
From Weighted Classification to Policy Search

D. Blatt
Department of Electrical Engineering

and Computer Science
University of Michigan

Ann Arbor, MI 48109-2122
dblatt@eecs.umich.edu

A. O. Hero
Department of Electrical Engineering

and Computer Science
University of Michigan

Ann Arbor, MI 48109-2122
hero@eecs.umich.edu

Abstract

This paper proposes an algorithm to convert aT -stage stochastic decision
problem with a continuous state space to a sequence of supervised learn-
ing problems. The optimization problem associated with the trajectory
tree and random trajectory methods of Kearns, Mansour, and Ng, 2000,
is solved using the Gauss-Seidel method. The algorithm breaks a multi-
stage reinforcement learning problem into a sequence of single-stage re-
inforcement learning subproblems, each of which is solved via an exact
reduction to a weighted-classification problem that can be solved using
off-the-self methods. Thus the algorithm converts a reinforcement learn-
ing problem into simpler supervised learning subproblems. It is shown
that the method converges in a finite number of steps to a solution that
cannot be further improved by componentwise optimization. The impli-
cation of the proposed algorithm is that a plethora of classification meth-
ods can be applied to find policies in the reinforcement learning problem.

1 Introduction

There has been increased interest in applying tools from supervised learning to problems
in reinforcement learning. The goal is to leverage techniques and theoretical results from
supervised learning for solving the more complex problem of reinforcement learning [3].
In [6] and [4], classification was incorporated into approximate policy iterations. In [2],
regression and classification are used to perform dynamic programming. Bounds on the
performance of a policy which is built from a sequence of classifiers were derived in [8]
and [9].

Similar to [8], we adopt the generative model assumption of [5] and tackle the problem of
finding good policies within an infinite class of policies, where performance is evaluated
in terms of empirical averages over a set of trajectory trees. In [8] the T-step reinforcement
learning problem was converted to a set of weighted classification problems by trying to fit
the classifiers to the maximal path on the trajectory tree of the decision process.

In this paper we take a different approach. We show that while the task of finding the global
optimum within a class of non-stationary policies may be overwhelming, the componen-
twise search leads to single step reinforcement learning problems which can be reduced
to a sequence of weighted classification problems. Our reduction is exact and is differ-



ent from the one proposed in [8]; it gives more weight to regions of the state space in
which the difference between the possible actions in terms of future reward is large, rather
than giving more weight to regions in which the maximal future reward is large. The
weighted classification problems can be solved by applying weights-sensitive classifiers or
by further reducing the weighted classification problem to a standard classification problem
using re-sampling methods (see [7], [1], and references therein for a description of both ap-
proaches). Based on this observation, an algorithm that converts the policy search problem
into a sequence of weighted classification problems is given. It is shown that the algorithm
converges in a finite number of steps to a solution, which cannot be further improved by
changing the control of a single stage while holding the rest of the policy fixed.

2 Problem Formulation

The results are presented in the context of MDPs but can be applied to POMDPs and non-
Markovian decision processes as well. Consider a T-step MDPM = {S,A, D, Ps,a},
whereS is a (possibly continuous) state space,A = {0, . . . , L − 1} is a finite set of
possible actions,D is the distribution of the initial state, andPs,a is the distribution of the
next state given that the current state iss and the action taken isa. The reward granted
when taking actiona at states and making a transition to states′ is assumed to be a known
deterministic and bounded function ofs′ denoted byr : S → [−M,M ]. No generality
is lost in specifying a known deterministic reward since it is possible to augment the state
variable by an additional random component whose distribution depends on the previous
state and action, and specify the functionr to extract this random component. Denote by
S0, S1, . . . , ST the random state variables.

A non-stationary deterministic policyπ = (π0, π1, . . . , πT−1) is a sequence of mappings
πt : S → A, which are called controls. The controlπt specifies the action taken at time
t as a function of the state at timet. The expected sum of rewards of a non-stationary
deterministic policyπ is given by

V (π) = Eπ

{
T∑

t=1

r (St)

}
, (1)

where the expectation is taken with respect to the distribution over the random state vari-
ables induced by the policyπ. We callV (π) the value of policyπ. Non-stationary de-
terministic policies are considered since the optimal policy for a finite horizon MDP is
non-stationary and deterministic [10]. Usually the optimal policy is defined as the policy
that maximizes the value conditioned on the initial state, i.e.,

Vπ(s) = Eπ

{
T∑

t=1

R (St) |S0 = s

}
, (2)

for any realizations of S0 [10]. The policy that maximizes the conditional value given
each realization of the initial state also maximizes the value averaged over the initial state,
and it is the unique maximizer if the distribution of the initial stateD is positive overS.
Therefore, when optimizing over all possible policies, the maximization of (1) and (2) are
equivalent. When optimizing (1) over a restricted class of policies, which does not contain
the optimal policy, the distribution over the initial state specifies the importance of different
regions of the state space in terms of the approximation error. For example, assigning high
probability to a certain region ofS will favor policies that well approximate the optimal
policy over that region. Alternatively, maximizing (1) whenD is a point mass at states is
equivalent to maximizing (2).

Following the generative model assumption of [5], the initial distributionD and the condi-
tional distributionPs,a are unknown but it is possible to generate realization of the initial



state according toD and the next state according toPs,a for arbitrary state-action pairs
(s, a). Given the generative model,n trajectory trees are constructed in the following man-
ner. The root of each tree is a realization ofS0 generated according to the distribution
D. Given the realization of the initial state, realizations of the next stateS1 given theL
possible actions, denoted byS1|a, a ∈ A, are generated. Note that this notation omits
the dependence on the value of the initial state. Each of theL realizations ofS1 is now
the root of the subtree. These iterations continue to generate a depthT tree. Denote by
St|i0, i1, . . . , it−1 the random variable generated at the node that follows the sequence of
actionsi0, i1, . . . , it−1. Hence, each tree is constructed using a single call to the initial state
generator andLT − 2 calls to the next state generator.

Figure 1: A binary trajectory tree.

Consider a class of policiesΠ, i.e., each element ofΠ is a sequence ofT mappings fromS
toA. It is possible to estimate the value of any policy in the class from the set of trajectory
trees by simply averaging the sum of rewards on each tree along the path that agrees with
the policy [5]. Denote bŷV i(π) the observed value on thei’th tree along the path that
corresponds to the policyπ. Then the value of the policyπ is estimated by

V̂n(π) = n−1

n∑

i=1

V̂ i(π). (3)

In [5], the authors show that with high probability (over the data set)V̂n(π) converges
uniformly to V (π) (1) with rates that depend on the VC-dimension of the policy class.
This result motivates the use of policiesπ with high V̂n(π), since with high probability
these policies have high values ofV (π). In this paper, we consider the problem of finding
policies that obtain high values of̂Vn(π).

3 A Reduction From a Single Step Reinforcement Learning Problem
to Weighted Classification

The building block of the proposed algorithm is an exact reduction from a single step rein-
forcement learning to a weighted classification problem. Consider the single step decision
process. An initial stateS0 generated according to the distributionD is followed by one
of L possible actionsA ∈ {0, 1, . . . , L − 1}, which leads to a transition to stateS1 whose



conditional distribution given the initial state iss and the action isa is given byPs,a. Given
a class of policiesΠ, where policy inΠ is a map fromS toA, the goal is to find

π̂ ∈ arg max
π∈Π

V̂n(π). (4)

In this single step problem the data aren realization of the random element
{S0, S1|0, S1|1, . . . , S1|L − 1}. Denote thei’th realization by{si

0, s
i
1|0, si

1|1, . . . , si
1|L −

1}. In this case,̂Vn(π) can be written explicitly by

V̂n(π) = En

{
L−1∑

l=0

r(S1|l)I(π(S0) = l)

}
, (5)

where for a functionf , En {f(S0, S1|0, S1|1, . . . , S1|L − 1)} is its empirical expectation
n−1

∑n

i=1
f(si

0, s
i
1|0, si

1|1, . . . , si
1|L − 1), andI(·) is the indicator function taking a value

of one when its argument is true and zero otherwise.

The following proposition shows that the problem of maximizing the empirical reward (5)
is equivalent to a weighted classification problem.

Proposition 1 Given a class of policiesΠ and a set ofn trajectory trees,

arg max
π∈Π

En

{
L−1∑

l=0

r(S1|l)I(π(S0) = l)

}

= arg min
π∈Π

En

{
L−1∑

l=0

[
max

k
r(S1|k) − r(S1|l)

]
I(π(S0) = l)

}
. (6)

The proposition implies that the maximizer of the empirical reward over a class of policies
is the output of an optimal weights dependent classifier for the data set:

{(
si
0, arg max

k
r(si

1|k), wi

)}n

i=1

,

where for each sample, the first argument is the example, the second is the label, and

wi =

[
max

k
r(si

1|k) − r(si
1|0),max

k
r(si

1|k) − r(si
1|1), . . . ,max

k
r(si

1|k) − r(si
1|L − 1)

]

is the realization of theL costs of classifying examplei to each of the possible labels.
Note that the realizations of the costs are always non-negative and the cost of the correct
classification (arg maxk r(si

1|k)) is always zero. The solution to the weighted classification
problem is a map fromS to A which minimizes the empirical weighted misclassification
error (6). The proposition asserts that this mapping is also the control which maximizes the
empirical reward (5).

Proof 1 For all j ∈ {0, 1, . . . , L − 1},

L−1∑

l=0

r(S1|l)I(π(S0) = l) = r(S1|j) + (r(S1|0) − r(S1|j))I(π(s) = 0) + (7)

(r(S1|1) − r(S1|j))I(π(s) = 1) + . . . + (r(S1|L − 1) − r(S1|j))I(π(s) = L − 1).

In addition,

En

{
L−1∑

l=0

r(S1|l)I(π(S0) = l)

}
=



En

{
I(arg max

k
r(S1|k) = 0)

L−1∑

l=0

r(S1|l)I(π(S0) = l)

}
+

En

{
I(arg max

k
r(S1|k) = 1)

L−1∑

l=0

r(S1|l)I(π(S0) = l)

}
+ . . . +

En

{
I(arg max

k
r(S1|k) = L − 1)

L−1∑

l=0

r(S1|l)I(π(S0) = l)

}
.

Substituting (7) we obtain

En

{
L−1∑

l=0

r(S1|l)I(π(S0) = l)

}
=

L−1∑

j=0

En{I(arg max
k

r(S1|k) = j)[r(S1|j) −

(max
k

r(S1|k) − r(S1|0))I(π(S0) = 0) −

(max
k

r(S1|k) − r(S1|1))I(π(S0) = 1) − . . . −

(max
k

r(S1|k) − r(S1|L − 1))I(π(S0) = L − 1)]} =

L−1∑

j=0

En

{
I(arg max

k
r(S1|k) = j)r(S1|j)

}
−

En

{
L−1∑

l=0

[
max

k
R(S1|k) − R(S1|l)

]
I(π(S0) = l)

}

The term in the second to last line is independent ofπ(s) and the result follows.

In the binary case, the optimization problem is

arg min
π∈Π

En

{
|r(S1|0) − r(S1|1)|I(π(S0) 6= arg max

k
r(S1|k))

}
,

i.e., the single step reinforcement learning problem reduces to the weighted classification
problem with samples

{(
si
0, arg max

k∈{0,1}
r(si

1|k), |r(si
1|0) − r(si

1|1)|

)}n

i=1

,

where for each sample, the first argument is the example, the second is the label, and the
third is a realization of the cost incurred when misclassifying the example. Note that this
is different from the reduction in [8]. When applying the reduction in [8] to our single step
problem the costs are taken to bemaxk∈{0,1} r(si

1|k) rather than|r(si
1|0) − r(si

1|1)|. Set-
ting the costs tomaxk∈{0,1} r(si

1|k) instead of|r(si
1|0) − r(si

1|1)| favors classifiers which
perform well in regions where the maximal reward is large (regardless of the difference
between the two actions) instead of regions where the difference between the rewards that
result from the two actions is large. It is easy to set an example of a simple MDP and a
restricted class of policies, which do not include the optimal policy, in which the classifier
that minimizes the weighted misclassification problem with costsmaxk∈{0,1} r(si

1|k) is
not equivalent to the optimal policy. When using our reduction, they are always equivalent.
On the other hand, in [8] the choicemaxk∈{0,1} r(si

1|k) led to a bound on the perfor-
mance of the policy in terms of the performance of the classifier. We do not pursue this



type of bounds here since given the classifier, the performance of the resulting policy can
be directly estimated from (5). Given a sequence of classifiers, the value of the induced
sequence of controls (or policy) can be estimated directly by (3) with generalization guar-
antees provided by the bounds in [5]. In [2], a certain single step binary reinforcement
learning problem is converted to weighted classification by averaging multiple realizations
of the rewards under the two possible actions for each state. As seen here, this Monte Carlo
approach is not necessary; it is sufficient to sample the rewards once for each state.

4 Finding Good Policies for aT -Step Markov Decision Processes By
Solving a Sequence of Weighted Classification Problems

Given the class of policiesΠ, the algorithm updates the controlsπ0, . . . , πT−1 one at a time
in a cyclic manner while holding the rest constant. Each update is formulated as a single
step reinforcement learning problem which is then converted to a weighted classification
problem. In practice, if the weighted classification problem is only approximately solved,
then the new control is accepted only if it leads to higher value ofV̂ . When updatingπt, the
trees are pruned from the root to staget by keeping only the branch which agrees with the
controlsπ0, π1, . . . , πt−1. Then a single step reinforcement learning is formulated at time
stept, where the realization of the reward which follows actiona ∈ A at staget is the im-
mediate reward obtained at the state which follows actiona plus the sum of rewards which
are accumulated along the branch which agrees with the controlsπt+1, πt+2, . . . , πT−1.
The iterations end after the first complete cycle with no parameter modifications.

Note that when updatingπt, each tree contributes one realization of the state at timet. A
result of the pruning process is that the ensemble of state realization are drawn from the
distribution induced by the policy up to timet − 1. In other words, the algorithm relaxes
the requirement in [2] to have access to a baseline distribution - a distribution over the
states that is induced by a good policy. Our algorithm automatically generates samples
from distributions that are induced by a sequence of monotonically improving policies.

Figure 2: Updatingπ1. In the example: pruning down according toπ0(S0) = 0, propagat-
ing rewards up according toπ2(S2|00) = 1, andπ2(S2|01) = 0.

Proposition 2 The algorithm converges after a finite number of iterations to a policy that
cannot be further improved by changing one of the controls and holding the rest fixed.

Proof 2 Writing the empirical average sum of rewardsV̂n(π) explicitly as

V̂n(π) = En





∑

i0,...,iT−1∈AT

I(π0(S
0) = i0)I(π1(S

1|i0) = i1) . . .



I(πT−1(S
T−1|i0, i1, . . . , iT−2) = iT−1)

T∑

t=1

r(St|i0, i1, . . . , it−1)

}
,

it can be seen that the algorithm is a Gauss-Seidel algorithm for maximizingV̂n(π), where,
at each iteration, optimization ofπt is carried out at one of the stagest while keeping
πt′ , t′ 6= t fixed. At each iteration the previous control is a valid solution and hence the
objective function is non decreasing. SinceV̂n(π) is evaluated using a finite number of
trees, it can take only a finite set of values. Therefore, we must reach a cycle with no
updates after a finite number of iterations. A cycle with no improvements implies that we
cannot increase the empirical average sum of rewards by updating one of theπt’s.

5 Initialization

There are two possible initial policies that can be extracted from the set of trajectory trees.
One possible initial policy is the myopic policy which is computed from the root of the tree
downwards. Staring from the root,π0 is found by solving the single stage reinforcement
learning resulting from taking into account only the immediate reward at the next state.
Once the weighted classification problem is solved the trees are pruned by following the
action which agrees withπ0. The remaining realizations of stateS1 follow the distribution
induced by the myopic control of the first stage. The process is continued to stageT − 1.
The second possible initial policy is computed from the leaves backward to the root. Note
that the distribution of the state at a leaf that is chosen at random is the distribution of
the state when a randomized policy is used. Therefore, to find the best control at stage
T −1, given that the previousT −2 controls choose random actions, we solve the weighted
classification problem induced by considering all the realization of the stateST−1 from all
the trees (these are not independent observations) or choose randomly one realization from
each tree (these are independent realizations). Given the classifier, we use the equivalent
control πT−1 to propagated the rewards up to the previous stage and solve the resulting
weighted classification problem. This is carried out recursively up to the root of the tree.

6 Extensions

The results presented in this paper generalize to the non-Markovian setting as well. In
particular, when the state space, action space, and the reward function depend on time, and
the distribution over the next state depends on all past states and actions, we will be dealing
with non-stationary deterministic policiesπ = (π0, π1, . . . , πT−1); πt : S0 × A0 × . . . ×
St−1 × At−1 × St → At, t = 0, 1, . . . , T − 1. POMDPs can be dealt with in terms of
the belief states as a continuous state space MDP or as a non-Markovian process in which
policies depend directly on all past observations.

While we focused on the trajectory tree method, the algorithm can be easily modified to
solve the optimization problem associated with the random trajectory method [5] by ad-
justing the single step reinforcement learning reduction and the pruning method presented
here.

7 Illustrative Example

The following example illustrates the aspects of the problem and the components of our so-
lution. The simulated system is a two-step MDP, with continuous state spaceS = [0, 1] and
a binary action spaceA = {0, 1}. The distribution over the initial state is uniform. Given
states and actiona the next states′ is generated bys′ = mod(s + 0.33a + 0.1randn, 1),



wheremod(x, 1) is the fraction part ofx, andrandn is a Gaussian random variable inde-
pendent of the other variables in the problem. The reward function isr(s) = s sin(πs). We
consider a class of policies parameterized by a continuous parameter:Π = {π(·; θ)|θ =
(θ0, θ1) ∈ [0, 2]2}, whereπi(s; θi) = 1 whenθi ≤ 1 ands > θi or whenθi > 1 and
s < θi − 1 and zero otherwise,i = 0, 1.

In Figure 3 the objective function̂Vn(π(θ)), estimated fromn = 20 trees, is presented as a
function ofθ0 andθ1. The path taken by the algorithm supperimposed on the contour plot
of V̂n(π(θ)) is also presented. Starting from the arbitrary point0, the algorithm performs
optimization with respect to one of the coordinates at a time and converges after3 iterations.
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Figure 3: The objective function̂Vn(π(θ)) and the path taken by the algorithm.
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