract a subset
of each of them in the experiments by ignoring the words that occur in 10 or fewer documents and
then removing the documents that have 10 or fewer words. This is why the data dimensionality are
different in these two datasets, although both of them are from the 20-newsgroup dataset.

4.2 Performance Measure

In the experiments, we set the number of clusters equal to the number of classesc for all the clus-
tering algorithms. To evaluate their performance, we compare the clusters generated by these algo-
rithms with the true classes by computing the following two performance measures.

4.2.1 Normalized Mutual Information

TheNormalized Mutual Information(NMI) [7] is widely used for determining the quality of clusters.
For two random variableX andY, the NMI is defined as [7]:

NMI(X,Y) =
I(X,Y)√
H(X)H(Y)

(20)

whereI(X,Y) is the mutual information betweenX andY, while H(X) andH(Y) are the en-
tropies ofX andY respectively. One can see thatNMI(X,X) = 1, which is the maximal possible
value of NMI. Given a clustering result, the NMI in (20) is estimated as [7]:

NMI =

∑c
l=1

∑c
h=1 nl,hlog

(
n·nl,h

nln̂h

)
√(∑c

l=1 nllog
nl

n

) (∑c
h=1 n̂hlog n̂h

n

) (21)

wherenl denotesthe number of data contained in the clusterCl (1 ≤ l ≤ c), n̂h is the number of data
belonging to theh-th class (1≤ h ≤ c), andnl,h denotes the number of data that are in the intersec-
tion between the clusterCl and theh-th class. The value calculated in (21) is used as a performance
measure for the given clustering result. The larger this value, the better the performance.

4.2.2 Clustering Error

Another performance measure is theClustering Error. To compute it for a clustering result, we need
to build a permutation mapping functionmap(·) that maps each cluster index to a true class label.
The classification error based onmap(·) can then be computed as:

err = 1−
∑n

i=1 δ(yi,map(ci))
n

whereyi andci arethe true class label and the obtained cluster index ofxi respectively,δ(x, y) is
the delta function that equals 1 ifx = y and equals 0 otherwise. The clustering error is defined as the
minimal classification error among all possible permutation mappings. This optimal matching can
be found with the Hungarian algorithm [4], which is devised for obtaining the maximal weighted
matching of a bipartite graph.



4.3 Parameter Selection

In the spectral clustering algorithm, first a graph ofn nodes is constructed, each node of which
corresponds to a data point, then the clustering problem is converted into a graph partition problem.
In the experiments, for the spectral clustering algorithm, a weightedk-nearest neighbor graph is
employed, wherek is a parameter searched over the grid:k ∈ {5, 10, 20, 40, 80}. On this graph,
the edge weight between two connected data points is computed with a kernel function, for which
the following two kernel functions are tried respectively in the experiments.

The cosine kernel:

K1(xi,xj) =
x>i xj

‖xi‖ ‖xj‖
(22)

and the Gaussian kernel:

K2(xi,xj) = exp(− 1
γ
‖xi − xj‖2) (23)

Theparameterγ in (23) is searched in:γ ∈ {σ2
0/16, σ2

0/8, σ2
0/4, σ2

0/2, σ2
0 , 2σ2

0 , 4σ2
0 , 8σ2

0 , 16σ2
0},

whereσ0 is the mean norm of the given dataxi, 1 ≤ i ≤ n.

For LLCA, the cosine function (22) and the Gaussian function (23) are also adopted respectively
as the kernel function in (5). The number of neighborsni for all xi is set to a single valuek. The
parametersk andγ are searched over the same grids as mentioned above. In LLCA, there is another
parameterλ (cf. (6)), which is selected from the grid:λ ∈ {0.1, 1, 1.5}.
Automatic parameter selection for unsupervised learning is still a difficult problem. We propose a
simple parameter selection method for LLCA as follows. For a clustering result obtained with a set
of parameters, which in our case consists ofk andλ when the cosine kernel (22) is used, ork, γ
andλ when the Gaussian kernel (23) is used, we compute its corresponding SPMF and then use
the objective value (11) as the evaluation criteria. Namely, the clustering result corresponding to the
smallest objective value is finally selected for LLCA.

For simplicity, on each dataset, we will just report the best result of spectral clustering. For LLCA,
both the best result (LLCA1) and the one obtained with the above parameter selection method
(LLCA2) will be provided. No parameter selection is needed for the k-means algorithm, since
the number of clusters is given.

4.4 Numerical Results

Numerical results are summarized in Table 2. The results on News4a and News4b datasets show
that different kernels may lead to dramatically different performance for both spectral clustering
and LLCA. For spectral clustering, the results on USPS-3568 are also significantly different for
different kernels. It can also be observed that different performance measures may result in different
performance ranks of the clustering algorithms being investigated. This is reflected by the results
on USPS-3568 when the cosine kernel is used and the results on News4b when the Gaussian kernel
is used. Despite all these phenomena, we can still see from Table 2 that both LLCA1 and LLCA2
outperform the spectral clustering and the k-means algorithm in most cases.

We can also see that LLCA2 fails to find good parameters on News4a and News4b when the Gaus-
sian kernel is used, while in the remaining cases, LLCA2 is either slightly worse than or identical
to LLCA1. And analogous to LLCA1, LLCA2 also improves the results of the spectral clustering
and the k-means algorithm on most datasets. This illustrates that our parameter selection method for
LLCA can work well in many cases, and clearly it still needs improvement.

Finally, it can be seen that the k-means algorithm is worse than spectral clustering, except on USPS-
3568 with respect to the clustering error criteria when the cosine kernel is used for spectral cluster-
ing. This corroborates the advantage of the popular spectral clustering approach over the traditional
k-means algorithm.

5 Conclusion

We have proposed a local learning approach for clustering, where an optimization problem is formu-
lated leading to a solution with the property that the label of each data point can be well estimated



Table 2: Clustering results. Both the normalized mutual information and the clustering error are
provided. Two kernel functions (22) and (23) are tried for both spectral clustering and LLCA. On
each dataset, the best result of the spectral clustering algorithm is reported (Spec-Clst). For LLCA,
both the best result (LLCA1) and the one obtained with the parameter selection method described
before (LLCA2) are provided. In each group, the best results are shown in boldface, the second best
is in italics. Note that the results of k-means algorithm are independent of the kernel function.

USPS-3568 USPS-49 UMist UMist5 News4a News4b
Spec-Clst 0.6575 0.3608 0.7483 0.8810 0.6468 0.5765

NMI, LLCA1 0.8720 0.6241 0.8003 1 0.7587 0.7125
cosine LLCA2 0.8720 0.6241 0.7889 1 0.7587 0.7125

k-means 0.5202 0.2352 0.6479 0.7193 0.0800 0.0380
Spec-Clst 0.8245 0.4319 0.8099 0.8773 0.4039 0.1861

NMI, LLCA1 0.8493 0.5980 0.8377 1 0.2642 0.1776
Gaussian LLCA2 0.8467 0.5493 0.8377 1 0.0296 0.0322

k-means 0.5202 0.2352 0.6479 0.7193 0.0800 0.0380
Spec-Clst 32.93 16.56 46.26 9.29 28.26 21.73

Error (%), LLCA1 3.57 8.01 36.00 0 7.99 9.65
cosine LLCA2 3.57 8.01 38.43 0 7.99 9.65

k-means 22.16 22.30 56.35 36.43 70.62 74.08
Spec-Clst 5.68 13.51 41.74 10.00 42.34 64.71

Error (%), LLCA1 4.61 8.43 33.91 0 47.24 53.25
Gaussian LLCA2 4.70 9.80 37.22 0 74.38 72.97

k-means 22.16 22.30 56.35 36.43 70.62 74.08

based on its neighbors. We have also provided a parameter selection method for the proposed clus-
teringalgorithm. Experiments show encouraging results. Future work may include improving the
proposed parameter selection method and extending this work to other applications such as image
segmentation.
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