
Bayesian Image Super-resolution, Continued

Lyndsey C. Pickup, David P. Capel†, Stephen J. Roberts Andrew Zisserman
Information Engineering Building, Dept. of Eng. Science, Parks Road, Oxford, OX1 3PJ, UK

{elle,sjrob,az}@robots.ox.ac.uk
† 2D3,d.capel@2d3.com

Abstract

This paper develops a multi-frame image super-resolution approach from a
Bayesian view-point by marginalizing over the unknown registration parameters
relating the set of input low-resolution views. In Tipping and Bishop’s Bayesian
image super-resolution approach [16], the marginalization was over the super-
resolution image, necessitating the use of an unfavorable image prior. By inte-
grating over the registration parameters rather than the high-resolution image, our
method allows for more realistic prior distributions, and also reduces the dimen-
sion of the integral considerably, removing the main computational bottleneck of
the other algorithm. In addition to the motion model used by Tipping and Bishop,
illumination components are introduced into the generative model, allowing us
to handle changes in lighting as well as motion. We show results on real and
synthetic datasets to illustrate the efficacy of this approach.

1 Introduction

Multi-frame image super-resolution refers to the process by which a group of images of the same
scene are fused to produce an image or images with a higher spatial resolution, or with more visible
detail in the high spatial frequency features [7]. Such problems are common, with everything from
holiday snaps and DVD frames to satellite terrain imagery providing collections of low-resolution
images to be enhanced, for instance to produce a more aesthetic image for media publication [15],
or for higher-level vision tasks such as object recognition or localization [5].

Limits on the resolution of the original imaging device can be improved by exploiting the relative
sub-pixel motion between the scene and the imaging plane. No matter how accurate the registration
estimate, there will be some residual uncertainty associated with the parameters [13]. We propose a
scheme to deal with this uncertainty by integrating over the registration parameters, and demonstrate
improved results on synthetic and real digital image data.

Image registration and super-resolution are often treated as distinct processes, to be considered se-
quentially [1, 3, 7]. Hardieet al. demonstrated that the low-resolution image registration can be
updated using the super-resolution image estimate, and that this improves aMaximum a Posteriori
(MAP) super-resolution image estimate [5]. More recently, Pickupet al. used a similar joint MAP
approach to learn more general geometric and photometric registrations, the super-resolution image,
and values for the prior’s parameters simultaneously [12]. Tipping and Bishop’sBayesian image
super-resolution work [16] uses a Maximum Likelihood (ML) point estimate of the registration pa-
rameters and the camera imaging blur, found by integrating the high-resolution image out of the
registration problem and optimizing the marginal probability of the observed low-resolution images
directly. This gives an improvement in the accuracy of the recovered registration (measured against
known truth on synthetic data) compared to the MAP approach.

The image-integrating Bayesian super-resolution method [16] is extremely costly in terms of com-
putation time, requiring operations that scale with the cube of the total number of high-resolution



pixels, severely limiting the size of the image patches over which they perform the registration (they
use9 × 9 pixel patches). The marginalization also requires a form of prior on the super-resolution
image that renders the integral tractable, though priors such as Tipping and Bishop’s chosen Gaus-
sian form are known to be poor for tasks such as edge preservation, and much super-resolution work
has employed other more favorable priors [2, 3, 4, 11, 14].

It is generally more desirable to integrate over the registration parameters rather than the super-
resolution image, because it is the registration that constitutes the “nuisance parameters”, and the
super-resolution image that we wish to estimate. We derive a new view of Bayesian image super-
resolution in which a MAP high-resolution image estimate is found by marginalizing over the
uncertain registration parameters. Memory requirements are considerably lower than the image-
integrating case; while the algorithm is more costly than a simple MAP super-resolution estimate, it
is not infeasible to run on images of several hundred pixels in size.

Sections 2 and 3 develop the model and the proposed objective function. Section 4 evaluates re-
sults on synthetically-generated sequences (with ground truth for comparison), and on a real data
example. A discussion of this approach and concluding remarks can be found in section 5.

2 Generative model

The generative model for multi-frame super-resolution assumes a known scenex (vectorized, size
N × 1), and a given registration vectorθ(k). These are used to generate a vectorized low-resolution
imagey(k) with M pixels through a system matrixW(k). Gaussiani.i.d. noise with precisionβ is
then added toy(k),

y(k) = λ(k)
α W

(

θ
(k)

)

x + λ
(k)
β + ε

(k) (1)

ε
(k) ∼ N

(

0, β−1I
)

. (2)

Photometric parametersλα andλβ provide a global affine correction for the scene illumination, and
λβ is simply anM × 1 vector filled out with the value ofλβ . Each row ofW(k) constructs a single
pixel in y(k), and the row’s entries are the vectorized and point-spread function (PSF) response
for each low-resolution pixel, in the frame of the super-resolution image [2, 3, 16]. The PSF is
usually assumed to be an isotropic Gaussian on the imaging plane, though for some motion models
(e.g. planar projective) this does not necessarily lead to a Gaussian distribution on the frame ofx.

For an individual low-resolution image, given registrations andx, the data likelihood is
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When the registration is known approximately, for instance by pre-registering inputs, the uncertainty

can be modeled as a Gaussian perturbation about the mean estimateθ̄
(k)

for each image’s parameter
set, with covarianceC, which we restrict to be a diagonal matrix,
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A Huber prior is assumed for the directional image gradientsDx in the super-resolution imagex
(in the horizontal, vertical, and two diagonal directions),
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whereα is a parameter of the Huber potential function, andν is the prior strength parameter. This
belongs to a family of functions often favored over Gaussians for super-resolution image priors [2,
3, 14] because the Huber distribution’s heavy tails mean image edges are penalized less severely.
The difficulty in computing the partition functionZx is a consideration when marginalizing overx
as in [16], though for the MAP image estimate, a value for this scale factor is not required.

Regardless of the exact forms of these probability distributions, probabilistic super-resolution algo-
rithms can usually be interpreted in one of the following ways.

The most popular approach to super-resolution is to obtain a MAP estimate, typically using an
iterative scheme to maximizep
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and the denominator is an unknown scaling factor.

Tipping and Bishop’s approach takes an ML estimate of the registration by marginalizing overx,
then calculates the super-resolution estimate as in (9). While Tipping and Bishop did not include a
photometric model, the equivalent expression to be maximized with respect toθ andλ is
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Note that Tipping and Bishop’s work does employ the same data likelihood expression as in (3),
which forced them to select a Gaussian form forp (x), rather than a more suitable image prior, in
order to keep the integral tractable.

Finally, in this paper we findx through marginalizing overθ andλ, so that a MAP estimate ofx can
be obtained by maximizingp

(

x
∣

∣

{

y(k)
})

directly with respect tox. This is achieved by finding

p
(

x

∣

∣

∣

{

y(k)
})

=
p(x)

p
({

y(k)
})

∫ K
∏

k=1

p
(

θ
(k), λ(k)

)

p
(

y(k)
∣

∣

∣
x, θ(k), λ(k)

)

d {θ, λ} , (11)

which is developed further in the next section. Note that the integral does not involve the prior,p (x).

3 Marginalizing over registration parameters

In order to obtain an expression forp
(
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from expressions (3), (6) and (7) above, the

parameter variationsδ(k) must be integrated out of the problem. Registration estimatesθ̄
(k)

, λ̄α

andλ̄β can be obtained using classical registration methods, either intensity-based [8] or estimation
from image points [6], and the diagonal matrixC is constructed to reflect the confidence in each
parameter estimate. This might mean a standard deviation of a tenth of a low-resolution pixel on
image translation parameters, or a few gray levels’ shift on the illumination model, for instance.

The integral performed is
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whereδT =
[
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]

and all theλ andθ parameters are functions ofδ as in
(4). Expanding the data error term in the exponent for each low-resolution image as a second-order
Taylor series about the estimated geometric registration parameter yields

e(k) (δ) =
∣

∣

∣

∣

∣

∣
y(k) − λα

(

θ
(k)

)

W(k)
(

θ
(k)

)

x − λ
(k)
β

(

θ
(k)

)∣

∣

∣

∣

∣

∣

2

2
(13)

= F (k) + G(k)T
δ +

1

2
δ

(k)TH(k)
δ

(k), (14)



Values forF , G and H can be found numerically (for geometric registrations) or analytically (for

the photometric parameters) fromx and
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where the omission of image superscripts indicates stacked matrices, andH is therefore a block-
diagonalnK × nK sparse matrix, andV is comprised of the repeated diagonal ofC.

Finally, lettingS = β
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The objective function,L, to be minimized with respect tox is obtained by taking the negative log
of (12), using the result from (18), and neglecting the constant terms:
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This can be optimized usingScaled Conjugate Gradients (SCG) [9], noting that the gradient can be
expressed
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where derivatives ofF , G andH with respect tox can be found analytically for photometric pa-
rameters, and numerically (using the analytic gradient ofe(k)

(

δ(k)
)

with respect tox) with respect
to the geometric parameters.

3.1 Implementation notes

Notice that the valueF from (16) is simply the reprojection error of the current estimate ofx at
the mean registration parameter values, and that gradients of this expression with respect to theλ

parameters, and with respect tox can both be found analytically. To find the gradient with respect to
a geometric registration parameterθ

(k)
i , and elements of the Hessian involving it, a central difference

scheme involving only thekth image is used.

Mean values for the registration are computed by standard registration techniques, andx is initialized
using around 10 iterations of SCG to find the maximum likelihood solution evaluated at these mean
parameters. Additionally, pixel values are scaled to lie between− 1

2 and 1
2 , and the ML solution is

bounded to lie within these values in order to curb the severe overfitting usually observed in ML
super-resolution results.

In our implementation, the parameters representing theλ values are scaled so that they share the
same standard deviations as theθ parameters, which represent the sub-pixel geometric registration
shifts, which makes the matrixV a multiple of the identity. The scale factors are chosen so that one
standard deviation inλβ gives a 10-gray-level shift, and one standard deviation inλα varies pixel
values by around 10 gray levels at mean image intensity.



4 Results

The first experiment takes a sixteen-image synthetic dataset created from an eyechart image. Data is
generated at a zoom factor of 4, using a 2D translation-only motion model, and the two-parameter
global affine illumination model described above, giving a total of four registration parameters per
low-resolution image. Gaussian noise with standard deviation equivalent to 5 gray levels is added
to each low-resolution pixel independently. The sub-pixel perturbations are evenly spaced over a
grid up to plus or minus one half of a low-resolution pixel, giving a similar setup to that described
in [10], but with additional lighting variation. The ground truth image and two of the low-resolution
images appear in the first row of Figure 1.

Geometric and photometric registration parameters were initialized to the identity, and the images
were registered using an iterative intensity-based scheme. The resulting parameter values were used
to recover two sets of super-resolution images: one using the standard Huber MAP algorithm, and
the second using our extension integrating over the registration uncertainty. The Huber parameterα
was fixed at0.01 for all runs, andν was varied over a range of possible values representing ratios
betweenν and the image noise precisionβ.

The images giving lowest RMS error from each set are displayed in the second row of Figure 1.
Visually, the differences between the images are subtle, though the bottom row of letters is better
defined in the output from the new algorithm. Plotting the RMSE as a function ofν in Figure 2,
we see that the proposed registration-integrating approach achieves a lower error, compared to the
ground truth high-resolution image, than the standard Huber MAP algorithm for any choice of prior
strength,ν in the optimal region.

(a) ground truth high−res (b) input 1/16 (c) input 16/16

(d) best Huber (err = 15.6) (e) best int−θ−λ (err = 14.8)

Figure 1: (a) Ground truth image. Only the central recoverable part is shown; (b,c) low-resolution
images. The variation in intensity is clearly visible, and the sub-pixel displacements necessary for
multi-frame image super-resolution are most apparent on the “D” characters to the right of each im-
age; (d) The best (ı.e. minimum MSE – see Figure 2) image from the regular Huber MAP algorithm,
having super-resolved the dataset multiple times with different prior strength settings; (e) The best
result using out approach of integrating overθ andλ. As well as having a lower RMSE, note the
improvement in black-white edge detail on some of the letters on the bottom line.

The second experiment uses real data with a 2D translation motion model and an affine lighting
model exactly as above. The first and last images appear on the top row of Figure 3. Image regis-
tration was carried out in the same manner as before, and the geometric parameters agree with the
provided homographies to within a few hundredths of a pixel. Super-resolution images were created
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Figure 2: Plot showing the variation of RMSE with prior strength for the standard Huber-prior MAP
super-resolution method and our approach integrating overθ andλ. The images corresponding to
the minima of the two curves are shown in Figure 1

for a number ofν values, the equivalent values to those quoted in [3] were found subjectively to be
the most suitable.

The covariance of the registration values was chosen to be similar to that used in the synthetic
experiments. Finally, Tipping and Bishop’s method was extended to cover the illumination model
and used to register and super-resolve the dataset, using the same PSF standard deviation (0.4 low-
resolution pixels) as the other methods.

The three sets of results on the real data sequence are shown in the middle and bottom rows of
Figure 3. To facilitate a better comparison, a sub-region of each is expanded to make the letter
details clearer. The Huber prior tends to make the edges unnaturally sharp, though it is very suc-
cessful at regularizing the solution elsewhere. Between the Tipping and Bishop image and the
registration-integrating approach, the text appears more clear in our method, and the regularization
in the constant background regions is slightly more successful.

5 Discussion

It is possible to interpret the extra terms introduced into the objective function in the derivation
of this method as an extra regularizer term or image prior. Considering (19), the first two terms
are identical to the standard MAP super-resolution problem using a Huber image prior. The two
additional terms constitute an additional distribution overx in the cases whereS is not dominated
by V; as the distribution overθ andλ tightens to a single point, the terms tend to constant values.

The intuition behind the method’s success is that this extra prior resulting from the final two terms
of (19) will favor image solutions which are not acutely sensitive to minor adjustments in the image
registration. The images of figure 4 illustrate the type of solution which would score poorly. To
create the figure, one dataset was used to produce two super-resolved images, using two independent
sets of registration parameters which were randomly perturbed by ani.i.d. Gaussian vector with a
standard deviation of only0.04 low-resolution pixels. The checker-board pattern typical of ML
super-resolution images can be observed, and the difference image on the right shows the drastic
contrast between the two image estimates.



(a) input 1/10 (b) input 10/10

(c) integrating θ, λ (d) integrating θ, λ (detailed region)

(e) regular Huber (detailed region) (f) Tipping & Bishop (detailed region)

Figure 3: (a,b) First and last images from a real data sequencecontaining 10 images acquired on a
rig which constrained the motion to be pure translation in 2D. (c) The full super-resolution output
from our algorithm. (d) Detailed region of the central letters, again with our algorithm. (e) Detailed
region of the regular Huber MAP super-resolution image, using parameter values suggested in [3],
which are also found to be subjectively good choices. The edges are slightly artificially crisp, but the
large smooth regions are well regularized. (f) Close-up of letter detail for comparison with Tipping
and Bishop’s method of marginalization. The Gaussian form of their prior leads to a more blurred
output, or one that over-fits to the image noise on the input data if the prior’s influence is decreased.

5.1 Conclusion

This work has developed an alternative approach for Bayesian image super-resolution with several
advantages over Tipping and Bishop’s original algorithm. These are namely a formal treatment of
registration uncertainty, the use of a much more realistic image prior, and the computational speed
and memory efficiency relating to the smaller dimension of the space over which we integrate.
The results on real and synthetic images with this method show an advantage over the popular
MAP approach, and over the result from Tipping and Bishop’s method, largely owing to our more
favorable prior over the super-resolution image.

It will be a straightforward extension of the current approach to incorporate learning for the point-
spread function covariance, though it will result in a less sparse Hessian matrixH, because each
row and column associated with the PSF parameter(s) has the potential to be full-rank, assuming a
common camera configuration is shared across all the frames.

Finally, the best way of learning the appropriate covariance values for the distribution overθ given
the observed data, and how to assess the trade-off between its “prior-like” effects and the need for a
standard Huber-style image prior, are still open questions.
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(a) truth (c) ML image 2 (d) difference(b) ML image 1
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