
Online Clustering of Moving Hyperplanes

RenéVidal
Center for Imaging Science, Department of Biomedical Engineering, Johns Hopkins University

308B Clark Hall, 3400 N. Charles St., Baltimore, MD 21218, USA
rvidal@cis.jhu.edu

Abstract

We propose a recursive algorithm for clustering trajectories lying in multiple mov-
ing hyperplanes. Starting from a given or random initial condition, we use nor-
malized gradient descent to update the coefficients of a time varying polynomial
whose degree is the number of hyperplanes and whose derivatives at a trajectory
give an estimate of the vector normal to the hyperplane containing that trajectory.
As time proceeds, the estimates of the hyperplane normals are shown to track
their true values in a stable fashion. The segmentation of the trajectories is then
obtained by clustering their associated normal vectors. The final result is a simple
recursive algorithm for segmenting a variable number of moving hyperplanes. We
test our algorithm on the segmentation of dynamic scenes containing rigid mo-
tions and dynamic textures, e.g., a bird floating on water. Our method not only
segments the bird motion from the surrounding water motion, but also determines
patterns of motion in the scene (e.g., periodic motion) directly from the temporal
evolution of the estimated polynomial coefficients. Our experiments also show
that our method can deal with appearing and disappearing motions in the scene.

1 Introduction

Principal Component Analysis (PCA) [1] refers to the problem of fitting a linear subspaceS ⊂ R
D

of unknown dimensiond < D to N sample pointsX = {xi ∈ S}N
i=1. A natural extension

of PCA is subspace clustering, which refers to the problem of fitting a union ofn ≥ 1 linear
subspaces{Sj ⊂ RD}n

j=1 of unknown dimensionsdj = dim(Sj), 0 < dj < D, to N points
X = {xi ∈ R

D}N
i=1 drawn from∪n

j=1Sj , without knowing which points belong to which subspace.
This problem shows up in a variety of applications in computer vision (image compression, motion
segmentation, dynamic texture segmentation) and also in control (hybrid system identification).

Subspace clustering has been an active topic of research over the past few years. Existing methods
randomly choose a basis for each subspace, and then iterate between data segmentation and standard
PCA. This can be done using methods such as Ksubspaces [2], an extension of Kmeans to the case
of subspaces, or Expectation Maximization for Mixtures of Probabilistic PCAs [3]. An alternative
algebraic approach, which does not require any initialization, is Generalized PCA (GPCA) [4]. In
GPCA the data points are first projected onto a low-dimensional subspace. Then, a set of polyno-
mials is fitted to the projected data points and a basis for each one of the projected subspaces is
obtained from the derivatives of these polynomials at the data points.

Unfortunately, all existing subspace clustering methods arebatch, i.e. the subspace bases and the
segmentation of the data are obtained after all the data points have been collected. In addition,
existing methods are designed for clustering data lying in a collection ofstatic subspaces, i.e. the
subspace bases do not change as a function of time. Therefore, when these methods are applied to
time-series data, e.g., dynamic texture segmentation, one typically applies them to a moving time
window, under the assumption that the subspaces are static within that window. A major disadvan-
tage of this approach is that it does not incorporate temporal coherence, because the segmentation



and the bases at timet + 1 are obtained independently from those at timet. Also, this approach is
computationally expensive, since a new subspace clustering problem is solved at each time instant.

In this paper, we propose a computationally simple and temporally coherentonline algorithm for
clustering point trajectories lying in a variable number ofmoving hyperplanes. We model a union of
n moving hyperplanes inRD, Sj(t) = {x ∈ RD : b

⊤
j (t)x = 0}, j = 1, . . . , n, whereb(t) ∈ RD,

as the zero set of a polynomial with time varying coefficients. Starting from an initial polynomial
at timet, we compute an update of the polynomial coefficients using normalized gradient descent.
The hyperplane normals are then estimated from the derivatives of the new polynomial at each
trajectory. The segmentation of the trajectories is obtained by clustering their associated normal
vectors. As time proceeds, new data are added, and the estimates of the polynomial coefficients are
more accurate, because they are based on more observations. This not only makes the segmentation
of the data more accurate, but also allows us to handle a variable number of hyperplanes. We test our
approach on the challenging problem of segmenting dynamic textures from rigid motions in video.

2 Recursive estimation of a single hyperplane

In this section, we review the normalized gradient algorithm for estimating a single hyperplane. We
consider both static and moving hyperplanes, and analyze the stability of the algorithm in each case.

Recursive linear regression.For the sake of simplicity, let us first revisit a simple linear regression
problem in which we are given measurements{x(t), y(t)} related by the equationy(t) = b

⊤
x(t).

At time t, we seek an estimatêb(t) of b that minimizesf(b) =
∑t

τ=1(y(τ) − b
⊤

x(τ))2. A simple
strategy is to recursively updateb̂(t) by following the negative of the gradient direction at timet,

v(t) = −(b̂(t)⊤x(t) − y(t))x(t). (1)
However, it is better to normalize this gradient in order to achieve better convergence properties. As
shown in Theorem 2.8, page 77 of [5], the followingnormalized gradient recursive identifier

b̂(t + 1) = b̂(t) − µ
(b̂(t)⊤x(t) − y(t))

1 + µ‖x(t)‖2
x(t), (2)

whereµ > 0 is a fixed parameter, is such thatb̂(t) → b exponentially if the regressors{x(t)} are
persistently exciting, i.e. if there is anS ∈ N andρ1, ρ2 > 0 such that for allm

ρ1ID ≺
m+S
∑

t=m

x(t)x(t)⊤ ≺ ρ2ID, (3)

whereA ≺ B means that(B−A) is positive definite andID is the identity matrix inRD. Intuitively,
the condition on the left hand side of (3) means that the data has to be persistently ”rich enough” in
time in order to uniquely estimate the vectorb, while the condition on the right hand side is needed
for stability purposes, as it imposes a uniform upper bound on the covariance of the data.

Consider now a modification of the linear regression problem in which the parameter vector varies
with time, i.e.y(t) = b

⊤(t)x(t). As shown in [6], if the regressors{x(t)} are persistently exciting
and the sequence{b(t+1)−b(t)} isL2-stable, i.e.sup

t≥1
‖b(t+1)−b(t)‖2 < ∞, then the normalized

gradient recursive identifier (2) produces an estimateb̂(t) of b(t) such that{b(t)−b̂(t)} isL2-stable.

Recursive hyperplane estimation.Let {x(t)} be a set of measurements lying in the moving hyper-
planeS(t) = {x ∈ RD : b

⊤(t)x = 0}. At time t, we seek an estimatêb(t) of b(t) that minimizes
the errorf(b(t)) =

∑t
τ=1(b

⊤(τ)x(τ))2 subject to the constraint‖b(t)‖ = 1. Notice that the main
difference between linear regression and hyperplane estimation is that in the latter case the parame-
ter vectorb(t) is constrained to lie in the unit sphereS

D−1. Therefore, instead of applying standard
gradient descent as in (2), we must follow the negative gradient direction along the geodesic curve
in SD−1 passing througĥb(t). As shown in [7], the geodesic curve passing throughb ∈ SD−1 along
the tangent vectorv ∈ TSD−1 is b cos(‖v‖)+ v

‖v‖ sin(‖v‖). Therefore, the update equation for the
normalized gradient recursive identifier on the sphere is

b̂(t + 1) = b̂(t) cos(‖v(t)‖) +
v(t)

‖v(t)‖ sin(‖v(t)‖), (4)



where the negative normalized gradient is computed as

v(t) = −µ
(

ID − b̂(t)b̂
⊤

(t)
) (b̂

⊤
(t)x(t))x(t)

1 + µ‖x(t)‖2
. (5)

Notice that the gradient on the sphere is essentially the same as the Euclidean gradient, except that it

needs to be projected onto the subspace orthogonal tob̂(t) by the matrixID−b̂(t)b̂
⊤
(t)∈RD×(D−1).

Another difference between recursive linear regression and recursive hyperplane estimation is that
the persistence of excitation condition (3) needs to be modified to

ρ1ID−1 ≺
m+S
∑

t=m

Pb(t)x(t)x(t)⊤P⊤
b(t) ≺ ρ2ID−1, (6)

where the projection matrixPb(t) ∈ R(D−1)×D onto the orthogonal complement ofb(t) accounts
for the fact that‖b(t)‖ = 1. Under persistence of excitation condition (6), ifb(t) = b the identifier
(4) is such that̂b(t) → b exponentially, while if{b(t + 1)− b(t)} is L2-stable, so is{b(t)− b̂(t)}.

3 Recursive segmentation of a known number of moving hyperplanes

In this section, we generalize the recursive identifier (4) and its stability properties to the case of
N trajectories{xi(t)}N

i=1 lying in n hyperplanes{Sj(t)}n
j=1. In principle, we could apply the

identifier (2) to each one of the hyperplanes. However, as we do not know the segmentation of the
data, we do not know which data to use to update each one of then identifiers. In the approach,
then hyperplanes are represented with a single polynomial whose coefficients do not depend on the
segmentation of the data. By updating the coefficients of this polynomial, we can simultaneously
estimate all the hyperplanes, without first clustering the point trajectories.

Representing moving hyperplanes with a time varying polynomial.Letx(t) be an arbitrary point
in one of then hyperplanes. Then there is a vectorbj(t) normal toSj(t) such thatb⊤j (t)x(t) = 0.
Thus, the following homogeneous polynomial of degreen in D variables must vanish atx(t):

pn(x(t), t) =
(

b
⊤
1 (t)x(t)

) (

b
⊤
2 (t)x(t)

)

· · ·
(

b
⊤
n (t)x(t)

)

= 0. (7)

This homogeneous polynomial can be written as a linear combination of all the monomials of degree
n in x, x

I = xn1
1 xn2

2 · · ·xnD

D with 0 ≤ nk ≤ n for k = 1, . . . , D, andn1 + n2 + · · · + nD = n, as

pn(x, t)
.
=

∑

cn1,...,nD
(t)xn1

1 · · ·xnD

D = c(t)⊤νn(x) = 0, (8)

wherecI(t) ∈ R represents the coefficient of the monomialx
I . The mapνn : RD → RMn(D) is

known as theVeronese mapof degreen, which is defined as [8]:

νn : [x1, . . . , xD]⊤ 7→ [. . . , xI , . . .]⊤, (9)

whereI is chosen in the degree-lexicographic order andMn(D) =
(

n+D−1
n

)

is the total number of
independent monomials. Notice that since the normal vectors{bj(t)} are time dependent, the vector
of coefficientsc(t) is also time dependent. Since both the normal vectors and the coefficient vector
are defined up to scale, we will assume that‖bj(t)‖ = ‖c(t)‖ = 1, without loss of generality.

Recursive identification of the polynomial coefficients.Thanks to the polynomial equation (8),
we now propose a new online hyperplane clustering algorithm that operates on the polynomial co-
efficientsc(t), rather than on the normal vectors{bj(t)}n

i=1. The advantage of doing so is thatc(t)
does not depend on which hyperplane the measurementx(t) belongs to. Our method operates as
follows. At each timet, we seek to find an estimatêc(t) of c(t) that minimizes

f(c(t)) =
1

N

t
∑

τ=1

N
∑

i=1

(c(τ)⊤νn(xi(τ)))2. (10)

By using normalized gradient descent onSMn(D)−1, we obtain the following recursive identifier

ĉ(t + 1) = ĉ(t) cos(‖v(t)‖) +
v(t)

‖v(t)‖ sin(‖v(t)‖), (11)



where the negative normalized gradient is computed as

v(t) = −µ
(

IMn(D) − ĉ(t)ĉ⊤(t)
)

∑N
i=1(ĉ

⊤(t)νn(xi(t)))νn(xi(t))/N

1 + µ
∑N

i=1 ‖νn(xi(t))‖2/N
. (12)

Notice that (11) reduces to (4) and (12) reduces to (5) ifn = 1 andN = 1.

Recursive identification of the hyperplane normals.Given an estimate ofc(t), we may obtain an
estimate of the vector normal to the hyperplane containing a trajectoryx(t) from the derivative of
the polynomial̂pn(x, t) = ĉ

⊤(t)νn(x) atx(t) as

b̂(x(t)) =
Dν⊤

n (x(t))ĉ(t)

‖Dν⊤
n (x(t))ĉ(t)‖ , (13)

whereDνn(x) is the Jacobian ofνn at x. We choose the derivative of̂pn to estimate the normal
vectorbj(t), because ifx(t) is a trajectory in thejth hyperplane, thenb⊤j (t)x(t) = 0, hence the
derivative of the true polynomialpn at the trajectory gives

Dpn(x(t), t) =
∂pn(x(t), t)

∂x(t)
=

n
∑

k=1

∏

ℓ 6=k

(b⊤ℓ (t)x(t))bk(t) ∼ bj(t). (14)

Stability of the recursive identifier. Since in practice we do not know the true polynomial coeffi-
cientsc(t), and we estimateb(t) from ĉ(t), we need to show that botĥc(t) andb̂(x(t)) track their
true values in a stable fashion. Theorem 1 shows that this is the case. Notice that the persistence
of excitation condition for multiple hyperplanes (15) is essentially the same as the one for a single
hyperplane (6), but properly modified to take into account that the regressors are a set of trajectories
in the embedded space{νn(xi(t))}N

i=1, rather than a single trajectory in the original space{x(t)}.

Theorem 1 Let Pc(t) ∈ R(Mn(D)−1)×Mn(D) be a projection matrix onto the orthogonal comple-
ment ofc(t). Consider the recursive identifier(11)–(13)and assume that the embedded regressors
{νn(xi(t))}N

i=1 are persistently exciting, i.e. there existρ1, ρ2 > 0 andS ∈ N such that for allm

ρ1IMn(D)−1 ≺
m+S
∑

t=m

N
∑

i=1

Pc(t)νn(xi(t))ν
⊤
n (xi(t))P

⊤
c(t) ≺ ρ2IMn(D)−1. (15)

Then the sequencec(t) − ĉ(t) is L2-stable. Furthermore, if a trajectoryx(t) belongs to thejth
hyperplane, then the correspondingb̂(x(t)) in (13) is such thatbj(t) − b̂(x(t)) is L2-stable. If in
addition the hyperplanes are static, thenc(t) − ĉ(t) → 0 andbj(t) − b̂(x(t)) → 0 exponentially.

Proof. [Sketch only] When the hyperplanes are static, the exponential convergence ofc(t) to c

follows with minor modifications from Theorem 2.8, page 77 of [5]. This implies that∃κ, λ > 0
such that‖ĉ(t) − c‖ < κλ−t. Also, since the vectorsb1, . . . , bn are different, the polynomial
c
⊤νn(x) has no repeated factor. Therefore, there is aδ > 0 and aT > 0 such that for allt > T we

have‖Dνn(x(t))⊤c‖ ≥ δ and‖Dνn(x(t))⊤ĉ(t)‖ ≥ δ (see proof of Theorem 3 in [9] for the latter
claim). Combining this with‖ĉ‖ ≤ ‖c‖ + ‖ĉ − c‖ and‖c‖ = 1, we obtain that whenx(t) ∈ Sj,

‖bj − b̂(x(t))‖ =

‚

‚

‚

‚

‚

‖Dν⊤

n (x(t))ĉ(t)‖Dν⊤

n (x(t))c − ‖Dν⊤

n (x(t))c‖Dν⊤

n (x(t))ĉ(t)

‖Dν⊤
n (x(t))ĉ(t)‖‖Dν⊤

n (xt)c‖

‚

‚

‚

‚

‚

≤

‚

‚

‚
‖(Dν⊤

n (x(t))(ĉ(t) − c)‖Dν⊤

n (x(t))c − ‖Dν⊤

n (x(t))c‖Dν⊤

n (x(t))(ĉ(t) − c))
‚

‚

‚

δ2

≤ 2
‖Dν⊤

n (x(t))(ĉ(t) − c)‖‖Dν⊤

n (x(t))c‖

δ2
≤ 2

‖Dν⊤

n (x(t))‖2‖ĉ(t) − c)‖

δ2
= 2

α2
nE2

nκλ−t

δ2
,

showing that̂b(x(t))→bj exponentially. In the last step we used the fact that for allx ∈ RD there
is a constant matrix of exponentsEkn ∈ RMn(D)×Mn−1(D) such that∂νn(x)/∂xk = Eknνn−1(x).
Therefore,‖Dνn(x)‖ ≤ En‖νn−1(x)‖ = En

n
n−1

√

‖νn(x)‖ ≤ αnEn, whereEn = max(‖Ekn‖)
andαn = n

2(n−1)

√
ρ2. Consider now the case in which the hyperplanes are moving. SinceS

D−1

is compact, the sequences{bj(t + 1) − bj(t)}n
j=1 are trivially L2-stable, hence so is the sequence

{c(t + 1) − c(t)}. TheL2-stability of{c(t) − ĉ(t)} and{bj(t) − b̂(t)} follows.



Segmentation of the point trajectories.Theorem 1 provides us with a method for computing an
estimatêb(xi(t)) for the normal to the hyperplane passing through each one of theN trajectories
{xi(t) ∈ RD}N

i=1 at each time instant. The next step is to cluster these normals inton groups,
thereby segmenting theN trajectories. We do so by using a recursive version of the K-means
algorithm, adapted to vectors on the unit sphere. Essentially, at eacht, we seek the normal vectors
b̂j(t) ∈ SD−1 and the membership ofwij(t) ∈ {0, 1} of trajectoryi to hyperplanej that maximize

f({wij(t)}, {b̂j(t)}) =
N

∑

i=1

n
∑

j=1

wij(t)(b̂
⊤

j (t)b̂(xi(t)))
2. (16)

The main difference with K-means is that we maximize the dot product of each data point with
the cluster center, rather than minimizing the distance. Therefore, the cluster center is given by the
principal component of each group, rather than the mean. In order to obtain temporally coherent
estimates of the normal vectors, we use the estimates at timet to initialize the iterations at timet+1.

Algorithm 1 (Recursive hyperplane segmentation)

Initialization step

1: Randomly choose{b̂j(1)}
n
j=1 andĉ(1), or else apply the GPCA algorithm to{xi(1)}

N
i=1.

For eacht ≥ 1

1: Update the coefficients of the polynomialp̂n(x(t), t) = ĉ(t)⊤νn(x(t)) using the recursive procedure

ĉ(t + 1) = ĉ(t) cos(‖v(t)‖) +
v(t)

‖v(t)‖
sin(‖v(t)‖),

v(t) = −µ
`

IMn(D) − ĉ(t)ĉ⊤(t)
´

PN

i=1(ĉ
⊤(t)νn(xi(t)))νn(xi(t))/N

1 + µ
PN

i=1 ‖νn(xi(t))‖2/N
.

2: Solve for the normal vectors from the derivatives ofp̂n at the given trajectories

b̂(xi(t)) =
Dν⊤

n (xi(t))ĉ(t)

‖Dν⊤
n (xi(t))ĉ(t)‖

i = 1, . . . , N.

3: Segment the normal vectors using the K-means algorithm on the sphere

(a) Setwij(t) =

8

<

:

1 if j = arg max
k=1,...,n

(b̂
⊤

k (t)b̂(xi(t)))
2

0 otherwise
, i = 1, . . . , N , j = 1, . . . , n

(b) Setb̂j(t) = PCA(
ˆ

w1j(t)b̂(x1(t)) w2j(t)b̂(x2(t)) · · · wNj(t)b̂(xN (t))
˜

), j = 1, . . . , n

(c) Iterate (a) and (b) until convergence ofwij(t), and then set̂bj(t + 1) = b̂j(t).

4 Recursive segmentation of a variable number of moving hyperplanes

In the previous section, we proposed a recursive algorithm for segmentingn moving hyperplanes
under the assumption thatn is knownandconstantin time. However, in many practical situations
the number of hyperplanes may be unknown and time varying. For example, the number of moving
objects in a video sequence may change due to objects entering or leaving the camera field of view.

In this section, we consider the problem of segmenting a variable number of moving hyperplanes.
We denote byn(t) ∈ N the number of hyperplanes at timet and assume we are given an upper
boundn ≥ n(t). We show that if we apply Algorithm 1 with the number of hyperplanes set ton,
then we can still recover the correct segmentation of the scene, even ifn(t) < n. To see this, let us
have a close look at the persistence of excitation condition in equation (15) of Theorem 1. Since the
condition on the right hand side of (15) holds trivially when the regressorsxi(t) are bounded, the
only important condition is the one on the left hand side. Notice that the condition on the left hand
side implies that the spatial-temporal covariance matrix of the embedded regressors must be of rank
Mn(D) − 1 in any time window of sizeS for some integerS. Loosely speaking, the embedded
regressors must be ”rich enough” either in space or in time.

The case in which there is aρ1 > 0 such that for allt

n(t) = n and
N

∑

i=1

Pc(t)νn(xi(t))ν
⊤
n (xi(t))P

⊤
c(t) ≻ ρ1IMn(D)−1 (17)



corresponds to the case of data that is rich in space. In this case, at each time instant we draw data
from all n hyperplanes and the data is rich enough to estimate alln hyperplanes at each time instant.
In fact, condition (17) is the one required by GPCA [4], which in this case can be applied at each
time t independently. Notice also that (17) is equivalent to (15) withS = 1.

The case in whichn(t) = 1 and there areρ1 > 0, S ∈ N andi ∈ {1, . . . , N} such that for allm

m+S
∑

t=m

νn(xi(t))ν
⊤
n (xi(t)) ≻

ρ1

N
IMn(D)−1 (18)

corresponds to the case of data that is rich in time. In this case, at each time instant we draw data
from a single hyperplane. As time proceeds, however, the data must be persistently drawn from
at leastn hyperplanes in order for (18) to hold. This can be achieved either by havingn different
static hyperplanes and persistently drawing data from all of them, or by having less thann moving
hyperplanes whose motion is rich enough so that (18) holds.

In summary, as long as the embedded regressors satisfy condition (15) for some upper boundn on
the number of hyperplanes, the recursive identifier (11)-(13) will still provideL2-stable estimates of
the parameters, even if the number of hyperplanes is unknown and variable, andn(t) < n for all t.

5 Experiments

Experiments on synthetic data. We randomly drawN = 200 3D points lying inn = 2 planes
and apply a time varying rotation to these points fort = 1, . . . , 1000 to generateN trajectories
{xi(t)}N

i=1. Since the true segmentation is known, we compute the vectors{bj(t)} normal to each
plane, and use them to generate the vector of coefficientsc(t). We run our algorithm on the so-
generated data withn = 2, µ = 1 and a random initial estimate for the parameters. We compare
these estimates with the ground truth using the percentage of misclassified points. We also consider
the error of the polynomial coefficients and the normal vectors by computing the angles between
the estimated and true values. Figure 1 shows the true and estimated parameters, as well as the
estimation errors. Observe that the algorithm takes about 100 seconds for the errors to stabilize
within 1.62◦ for the coefficients,1.62◦ for the normals, and 4% for the segmentation error.

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

Time (seconds)

True polynomial coefficients

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

Time (seconds)

Estimated polynomial coefficients

0 200 400 600 800 1000
0

20

40

60

Time (seconds)

Estimation error of the polynomial (degrees)

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

Time (seconds)

True normal vector b1

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

Time (seconds)

Estimated normal vector b1

0 200 400 600 800 1000
0

10

20

30

40

Time (seconds)

Estimation error of b1 and b2 (degrees)

b1
b2

0 200 400 600 800 1000
0

10

20

30

40

50

Time (seconds)

Segmentation error (%)

Figure 1: Segmenting 200 points lying on two moving planes inR3 using our recursive algorithm.

Segmentation of dynamic textures.We now apply our algorithm to the problem of segmenting
video sequences of dynamic textures, i.e. sequences of nonrigid scenes that exhibit some temporal
stationarity, e.g., water, smoke, or foliage. As proposed in [10], one can model the temporal evo-
lution of the image intensities as the output of a linear dynamical system. Since the trajectories of
the output of a linear dynamical system live in the so-called observability subspace, the intensity
trajectories of pixels associated with a single dynamic texture lie in a subspace. Therefore, the set
of all intensity trajectories lie in multiple subspaces, one per dynamic texture.



Givenγ consecutive frames of a video sequence{I(f)}t
f=t−γ+1, we interpret the data as a matrix

W (t) ∈ RN×3γ , whereN is the number of pixels, and 3 corresponds to the three RGB color
channels. We obtain a data pointxi(t) ∈ RD from imageI(t) by projecting theith row of W (t),
w

⊤
i (t) onto a subspace of dimensionD, i.e. xi(t) = Πwi(t), with Π ∈ RD×3γ . The projection

matrix Π can be obtained in a variety of ways. We use theD principal components of the firstγ
frames to defineΠ. More specifically, ifW (γ) = UΣV ⊤, with U ∈ RN×D, Σ ∈ RD×D andV ∈
R3γ×D is a rank-D approximation ofW (γ) computed using SVD, then we chooseΠ = Σ−1V ⊤.

We applied our method to a sequence(110 × 192, 130 frames) containing a bird floating on water,
while rotating around a fix point. The task is to segment the bird’s rigid motion from the water’s
dynamic texture, while at the same time tracking the motion of the bird. We choseD = 5 principal
components of theγ = 5 first frames of the RGB video sequence to project each frame onto a lower
dimensional space. Figure 2 shows the segmentation. Although the convergence is not guaranteed
with only 130 frames, it is clear that the polynomial coefficients already capture the periodicity of the
motion. As shown in the last row of Figure 2, some coefficients of the polynomial oscillate in time.
One can notice that the orientation of the bird is related to the value of the coefficientc8. If the bird is
facing to the right showing her right side, the value ofc8 achieves a local maximum. On the contrary
if the bird is oriented to the left, the value ofc8 achieves a local minimum. Some irregularities seem
to appear at the local minima of this coefficient: they actually correspond to a rapid motion of
the bird. One can distinguish three behaviors for the polynomial coefficients: oscillations, pseudo-
oscillations or quasi-linearity. For both the oscillations and the pseudo-oscillations the period is
identical to the bird’s motion period (40 frames). This example shows that the coefficients of the
estimated polynomial give useful information about the scene motion.

0 50 100

−0.04

−0.03

−0.02

Time (seconds)
0 50 100

−0.04

−0.03

−0.02

Time (seconds)
0 50 100

−0.04

−0.03

−0.02

Time (seconds)
0 50 100

−0.04

−0.03

−0.02

Time (seconds)
0 50 100

−0.04

−0.03

−0.02

Time (seconds)

Figure 2: Segmenting a bird floating on water. Top: frames 17, 36, 60, 81, and 98 of the sequence.
Middle: segmentation obtained using our method. Bottom: temporal evolution ofc8 during the
video sequence, with the red dot indicating the location of the corresponding frame in this evolution.

To test the performance of our method on a video sequence with a variable number of motions, we
extracted a sub-clip of the bird sequence (55 × 192, 130 frames) in which the camera moves up
at 1 pixel/frame until the bird disappears att = 51. The camera stays stationary fromt = 56 to
t = 66, and then moves down at 1 pixel/frame, the bird reappears att = 76. We applied both
GPCA and our method initialized with GPCA to this video sequence. For GPCA we used a moving
window of γ = 5 frames. For our method we choseD = 5 principal components of theγ = 5
first frames of the RGB video sequence to project each frame onto a fixed lower dimensional space.
We set the parameter of the recursive algorithm toµ = 1. Figure 3 shows the segmentation results.
Notice that both methods give excellent results during the first few frames, when both the bird and
the water are present. This is expected, as our method is initialized with GPCA. Nevertheless,
notice that the performance of GPCA deteriorates dramatically when the bird disappears, because
GPCA overestimates the number of hyperplanes, whereas our method is robust to this change and
keeps segmenting the scene correctly, i.e. assigning all the pixels to the background. When the
bird reappears, our method detects the bird correctly from the first frame whereas GPCA produces



a wrong segmentation for the first frames after the bird reappears. Towards the end of the sequence,
both algorithms give a good segmentation. This demonstrates that our method has the ability to deal
with a variable number of motions, while GPCA has not. In addition the fixed projection and the
recursive estimation of the polynomial coefficients make our method much faster than GPCA.

Sequence

GPCA

Our method

Figure 3: Segmenting a video sequence with a variable number of dynamic textures. Top: frames 1,
24, 65, 77, and 101. Middle: segmentation with GPCA. Bottom: segmentation with our method.

6 Conclusions

We have proposed a simple recursive algorithm for segmenting trajectories lying in a variable num-
ber of moving hyperplanes. The algorithm updates the coefficients of a polynomial whose deriva-
tives give the normals to the moving hyperplanes as well as the segmentation of the trajectories. We
applied our method successfully to the segmentation of videos containing multiple dynamic textures.

Acknowledgments

The author acknowledges the support of grants NSF CAREER IIS-04-47739, NSF EHS-05-09101
and ONR N00014-05-10836.

References
[1] I. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, 1986.

[2] J. Ho, M.-H. Yang, J. Lim, K.-C. Lee, and D. Kriegman. Clustering apperances of objects under varying
illumination conditions. InIEEE Conference on Computer Vision and Pattern Recognition, volume 1,
pages 11–18, 2003.

[3] M. Tipping and C. Bishop. Mixtures of probabilistic principal component analyzers.Neural Computation,
11(2):443–482, 1999.

[4] R. Vidal, Y. Ma, and S. Sastry. Generalized Principal Component Analysis (GPCA).IEEE Trans. on
Pattern Analysis and Machine Intelligence, 27(12):1–15, 2005.

[5] B.D.O. Anderson, R.R. Bitmead, C.R. Johnson Jr., P.V. Kokotovic, R.L. Ikosut, I.M.Y. Mareels, L. Praly,
and B.D. Riedle.Stability of Adaptive Systems. MIT Press, 1986.

[6] L. Guo. Stability of recursive stochastic tracking algorithms. InIEEE Conf. on Decision & Control, pages
2062–2067, 1993.

[7] A. Edelman, T. Arias, and S. T. Smith. The geometry of algorithms with orthogonality constraints.SIAM
Journal of Matrix Analysis Applications, 20(2):303–353, 1998.

[8] J. Harris.Algebraic Geometry: A First Course. Springer-Verlag, 1992.

[9] R. Vidal and B.D.O. Anderson. Recursive identification of switched ARX hybrid models: Exponential
convergence and persistence of excitation. InIEEE Conf. on Decision & Control, pages 32–37, 2004.

[10] G. Doretto, A. Chiuso, Y. Wu, and S. Soatto. Dynamic textures.International Journal of Computer
Vision, 51(2):91–109, 2003.


