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Abstract

We consider the problem of learning accurate models frontiphellsources of
“nearby” data. Given distinct samples from multiple datarses and estimates
of the dissimilarities between these sources, we providenaigl theory of which
samples should be used to learn models for each source.hBais/tis applicable
in a broad decision-theoretic learning framework, anddgeksults for classifi-
cation and regression generally, and for density estimatithin the exponential
family. A key component of our approach is the developmenamroximate
triangle inequalities for expected loss, which may be oépehdent interest.

1 Introduction

We introduce and analyze a theoretical model for the prold&l@arning from multiple sources of
“nearby” data. As a hypothetical example of where such @moisl might arise, consider the follow-
ing scenario: For each web user in a large population, we teisbarn a classifier for what sites
that user is likely to find “interesting.” Assuming we havéestst a small amount of labeled data for
each user (as might be obtained either through direct fedba via indirect means such as click-
throughs following a search), one approach would be to agfplydard learning algorithms to each
user’s data in isolation. However, if there are natural aswkasible measures of similarity between
the interests of pairs of users (as might be obtained thrthuigih mutual labelings of common web
sites), an appealing alternative isaggregatethe data of “nearby” users when learning a classifier
for each particular user. This alternative is intuitiveljbgect to a trade-off between the increased
sample size and how different the aggregated users are.

We treat this problem in some generality and provide a boulddessing the aforementioned trade-
off. In our model there aré& unknown data sources, with sourcgenerating a distinct sampkg

of n; observations. We assume we are given only the sansp|emd adisparity* matrix D whose
entry D(i, j) bounds the difference between soui@nd sourcg. Given these inputs, we wish to
decide which subset of the samplgswill result in the best model for each sourceOur frame-
work includes settings in which the sources produce dataléssification, regression, and density
estimation (and more generally any additive-loss learpirdplem obeying certain conditions).

Our main result is a general theorem establishing a boundeoexpected loss incurred by using all
data sources within a given disparity of the target sourgatin@zation of this bound then yields a
recommended subset of the data to be used in learning a mbelatlo source. Our bound clearly
expresses a trade-off between three quantities: the saiaplesed (which increases as we include
data from more distant models), a weighted average of thgadties of the sources whose data is
used, and a model complexity term. It can be applied to anmileg setting in which the underlying
loss function obeys aapproximatetriangle inequality, and in which the class of hypothesisimo
els under consideration obeys uniform convergence of eécapiestimates of loss to expectations.

1We avoid using the term distance since our results include settings in whichdeelying loss measures
may not be formal distances.



For classification problems, the standard triangle inetyuhblds. For regression we prove a 2-
approximation to the triangle inequality, and for dens#yirmation for members of the exponential
family, we apply Bregman divergence techniques to provigeeximate triangle inequalities. We
believe these approximations may find independent apjaitatvithin machine learning. Uniform
convergence bounds for the settings we consider may benebtaia standard data-independent
model complexity measures such as VC dimension and pseutknsdion, or via more recent data-
dependent approaches such as Rademacher complexity.

The research described here grew out of an earlier paperebsatine authors [1] which examined
the considerably more limited problem of learning a modeewlall data sources are corrupted
versions of asingle, fixedsource, for instance when each data source provides naigyles of a
fixed binary function, but with varying levels of noise. Ireticurrent work, each source may be
entirely unrelated to all others except as constrained bybtiunds on disparities, requiring us to
develop new technigues. Wu and Dietterich studied similablems experimentally in the context
of SVMs [2]. The framework examined here can also be viewedltgpe of transfer learning [3, 4].

In Section 2 we introduce a decision-theoretic frameworkpimbabilistic learning that includes
classification, regression, density estimation and malngratettings as special cases, and then give
our multiple source generalization of this model. In SetBowe provide our main result, which is

a general bound on the expected loss incurred by using alwighin a given disparity of a target
source. Section 4 then applies this bound to a variety ofiip&garning problems. In Section 5 we
briefly examine data-dependent applications of our getleealry using Rademacher complexity.

2 Learning models

Before detailing our multiple-source learning model, wstfintroduce a standard decision-theoretic
learning framework in which our goal is to find a model minimga generalized notion of empirical
loss [5]. Let thehypothesis clasg{ be a set of models (which might be classifiers, real-valued
functions, densities, etc.), and l¢tbe thetarget model which may or may not lie in the class
‘H. Let z be a (generalized) data point or observation. For instanc@oise-free) classification
and regression; will consist of a pair{x,y) wherey = f(x). In density estimationz is the
observed value. We assume that the target mogiéhduces some underlying distributidfy over
observations:. In the case of classification or regressiéf, is induced by drawing the inputs
according to some underlying distributidhy and then setting = f(z) (possibly corrupted by
noise). In the case of density estimatidsimply defines a distributio®; over observations.

Each setting we consider has an associtdssl functionC(h, z). For example, in classification we
typically consider the 0/1 losst(h, (x,y)) = 0if h(z) = y, and 1 otherwise. In regression we
might consider the squared loss functidth, (z,y)) = (y—h(x))2. In density estimation we might
consider the log loss(h, x) = log(1/h(x)). In each case, we are interested in the expected loss of
a modelg, on targetgy, e(g1, 92) = E.~p,, [L(g2,2)]. Expected loss is not necessarily symmetric.

In our multiple source model, we are presented vitllistinct samples gpilesof datasSy, ..., Sk,
and a symmetrié{ x K matrix D. Each pileS; containsn; observations that are generated from a
fixed and unknown modef;, and D satisfiese(f;, f;), e(f;, fi) < D(i, j). 2 Our goal is to decide
which pilesS; to use in order to learn the best approximation (in terms peeted loss) to each.

While we are interested in accomplishing this goal for edghit suffices and is convenient to
examine the problem from the perspective of a fiyed Thus without loss of generality let us
suppose that we are given pilés, ..., Sk of sizeny, ..., ng from modelsfy, ..., fx such that
e = D(1,1) <ea=D(1,2) <--- <ex = D(1,K), and our goal is to learri;. Here we have
simply taken the problem in the preceding paragraph, fatosethe problem forf;, and reordered
the other models according to their proximityfo To highlight the distinguished role of the target
f1 we shall denote itf. We denote the observations ) byz1, .. .,z%j. In all cases we will

analyze, for any: < K, the hypothesiék minimizing the empirical losg (k) on the firstk piles
S, ..., 5, ie.

2While it may seem restrictive to assume thats given, notice thaD (i, j) can be often be estimated from
data, for example in a classification setting in which common instances ldbelsath f; and f; are available.
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wheren., = nq1 + --- + ng. We also denote the expected error of functtowith respect to the
first k piles of data as

elh) = Efec(h)] = 3 (2 ) etgun
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3 General theory

In this section we provide the first of our main results: a gehleound on the expected loss of the
model minimizing the empirical loss on the nearkgiiles. Optimization of this bound leads to a
recommended number of piles to incorporate when learfiiegf,. The key ingredients needed to
apply this bound are an approximate triangle inequality @amnchiform convergence bound, which
we define below. In the subsequent sections we demonsti@téhtise ingredients can indeed be
provided for a variety of natural learning problems.

Definition 1 For o > 1, we say that thev-triangle inequality holds for a class of models and
expected loss functianif for all g1, g2, g3 € F we have

e(g1,92) < ale(gr, g3) + e(gs; 92))-
The parametery > 1 is a constant that depends dhande.

The choicen = 1 yields the standard triangle inequality. We note that tistriction to models in
the classF may in some cases be quite weak — for instance, wkés all possible classifiers or
real-valued functions with bounded range — or strongem aensities from the exponential family.
Our results will require only that the unknoveourcemodelsfi, ..., fx lie in F, even when our
hypothesisnodels are chosen from some possibly much more restricésd’el C F. For now we
simply leaveF as a parameter of the definition.

Definition 2 A uniform convergence bound for a hypothesis spacg and loss functionZ is a
bound that states that for arty< ¢ < 1, with probability at least — ¢ for anyh € H

|e(h) — e(h)] < B(n,9)

wheree(h) = L 3" | L(h, z;) for n observations, . . ., z, generated independently according to
distributionsP;, ... P,, ande(h) = E [é(h)] where the expectation is taken owvgtl. .., z,. fis a
function of the number of observationsand the confidencé and depends of{ and L.

This definition simply asserts that for every modelHf its empirical loss on a sample of size
and the expectation of this loss will be “close.” In geneta functions will incorporate stan-
dard measures of the complexity &f, and will be a decreasing function of the sample sizas

in the classicalD(/d/n) bounds of VC theory. Our bounds will be derived from the ritbra-
ture on uniform convergence. The only twist to our settinthés fact that the observations are no
longer necessarily identically distributed, since they generated from multiple sources. However,
generalizing the standard uniform convergence resultsigcsetting is straightforward.

We are now ready to present our general bound.

Theorem 1 Lete be the expected loss function for lagsand letF be a class of models for which
the a-triangle inequality holds with respect to Let’H C F be a class of hypothesis models for
which there is a uniform convergence bouhtbr £. LetK € N, f = fi, fa,..., fx € F, {e:} K4,
{n;}K |, andhy, be as defined above. For afysuch tha) < § < 1, with probability at least — 4,
foranyk € {1,..., K}

n

mfk) i+ 2080114, 6/2K) + o min {e(f, )

R k
o(f, ) < <a+a2>z(



Before providing the proof, let us examine the bound of Thaod, which expresses a natural and
intuitive trade-off. The first term in the bound is a weighgdn of the disparities of the < K
models whose data is used with respect to the target mfogef,. We expect this term tmcrease

as we increasé to include more distant piles. The second term is determimethe uniform
convergence bound. We expect this terndéareasevith added piles due to the increased sample
size. The final term is what is typically called tapproximation error— the residual loss that we
incur simply by limiting our hypothesis model to fall in thestricted clasg{. All three terms are
influenced by the strength of the approximate triangle iaéitythat we have, as quantified lay

The bounds given in Theorem 1 can be loose, but provide arr bpped necessary for optimization
and suggest a natural choice for the number of gifeto use to estimate the targgt

k

n
k* = argmin | (o + o2 ( !
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: ) € + 2045(”1:k75/2K)> .
i=1 :

Theorem 1 and this optimization make the implicit assunmptimat the best subset of piles to use
will be a prefix of the piles — that is, that we should not “skgphearby pile in favor of more distant
ones. This assumption will generally be true for typicabdiamdependent uniform convergence such
as VC dimension bounds, and true on average for data-depienolends, where we expect uniform
convergence bounds to improve with increased sample sigendW give the proof of Theorem 1.

Proof: (Theorem 1) By Definition 1, for ani € H, anyk € {1,... K},and anyi € {1,...,k},
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Summing over alf € {1,...,k}, we find

e(fh) < i(
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In the first line above we have used thdriangle inequality to deliberately introduce a weighted
summation involving thef;. In the second line, we have broken up the summation. Ndi@ethe
first summation is a weighted average of the expected losaatf £, while the second summation
is the expected loss @fon the data. Using the uniform convergence bound, we maytdkaewith
high probabilitye, (h) < éx(h) + B(n1.x, §/2K), and with high probability
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éx(hi) = min{éx(h)} < min {Z ( ng ) e(fi,h) + ﬁ(nl;k,(S/ZK)}
1
Putting these pieces together, we find that with high prditabi
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Figure 1:Visual demonstration of Theorem 2. In this problem therefire: 100 classifiers, each defined by

2 parameters represented by a pdinn the unit square, such that the expected disagreement rate between two

such classifiers equals tlig distance between their parameters. (It is easy to create simple inputudistri
and classifiers that generate exactly this geometry.) We chose therbid0gtar vectorg; uniformly at random
from the unit square (the circles in the left panel). To generate varylagiges, we let:; decrease with the
distance off; from a chosen “central” point a{0.75,0.75) (marked “MAX DATA’ in the left panel); the
resulting pile sizes for each model are shown in the bar plot in the riglel pahere the origir{0, 0) is in the
near corner(1, 1) in the far corner, and the pile sizes clearly peak r@ar5,0.75). Given thesef;, n; and
the pairwise distances, the undirected graph on the left includes an etigeelnf; and f; if and only if the

data fromf; is used to learryf; and/or the converse when Theorem 2 is used to optimize the distance of the

data used. The graph simultaneously displays the geometry implicit in &medras well as its adaptivity to
local circumstances. Near the central point the graph is quite spalsbe@rdges quite short, corresponding
to the fact that for such models we have enough direct data that it isdeah&ageous to include data from
distant models. Far from the central point the graph becomes dedsberdges long, as we are required to
aggregate a larger neighborhood to learn the optimal model. In addigoisiains are affected locally by how
many models are “nearby” a given model.

4 Applications to standard learning settings

In this section we demonstrate the applicability of the galtheory given by Theorem 1 to several
standard learning settings. We begin with the most straagliard application, classification.

4.1 Binary classification

In binary classification, we assume that our target modefiised, unknown and arbitrary function
f from some input set’ to {0, 1}, and that there is a fixed and unknown distribut@ver theX’.
Note that the distributio® over input does not depend on the target funcfioifthe observations are
of the formz = (x, y) wherey € {0,1}. The loss functiorC(h, (z,y)) is defined a® if y = h(x)
and1 otherwise, and the corresponding expected 108$4s, g2) = E.yy~p,, [L(92, (7,9))] =
Pry~plgi(x) # g2(x)]. For 0/1 loss it is well-known and easy to see that the (staf)datriangle
inequality holds, and classical VC theory [6] provides uthwiniform convergence. The conditions
of Theorem 1 are thus easily satisfied, yielding the follayvin

Theorem 2 Let F be the set of all functions from an input s&tinto {0,1} and letd be the VC
dimension ofH C F. Lete be the expected 0/1 loss. L&t € N, f = f1, fo,..., fx € F,

{e; Y, {n;}I<,, andh;, be as defined above in the multi-source learning model. Fgrdasuch
that0 < ¢ < 1, with probability at least. — §, for anyk € {1,..., K}

k
e(f hi) <2 ( & ) € +min {e(f,h)} + 2\/d10g(2en1:k/d) + log (16K/9)
i=1

ni:k 8nl:k

In Figure 1 we provide a visual demonstration of the behasforheorem 1 applied to a simple
classification problem.



4.2 Regression

We now turn to regression with squared loss. Here our targelefyf is any function from an input
classX into some bounded subsetRf (Frequently we will havet C R¢, but this is not required.)
We again assume a fixed but unknown distributid(that does not depend gf) on the inputs. Our
observations are of the form= (z,y). Our loss function isC(h, (z,y)) = (y — h(z))?, and the

expected loss is thuggi, 92) = E(ay)~p,, [L(92, (7,9))] = Eanr [(g1(2) — g2(2))?].

For regression it is known that the standard 1-triangleuadity does not hold. However, a 2-triangle
inequality does hold and is stated in the following lemmae Phoof is given in Appendix A3

Lemma 1 Given any three functiong,, g2, g3 : X — R, a fixed and unknown distributioR on
the inputs, and the expected 108$g1, g2) = Eop [(91(2) — g2())?],

e(g1,92) < 2(e(g1,93) +e(g3,91)) -

The other required ingredient is a uniform convergence tdon regression with squared loss.
There is arich literature on such bounds and their corredipgrcomplexity measures for the model
classH, including the fat-shattering generalization of VC dimieng7], e-nets and entropy [6] and

the combinatorial and pseudo-dimension approaches fagusurveyed in [5]. For concreteness
here we adopt the latter approach, since it serves well ifotteeving section on density estimation.

While a detailed exposition of the pseudo-dimensian () of a classH of real-valued functions
exceeds both our space limitations and scope, it sufficemytthat it generalizes the VC dimension
for binary functions and plays a similar role in uniform cerngence bounds. More precisely, in the
same way that the VC dimension measures the largest setrabmoi which a set of classifiers can
exhibit “arbitrary” behavior (by achieving all possiblebkdings of the points)dim(7) measures
the largest set of points on which the output values indugedtbare “full” or “space-filling.”
(Technically we ask whethef(h(z1),...,h(zq)) : h € H} intersects all orthants dk? with
respect to some chosen origin.) Ignoring constant and ikbgaic factors, uniform convergence
bounds can be derived in which the complexity penalty/ i$im(#) /n. As with the VC dimension,
dim(H) is ordinarily closely related to the number of free paramgetiefining?{. Thus for linear
functions inR? it is O(d) and for neural networks with” weights it isO(WW), and so on.

Careful application of pseudo-dimension results from [6hg with Lemma 1 and Theorem 1 yields
the following. A sketch of the proof appears in Appendix A.

Theorem 3 Let F be the set of functions froii into [ B, B] and letd be the pseudo-dimension of
‘H C F under squared loss. Letbe the expected squared loss. Eete N, f = fi1, fo,..., fx €

F,{e}E |, {n;}E,, andh;, be as defined in the multi-source learning model. Assumenthat
d/16e. For anyd such thad) < ¢ < 1, with probability at leastl — §, for anyk € {1,..., K}

. i [m(eK/s) 162111
' 2 - _— - 5
)H%%{qﬂ h)}+1288 \/;+ m <m

4.3 Density estimation

k
~ n
e(f, ) < 6;(’11
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We turn to the more complex application to density estinmatidere our models are no longer func-
tions, but densitie®. The loss function for an observatiaris the log losL( P, x) = log (1/P(x)).
The expected loss is theiiPy, Po) = E,p, [L(P2,x)] = Ezp, [log(1/Pa(2))].

As we are not aware of an-triangle inequality that holds simultaneously for all diy func-
tions, we provide general mathematical tools to deriveigfized a-triangle inequalities for specific
classes of distributions. We focus on the exponential faofildistributions, which is quite general
and has nice properties which allow us to derive the necgssachinery to apply Theorem 1. We
start by defining the exponential family and explaining savhés properties. We proceed by de-
riving an a-triangle inequality for Kullback-Liebler divergence irgonential families that implies

3A version of this paper with the appendix included can be found on the @ithebsites.



ana-triangle inequality for our expected loss function. Thieqguality and a uniform convergence
bound based on pseudo-dimension yield a general methoefivirdy error bounds in the multiple
source setting which we illustrate using the example of maifhial distributions.

Let 2 € X be a random variable, in either a continuous space (&.g- R¢) or a discrete space
(e.g. X C Z%). We define the exponential family of distributions in teraighe following compo-
nents. First, we have a vector function of thdficient statisticeeeded to compute the distribution,
denotedVl : R? — R? . Associated withl is a vector ofexpectation parameteys € R% which pa-
rameterizes a particular distribution. Next we have a comegtor functionF : R — R (defined
below) which is unique for each family of exponential distitions, and a normalization function
Py(z). Using this notation we define a probability distribution {ie expectation parameters) to be

Pp(z|p) = eVF(u)-(‘If(w)fu)JrF(u)po(x) ) 1)

For all distributions we consider it will hold th&t, .p .(.|,,) [V ()] = u. Using this fact and the lin-
earity of expectation, we can derive the Kullback-Liebkek) divergence between two distributions
of the same family (which use the same functiéhand¥) and obtain

KL (Pr (x|p1) | Pr(z|p2) = F(pi)— [F(p2) + VE(u2) - (1 — p2)] - 2

We define the quantity on the right to be Beegman divergenckeetween the two (parameter) vec-
tors i1 andpue, denoted B (i1 || p2). The Bregman divergence measures the difference between
F and its first-order Taylor expansion abqutevaluated ati;. Eq. (2) states that the KL divergence
between two members of the exponential family is equal t@tiegman divergence between the two
corresponding expectation parameters. We refer the read8} for more details about Bregman
divergences and to [9] for more information about exporafaimilies.

We will use the above relation between the KL divergence kmoeential families and Bregman
divergences to derive a triangle inequality as required unytibeory. The following lemma shows
that if we can provide a triangle inequality for the KL furart we can do so for expected log loss.

Lemma 2 Let e be the expected log loss, i.e(P1, P») = E,.p, [log(1/Px(z))]. For any three
probability distributionsP;, P», and Ps, if KL (P || P2) < a(KL(P; | P3) + KL(P5 || P)) for
somex > 1thene(Py, P5) < ale(Pr, P3) + e(Ps, P2)).

The proof is given in Appendix B. The next lemma gives an apjpnate triangle inequality for the
KL divergence. We assume that there exists a close® set{;.} which contains all the parameter
vectors. The proof (again see Appendix B) uses Taylor’s Témado derive upper and lower bounds
on the Bregman divergence and then uses Eq. (2) to relate oesds to the KL divergence.

Lemma 3 Let P;, P», and P; be distributions from an exponential family with paramstgrand
functionF'. Then

KL(P1 || P2) <a(KL(P || P3) +KL(Ps || P»))
wherea = 2supgcp M (H(F(€)))/ infeep Ao (H(F(€))). Here A (-) and Ay (-) are the highest
and lowest eigenvalues of a given matrix, dh¢ ) is the Hessian matrix.

The following theorem, which states bounds for multinondistributions in the multi-source set-
ting, is provided to illustrate the type of results that carobtained using the machinery described in
this section. More details on the application to the muttiied distribution are given in Appendix B.

Theorem 4 Let F = 'H be the set of multinomial distributions ovAf values with the probability
of each value bounded from below fyor somey > 0, and letaw = 2/+. Letd be the pseudo-
dimension of{ under log loss, and let be the expected log loss. LEte N, f = f1, fo,..., fx €
F e}, * {n}K , andh, be as defined above in the multi-source learning model. Asshat
ny > d/16e. For any0 < § < 1, with probability at least — ¢ foranyk € {1,..., K},

~ k n;
() < (ara?) > (22 ) e agmin (e(f)

1.
i1 1:k

“Here we can actually make the weaker assumption that;theund the KL divergences rather than the
expected log loss, which avoids our needing upper bounds on the gofrepch source distribution.
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5 Data-dependent bounds

Given the interest in data-dependent convergence metkadk &s maximum margin, PAC-Bayes,
and others) in recent years, it is natural to ask how our rsoltirce theory can exploit these modern
bounds. We examine one specific case for classification lsarg Rademacher complexity [10, 11];

analogs can be derived in a similar manner for other learpinglems.

If H is a class of functions mapping from a sgtto R, we define theempirical Rademacher com-

plexity of H on a fixed set of observations, ..., z, as
Rn(H) }S;lelg nZJZ x;) xl,...,xl
where the expectation is taken over independent unifatmh}-valued random variables, . . . , o,,.

The Rademacher complexity farobservations is then defined B (H) = E {Rn(H)} where the
expectation is ovety, ..., x,.

We can apply Rademacher-based convergence bounds to ebtiata-dependent multi-source
bound for classification. A proof sketch using techniquesgthierorems of [10] is in Appendix C.

Theorem 5 Let F be the set of all functions from an input sktinto {-1,1} and letR,,, , be the
empirical Rademacher complexity &f C F on the firstk piles of data. Let be the expected 0/1
loss. LetK € N, f = fi, fo,..., fx € F, {e;}/<,, {n:} K, andh; be as defined in the multi-
source learning model. Assume that > d/16e. For anyé such that) < ¢ < 1, with probability
atleastl — ¢, foranyk € {1,..., K}

e(f, hy) <22<

While the use of data-dependent complexity measures campleetex to yield more accurate bounds
and thus better decisions about the nunmieof piles to use, it is not without its costs in comparison
to the more standard data-independent approaches. leuartiin principle the optimization of
the bound of Theorem 5 to choosé may actually involve running the learning algorithm on all
possible prefixes of the piles, since we cannot know the dapendent complexity term for each
prefix without doing so. In contrast, the data-independeninids can be computed and optimized
for k* without examining the data at all, and the learning perfatimely once on the firgt* piles.

21n(4K/9)

ni:k
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