
Accelerated Variational Dirichlet Process Mixtures

Kenichi Kurihara
Dept. of Computer Science

Tokyo Institute of Technology
Tokyo, Japan

kurihara@mi.cs.titech.ac.jp

Max Welling
Bren School of Information and Computer Science

UC Irvine
Irvine, CA 92697-3425

welling@ics.uci.edu

Nikos Vlassis
Informatics Institute

University of Amsterdam
The Netherlands

vlassis@science.uva.nl

Abstract

Dirichlet Process (DP) mixture models are promising candidates for clustering
applications where the number of clusters is unknown a priori. Due to compu-
tational considerations these models are unfortunately unsuitable for large scale
data-mining applications. We propose a class of deterministic accelerated DP
mixture models that can routinely handle millions of data-cases. The speedup is
achieved by incorporating kd-trees into a variational Bayesian algorithm for DP
mixtures in the stick-breaking representation, similar to that of Blei and Jordan
(2005). Our algorithm differs in the use of kd-trees and in the way we handle
truncation: we only assume that the variational distributions are fixed at their pri-
ors after a certain level. Experiments show that speedups relative to the standard
variational algorithm can be significant.

1 Introduction

Evidenced by three recent workshops1, nonparametric Bayesian methods are gaining popularity
in the machine learning community. In each of these workshops computational efficiency was
mentioned as an important direction for future research. In this paper we propose computational
speedups for Dirichlet Process (DP) mixture models [1, 2, 3, 4, 5, 6, 7], with the purpose of im-
proving their applicability in modern day data-mining problems where millions of data-cases are no
exception.

Our approach is related to, and complements, the variational mean-field algorithm for DP mixture
models of Blei and Jordan [7]. In this approach, the intractable posterior of the DP mixture is
approximated with a factorized variational finite (truncated) mixture model withT components, that
is optimized to minimize the KL distance to the posterior. However, a downside of their model is
that the variational families are not nested overT , and locating an optimal truncation levelT may
be difficult (see Section 3).

In this paper we propose an alternative variational mean-field algorithm, called VDP (Variational
DP), in which the variational families are nested overT . In our model we allow for an unbounded
number of components for the variational mixture, but wetie the variational distributions after level

1http://aluminum.cse.buffalo.edu:8079/npbayes/nipsws05/topics
http://www.cs.toronto.edu/∼beal/npbayes/
http://www2.informatik.hu-berlin.de/∼bickel/npb-workshop.html

T to their priors. Our algorithm proceeds in a greedy manner by starting withT = 1 and releasing
components when this improves (significantly) the KL bound. Releasing is most effectively done
by splitting a component in two children and updating them to convergence. Our approach essen-
tially resolves the issue in [7] of searching for an optimal truncation level of the variational mixture
(see Section 4).

Additionally, a significant contribution is that we incorporate kd-trees into the VDP algorithm as a
way to speed up convergence [8, 9]. A kd-tree structure recursively partitions the data space into a
number of nodes, where each node contains a subset of the data-cases. Following [9], for a given tree
expansion we tie together the responsibility over mixture components of all data-cases contained in
each outer node of the tree. By caching certain sufficient statistics in each node of the kd-tree we
then achieve computational gains, while the variational approximation becomes a function of the
depth of the tree at which one operates (see Section 6).

The resulting Fast-VDP algorithm provides an elegant way to trade off computational resources
against accuracy. We can always release new components from the pool and split kd-tree nodes as
long as we have computational resources left. Our setup guarantees that this will always (at least
in theory) improve the KL bound (in practice local optima may force us to reject certain splits,
see Section 7). As we empirically demonstrate in Section 8, a kd-tree can offer significant speedups,
allowing our algorithm to handle millions of data-cases. As a result, Fast-VDP is the first algo-
rithm entertaining an unbounded number of clusters that is practical for modern day data-mining
applications.

2 The Dirichlet Process Mixture in the Stick-Breaking Representation

A DP mixture model in the stick-breaking representation can be viewed as possessing an infinite
number of components with random mixing weights [4]. In particular, the generative model of a DP
mixture assumes:

• An infinite collection of componentsH = {ηi}
∞

i=1 that are independently drawn from a
prior pη(ηi|λ) with hyperparametersλ.

• An infinite collection of ‘stick lengths’V = {vi}
∞

i=1, vi ∈ [0, 1], ∀i, that are independently
drawn from a priorpv(vi|α) with hyperparametersα. They define the mixing weights
{πi}

∞

i=1 of the mixture asπi(V) = vi

∏i−1

j=1
(1 − vj), for i = 1, . . . ,∞.

• An observation modelpx(x|η) that generates a datumx from componentη.

Given a datasetX = {xn}
N
n=1, each data-casexn is assumed to be generated by first drawing a

component labelzn = k ∈ {1, . . . ,∞} from the infinite mixture with probabilitypz(zn = k|V) ≡
πk(V), and then drawingxn from the corresponding observation modelpx(xn|ηk).

We will denoteZ = {zn}
N
n=1 the set of all labels,W = {H,V, Z} the set of all latent variables

of the DP mixture, andθ = {λ, α} the hyperparameters. In clustering problems we are mainly
interested in computing the posterior over data labelsp(zn|X, θ), as well as the predictive density
p(x|X, θ) =

∫

H,V
p(x|H,V)

∫

Z
p(W |X, θ), which are both intractable sincep(W |X, θ) cannot be

computed analytically.

3 Variational Inference in Dirichlet Process Mixtures

For variational inference, the intractable posteriorp(W |X, θ) of the DP mixture can be approxi-
mated with a parametric family of factorized variational distributionsq(W ;φ) of the form

q(W ;φ) =
L

∏

i=1

[

qvi
(vi;φ

v
i) qηi

(ηi;φ
η
i)

]

N
∏

n=1

qzn
(zn) (1)

whereqvi
(vi;φ

v
i) andqηi

(ηi;φ
η
i) are parametric models with parametersφv

i andφ
η
i (one parameter

per i), andqzn
(zn) are discrete distributions over the component labels (one distribution pern).

Blei and Jordan [7] define an explicit truncation levelL ≡ T for the variational mixture in (1) by
settingqvT

(vT = 1) = 1 and assuming that data-cases assign zero responsibility to components

with index higher than the truncation levelT , i.e., qzn
(zn > T) = 0. Consequently, in their model

only components of the mixture up to levelT need to be considered. Variational inference then
consists in estimating a set ofT parameters{φv

i , φ
η
i }

T
i=1 and a set ofN distributions{qzn

(zn)}N
n=1,

collectively denoted byφ, that minimize the Kullback-Leibler divergence D[q(W ;φ)||p(W |X, θ)]
between the true posterior and the variational approximation, or equivalently that minimize the free
energyF (φ) = Eq[log q(W ;φ)]−Eq[log p(W,X|θ)]. Since each distributionqzn

(zn) has nonzero
support only forzn ≤ T , minimizing F (φ) results in a set of update equations forφ that involve
only finite sums [7].

However, explicitly truncating the variational mixture as above has the undesirable property that
the variational family with truncation levelT is not contained within the variational family with
truncation levelT + 1, i.e., the families are not nested.2 The result is that there may be an optimal
finite truncation levelT for q, that contradicts the intuition that the more components we allow in
q the better the approximation should be (reaching its best whenT → ∞). Moreover, locating a
near-optimal truncation level may be difficult sinceF as a function ofT may exhibit local minima
(see Fig. 4 in [7]).

4 Variational Inference with an Infinite Variational Model

Here we propose a slightly different variational model forq that allows families overT to be nested.
In our setup,q is given by (1) where we letL go to infinity but wetie the parameters of all mod-
els after a specific levelT (with T ≪ L). In particular, we impose the condition that for all
components with indexi > T the variational distributions for the stick-lengthsqvi

(vi) and the
variational distributions for the componentsqηi

(ηi) are equal to their corresponding priors, i.e.,
qvi

(vi;φ
v
i) = pv(vi|α) andqηi

(ηi;φ
η
i) = pη(ηi|λ). In our model we define the free energyF as

the limit F = limL→∞ FL, whereFL is the free energy defined byq in (1) and a truncated DP
mixture at levelL (justified by the almost sure convergence of anL-truncated Dirichlet process to
an infinite Dirichlet process whenL→∞ [6]). Using the parameter tying assumption fori > T , the
free energy reads

F =

T
∑

i=1

{

Eqvi

[

log
qvi

(vi;φ
v
i)

pv(vi|α)

]

+Eqηi

[

log
qηi

(ηi;φ
η
i)

pη(ηi|λ)

]}

+

N
∑

n=1

Eq

[

log
qzn

(zn)

pz(zn|V)px(xn|ηzn
)

]

. (2)

In our schemeT defines an implicit truncation level of the variational mixture, since there are no free
parameters to optimize beyond levelT . As in [7], the free energyF is a function ofT parameters
{φv

i , φ
η
i }

T
i=1 and N distributions{qzn

(zn)}N
n=1. However, contrary to [7], data-cases may now

assignnonzeroresponsibility to components beyond levelT , and therefore eachqzn
(zn) must now

have infinite support (which requires computing infinite sums in the various quantities of interest).
An important implication of our setup is that the variational families are now nested with respect
to T (since fori > T , qvi

(vi) andqηi
(ηi) can always revert to their priors), and as a result it is

guaranteed that as we increaseT there exist solutions that decreaseF . This is an important result
because it allows for optimization with adaptiveT starting fromT = 1 (see Section 7).

¿From the last term of (2) we directly see that theqzn
(zn) that minimizesF is given by

qzn
(zn = i) =

exp(Sn,i)
∑

∞

j=1
exp(Sn,j)

(3)

where
Sn,i = EqV

[log pz(zn = i|V)] + Eqηi
[log px(xn|ηi)]. (4)

Minimization of F overφv
i andφ

η
i can be carried out by direct differentiation of (2) for particular

choices of models forqvi
andqηi

(see Section 5). Usingqzn
from (3), the free energy (2) reads

F =

T
∑

i=1

{

Eqvi

[

log
qvi

(vi;φ
v
i)

pv(vi|α)

]

+ Eqηi

[

log
qηi

(ηi;φ
η
i)

pη(ηi|λ)

] }

−

N
∑

n=1

log

∞
∑

i=1

exp(Sn,i). (5)

Evaluation ofF requires computing the infinite sum
∑

∞

i=1
exp(Sn,i) in (5). The difficult part is

∑

∞

i=T+1
exp(Sn,i). Under the parameter tying assumption fori > T , most terms ofSn,i in (4)

2We thank David Blei for pointing this out.

factor out of the infinite sum as constants (since they do not depend oni) except for the term
∑i−1

j=T+1
Epv

[log(1 − v)] = (i − 1 − T)Epv
[log(1 − v)]. From the above, the infinite sum can

be shown to be
∞
∑

i=T+1

exp(Sn,i) =
Sn,T+1

1 − exp
(

Epv
[log(1 − v)]

) . (6)

Using the variationalq(W) as an approximation to the true posteriorp(W |X, θ), the required pos-
terior over data labels can be approximated byp(zn|X, θ) ≈ qzn

(zn). Althoughqzn
(zn) has infinite

support, in practice it suffices to use the individualqzn
(zn = i) for the finite parti ≤ T , and the

cumulativeqzn
(zn > T) for the infinite part. Finally, using the parameter tying assumption for

i > T , and the identity
∑

∞

i=1
πi(V) = 1, the predictive densityp(x|X, θ) can be approximated by

p(x|X, θ) ≈

T
∑

i=1

EqV
[πi(V)]Eqηi

[px(x|ηi)] +
[

1 −

T
∑

i=1

Epv
[πi(V)]

]

Epη
[px(x|η)]. (7)

Note that all quantities of interest, such as the free energy (5) and the predictive distribution (7), can
be computed analytically even though they involve infinite sums.

5 Solutions for the exponential family

The results in the previous section apply independently of the choice of models for the DP mixture.
In this section we provide analytical solutions for models in the exponential family. In particular we
assume thatpv(vi|α) = Beta(α1, α2) andqvi

(vi;φ
v
i) = Beta(φv

i,1, φ
v
i,2), and thatpx(x|η), pη(η|λ),

andqηi
(ηi;φ

η
i) are given by

px(x|η) = h(x) exp{ηT x − a(η)} (8)

pη(η|λ) = h(η) exp{λ1η + λ2(−a(η)) − a(λ)} (9)

qηi
(ηi;φ

η
i) = h(ηi) exp{φη

i,1ηi + φ
η
i,2(−a(ηi)) − a(φη

i)}. (10)

In this case, the probabilitiesqzn
(zn = i) are given by (3) withSn,i computed from (4) using

Eqvi
[log vi] = Ψ(φv

i,1) − Ψ(φv
i,1 + φv

i,2) (11)

Eqvj
[log(1 − vj)] = Ψ(φv

i,2) − Ψ(φv
i,1 + φv

i,2) (12)

Eqηi
[log px(xn|ηi)] = Eqηi

[ηi]
T xn − Eqηi

[a(ηi)] (13)

whereΨ(·) is the digamma function. The optimal parametersφv, φη can be found to be

φv
i,1 = α1 +

N
∑

n=1

qzn
(zn = i) φv

i,2 = α2 +

N
∑

n=1

∞
∑

j=i+1

qzn
(zn = j) (14)

φ
η
i,1 = λ1 +

N
∑

n=1

qzn
(zn = i)xn φ

η
i,2 = λ2 +

N
∑

n=1

qzn
(zn = i). (15)

The update equations are similar to those in [7] except that we have used Beta(α1, α2) instead of
Beta(1, α), andφv

i,2 involves an infinite sum
∑

∞

j=i+1
qzn

(zn = j) which can be computed using (3)
and (6). In [7] the corresponding sum is finite sinceqzn

(zn) is truncated atT .

Note that the VDP algorithm operates in a space where component labels are distinguishable, i.e.,
if we permute the labels the total probability of the data changes. Since theaveragea priori mix-
ture weights of the components are ordered by their size, the optimal labelling of the a posteriori
variational components is also ordered according to cluster size. Hence, we have incorporated a re-
ordering step of components according to approximate size after each optimization step in our final
algorithm (a feature that was not present in [7]).

6 Accelerating inference using a kd-tree

In this section we show that we can achieve accelerated inference for large datasets when we store
the data in a kd-tree [10] and cache data sufficient statistics in each node of the kd-tree [8]. A kd-tree

is a binary tree in which the root node contains all points, andeach child node contains a subset of
the data points contained in its father node, where points are separated by a (typically axis-aligned)
hyperplane. Each point in the set is contained in exactly one node, and the set of outer nodes of a
given expansion of the kd-tree form a partition of the data set.

Suppose the kd-tree containing our dataX is expanded to some level. Following [9], to achieve
accelerated update equations we constrain allxn in outer nodeA to share the sameqzn

(zn) ≡
qzA

(zA). We can then show that, under this constraint, theqzA
(zA) that minimizesF is given by

qzA
(zA = i) =

exp(SA,i)
∑

∞

j=1
exp(SA,j)

(16)

whereSA,i is computed as in (4) using (11)–(13) with (13) replaced byEqηi
[ηi]

T 〈x〉A−Eqηi
[a(ηi)],

and〈x〉A denotes average over all dataxn contained in nodeA. Similarly, if |nA| is the number of
data in nodeA, the optimal parameters can be shown to be

φv
i,1 = α1 +

∑

A

|nA|qzA
(zA = i) φv

i,2 = α2 +
∑

A

|nA|

∞
∑

j=i+1

qzA
(zA = j) (17)

φ
η
i,1 = λ1 +

∑

A

|nA|qzA
(zA = i)〈x〉A φ

η
i,2 = λ2 +

∑

A

|nA|qzA
(zA = i). (18)

Finally, usingqzA
(zA) from (16) the free energy (5) reads

F =
T

∑

i=1

{

Eqvi

[

log
qvi

(vi;φ
v
i)

pv(vi|α)

]

+ Eqηi

[

log
qηi

(ηi;φ
η
i)

pη(ηi|λ)

]}

−
∑

A

|nA| log
∞
∑

i=1

exp(SA,i). (19)

The infinite sums in (17) and (19) can be computed from (6) withSn,T+1 replaced bySA,T+1. Note
that the cost of each update cycle isO(T |A|), which can be a significant improvement over the
O(TN) cost when not using a kd-tree. (The cost of building the kd-tree isO(N log N) but this is
amortized by multiple optimization steps.) Note that by refining the tree (expanding outer nodes)
the free energyF cannot increase. This allows us to control the trade-off between computational
resources and approximation: we can always choose to descend the tree until our computational
resources run out, and the level of approximation will be directly tied toF (deeper levels will mean
lowerF).

7 The algorithm

The proposed framework is quite general and allows flexibility in the design of an algorithm. Below
we show in pseudocode the algorithm that we used in our experiments (for DP Gaussian mixtures).
Input is a datasetX = {xn}

N
n=1 that is already stored in a kd-tree structure. Output is a set of

parameters{φv
i , φ

η
i }

T
i=1 and a value forT . From that we can compute responsibilitiesqzn

using (3).

1. SetT = 1. Expand the kd-tree to some initial level (e.g. four).

2. Sample a number of ‘candidate’ componentsc according to size
∑

A
|nA|qzA

(zA = c), and split the
component that leads to the maximal reduction ofFT . For each candidatec do:

(a) Expand one-level deeper the outer nodes of the kd-tree that assign toc the highest responsibility
qzA

(zA = c) among all components.
(b) Split c in two components,i andj, through the bisector of its principal component. Initialize

the responsibilitiesqzA
(zA = i) andqzA

(zA = j).
(c) Update onlySA,i, φv

i , φη
i andSA,j , φv

j , φη
j for the new componentsi andj, keeping all other

parameters as well as the kd-tree expansion fixed.

3. UpdateSA,t, φ
v
t , φη

t for all t ≤ T + 1, while expanding the kd-tree and reordering components.

4. If FT+1 > FT − ǫ then halt, else setT := T + 1 and go to step 2.

In the above algorithm, the number of sampled candidate components in step 2 can be tuned ac-
cording to the desired cost/accuracy tradeoff. In our experiments we used 10 candidate components.
In step 2b we initialized the responsibilities byqzA

(zA = i) = 1 = 1 − qzA
(zA = j) if 〈x〉A is

 5000 2000 1000

 1
 0.9
 0.8

fr
ee

 e
ne

rg
y

ra
tio

#data

 23

 9
 1

sp
ee

du
p

fa
ct

or

Fast-VDP
VDP

BJ

Figure 1: Relative runtimes and free energies of Fast-VDP, VDP, and BJ.

 10 100 1000

 1.02

 1.01

 1

#data in thousands

 160

 40
 1

Fast-VDP
VDP

 128 64 32 16

 1.02

 1.01

 1

dimensionality

 15
 10

 5
 1

 3 2 1

 1.02
 1.01
 1

c-separation

 5
 3
 1

Figure 2: Speedup factors and free energy ratios between Fast-VDP and VDP. Top and bottom
figures show speedups and free energy ratios, respectively.

closer toi than toj (according to distance to the expected first moment). In order to speed up the
partial updates in step 2c, we additionally setqzA

(zA = k) = 0 for all k 6= i, j (so all responsibility
is shared between the two new components). In step 3 we reordered components every one cycle
and expanded the kd-tree every three update cycles, controlling the expansion by the relative change
of qzA

(zA) between a node and its children (alternatively one can measure the change ofFT+1).
Finally, in step 2c we monitored convergence of the partial updates throughFT+1 which can be
efficiently computed by adding/subtracting terms involving the new/old components.

8 Experimental results

In this section we demonstrate VDP, and its kd-tree extension Fast-VDP, on synthetic and real
datasets. In all experiments we assumed a Gaussian observation modelpx(x|η) and a Gaussian-
inverse Wishart forpη(η|λ) andqηi

(ηi;φ
η
i).

Synthetic datasets. As argued in Section 4, an important advantage of VDP over the ‘BJ’ algo-
rithm of [7] is that in VDP the variational families are nested overT , which ensures that the free
energy is a monotone decreasing function ofT and therefore allows for an adaptiveT (starting with
the trivial initializationT = 1). On the contrary, BJ optimizes the parameters for fixedT (and
potentially minimizes the resulting free energy over different values ofT), which requires a nontriv-
ial initialization step for eachT . Clearly, both the total runtime as well as the quality of the final
solution of BJ depend largely on its initialization step, which makes the direct comparison of VDP
with BJ difficult. Still, to get a feeling of the relative performance of VDP, Fast-VDP, and BJ, we
applied all three algorithms on a synthetic dataset containing 1000 to 5000 data-cases sampled from
10 Gaussians in 16 dimensions, in which the free parameters of BJ were set exactly as described
in [7] (20 initialization trials andT = 20). VDP and Fast-VDP were also executed untilT = 20. In
Fig. 1 we show the speedup factors and free energy ratios3 among the three algorithms. Fast-VDP

3Free energy ratio is defined as1 + (FA − FB)/|FB |, whereA andB are either Fast-VDP, VDP or BJ.

Fast-VDP VDP

Figure 3: Clustering results of Fast-VDP and VDP, with a speedup of 21. The clusters are ordered
according to size (from top left to bottom right).

was approximately 23 times faster than BJ, and three times faster than VDP on5000 data-cases.
Moreover, Fast-VDP and VDP were always better than BJ in terms of free energy.

In a second synthetic set of experiments we compared the speedup of Fast-VDP over VDP. We
sampled data from 10 Gaussians in dimensionD with component separation4 c. Using default
number of data-casesN = 10, 000, dimensionalityD = 16, and separationc = 2, we varied
each of them, one at a time. In Fig. 2 we show the speedup factor (top) and the free energy ratio
(bottom) between the two algorithms. Note that the latter is always worse for Fast-VDP since it is an
approximation to VDP (ratio closer to one means better approximation). Fig. 2-left illustrates that
the speedup of Fast-VDP over VDP is at least linear inN , as expected from the update equations
in Section 6. The speedup factor was approximately 154 for one million data-cases, while the free
energy ratio was almost constant overN . Fig. 2-center shows an interesting dependence of speed on
dimensionality, withD = 64 giving the largest speedup. The three plots in Fig. 2 are in agreement
with similar plots in [8, 9].

Real datasets. In this experiment we applied VDP and Fast-VDP for clustering image data. We
used the MNIST dataset (http://yann.lecun.com/exdb/mnist/) which consists of60, 000
images of the digits 0–9 in 784 dimensions (28 by 28 pixels). We first applied PCA to reduce the
dimensionality of the data to 50. Fast-VDP found 96 clusters in3, 379 seconds with free energy
F = 1.759 × 107, while VDP found 88 clusters in72, 037 seconds with free energy1.684 × 107.
The speedup was 21 and the free energy ratio was1.044. The mean images of the discovered
components are illustrated in Fig. 3. The results of the two algorithms seem qualitatively similar,
while Fast-VDP computed its results much faster than VDP.

In a second real data experiment we clustered documents from citeseer (http://citeseer.ist.
psu.edu). The dataset has30, 696 documents, with a vocabulary size of32, 473 words. Each
document is represented by the counts of words in its abstract. We preprocessed the dataset by
Latent Dirichlet Allocation [12] with 200 topics5. We subsequently transformed these topic-counts
yj,k (count value ofk’th topic in the j’th document) intoxj,k = log(1 + yj,k) to fit a normal
distribution better. In this problem the elapsed time of Fast-VDP and VDP were 335 seconds and
2,256 seconds, respectively, hence a speedup of6.7. The free energy ratio was1.040. Fast-VDP
found five clusters, while VDP found six clusters. Table 1 shows the three most frequent topics in
each cluster. Although the two algorithms found a different number of clusters, we can see that the
clusters B and F found by VDP are similar clusters, whereas Fast-VDP did not distinguish between
these two. Table 2 shows words included in these topics, showing that the documents are well-
clustered.

9 Conclusions

We described VDP, a variational mean-field algorithm for Dirichlet Process mixtures, and its fast
extension Fast-VDP that utilizes kd-trees to achieve speedups. Our contribution is twofold: First,

4A Gaussian mixture isc-separated if for each pair(i, j) of components we have||mi − mj ||
2 ≥

c2D max(λmax
i , λmax

j) , whereλmax denotes the maximum eigenvalue of their covariance [11].
5We thank David Newman for this preprocessing.

Fast-VDP VDP
cluster a b c d e A B C D E F
(in descending order)
the three most 1 81 73 35 49 76 81 73 35 76 49 73
frequent topics 2 102 174 50 92 4 102 40 50 4 92 174

3 59 40 110 94 129 59 174 110 129 94 40

Table 1: The three most frequent topics in each clusters. Fast-VDP found five clusters, a–e, while
VDP found six clusters, A–F.

cluster the most words
frequent topic

a, A 81 economic, policy, countries, bank, growth, firm, public, trade, market,...
b, B, F 73 traffic, packet, tcp, network, delay, rate, bandwidth, buffer, end, loss, ...
c, C 35 algebra, algebras, ring, algebraic, ideal, field, lie, group, theory, ...
d, E 49 motion, tracking, camera, image, images, scene, stereo, object, ...
e, D 76 grammar, semantic, parsing, syntactic, discourse, parser, linguistic, ...

Table 2: Words in the most frequent topic of each cluster.

we extended the framework of [7] to allow for nested variational families and an adaptive truncation
level for the variational mixture. Second, we showed how kd-trees can be employed in the frame-
work offering significant speedups, thus extending related results for finite mixture models [8, 9]. To
our knowledge, the VDP algorithm is the first nonparametric Bayesian approach to large-scale data
mining. Future work includes extending our approach to other models in the stick-breaking repre-
sentation (e.g., priors of the formpvi

(vi|ai, bi) = Beta(ai, bi)), as well as alternative DP mixture
representations such as the Chinese restaurant process [3].

Acknowledgments
We thank Dave Newman for sharing code and David Blei for helpful comments. This material is
based upon work supported by ONR under Grant No. N00014-06-1-0734 and the National Science
Foundation under Grant No. 0535278

References

[1] T. Ferguson. A Bayesian analysis of some nonparametric problems.Ann. Statist., 1:209–230, 1973.

[2] C. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems.Ann.
Statist., 2(6):1152–1174, 1974.

[3] D. Aldous. Exchangeability and related topics. InÉcole d’ét́e de Probabilit́e de Saint-Flour XIII, 1983.

[4] J. Sethuraman. A constructive definition of Dirichlet priors.Statist. Sinica, 4:639–650, 1994.

[5] C.E. Rasmussen. The infinite Gaussian mixture model. InNIPS 12. MIT Press, 2000.

[6] H. Ishwaran and M. Zarepour. Exact and approximate sum-representations for the Dirichlet process.Can.
J. Statist., 30:269–283, 2002.

[7] D.M. Blei and M.I. Jordan. Variational inference for Dirichlet process mixtures.Journal of Bayesian
Analysis, 1(1):121–144, 2005.

[8] A.W. Moore. Very fast EM-based mixture model clustering using multiresolution kd-trees. InNIPS 11.
MIT Press, 1999.

[9] J.J. Verbeek, J.R.J. Nunnink, and N. Vlassis. Accelerated EM-based clustering of large data sets.Data
Mining and Knowledge Discovery, 13(3):291–307, 2006.

[10] J.L. Bentley. Multidimensional binary search trees used for associative searching.Commun. ACM,
18(9):509–517, 1975.

[11] S. Dasgupta. Learning mixtures of Gaussians. InIEEE Symp. on Foundations of Computer Science, 1999.

[12] D.M. Blei, A.Y. Ng, and M.I. Jordan. Latent Dirichlet allocation.Journal of Machine Learning Research,
3:993–1022, 2003.

