
Dynamical Synapses Give Rise to a Power-Law
Distribution of Neuronal Avalanches

Anna Levina3,4, J. Michael Herrmann1,2, Theo Geisel1,2,4

1 Bernstein Center for Computational Neuroscience Göttingen
2 Georg-August University Göttingen, Institute for Nonlinear Dynamics

3 Graduate School Identification in Mathematical Models
4 Max Planck Institute for Dynamics and Self-Organization

Bunsenstr. 10, 37073 Göttingen, Germany
anna|michael|geisel@chaos.gwdg.de

Abstract

There is experimental evidence that cortical neurons show avalanche ac-
tivity with the intensity of firing events being distributed as a power-law.
We present a biologically plausible extension of a neural network which
exhibits a power-law avalanche distribution for a wide range of connec-
tivity parameters.

1 Introduction

Power-law distributions of event sizes have been observed in a number of seemingly di-
verse systems such as piles of granular matter [8], earthquakes [9], the game of life [1],
friction [7], and sound generated in the lung during breathing. Because it is unlikely that
the specific parameter values at which the critical behavior occurs are assumed by chance,
the question arises as to what mechanisms may tune the parameters towards the critical
state. Furthermore it is known that criticality brings about optimal computational capabili-
ties [10], improves mixing or enhances the sensitivity to unpredictable stimuli [5]. There-
fore, it is interesting to search for mechanisms that entail criticality in biological systems,
for example in the nervous tissue.

In [6] a simple model of a fully connected neural network of non-leaky integrate-and-fire
neurons was studied. This study not only presented the first example of a globally cou-
pled system that shows criticality, but also predicted the critical exponent as well as some
extra-critical dynamical phenomena, which were later observed in experimental researches.
Recently, Beggs and Plenz [3] studied the propagation of spontaneous neuronal activity in
slices of rat cortex and neuronal cultures using multi-electrode arrays. Thereby, they found
avalanche-like activity where the avalanche sizes were distributed according to a power-
law with an exponent of -3/2. This distribution was stable over a long period of time. The
authors suggested that such a distribution is optimal in terms of transmission and storage
of the information.

The network in [6] consisted of a set of N identical threshold elements characterized by
the membrane potential u ≥ 0 and was driven by a slowly delivered random input. When
the potential exceeds a threshold θ = 1, the neuron spikes and relaxes. All connections



in the network are described by a single parameter α representing the evoked synaptic
potential which a spiking neuron transmits to the all postsynaptic neurons. The system is
driven by a slowly delivered random input. The simplicity of that model allows analytical
consideration: an explicit formula for probability distribution of avalanche size depending
on the parameter α was derived. A major drawback of the model was the lack of any
true self-organization. Only at an externally well-tuned critical value of α = αcr did the
distribution take a form of a power-law, although with an exponent of precisely -3/2 (in the
limit of a large system). The term critical will be applied here also to finite systems. True
criticality requires a thermodynamic limit N −→ ∞, we consider approximate power-law
behavior characterized by an exponent and an error that describes the remaining deviation
from the best-matching exponent. The model in [6] is displayed for comparison in Fig. 3.
In Fig. 1 (a-c) it is visible that the system may also exhibit other types of behavior such
as small avalanches with a finite mean (even in the thermodynamic limit) at α < αcr. On
the other hand at α > αcr the distribution becomes non-monotonous, which indicates that
avalanches of the size of the system are occurring frequently. Generally speaking, in order
to drive the system towards criticality it therefore suffices to decrease the large avalanches
and to enhance the small ones. Most interestingly, synaptic connections among real neurons
show a similar tendency which thus deserves further study. We will consider the standard
model of a short-term dynamics in synaptic efficacies [11, 13] and thereafter discuss several
numerically determined quantities. Our studies imply that dynamical synapses indeed may
support the criticalization of the neural activity in a small homogeneous neural system.

2 The model

We are considering a network of integrate-and-fire neurons with dynamical synapses. Each
synapse is described by two parameters: amount of available neurotransmitters and a frac-
tion of them which is ready to be used at the next synaptic event. Both parameters change in
time depending on the state of the presynaptic neuron. Such a system keeps a long memory
of the previous events and is known to exert a regulatory effect to the network dynamics,
which will turnout to be beneficial.

Our approach is based on the model of dynamical synapses, which was shown by Tsodyks
and Markram to reliably reproduce the synaptic responses between pyramidal neurons
[11, 13]. Consider a set of N integrate-and-fire neurons characterized by a membrane
potential hi ≥ 0, and two connectivity parameters for each synapse: Ji,j ≥ 0, ui,j ∈ [0, 1].
The parameter Ji,j characterizes the number of available vesicles on the presynaptic side of
the connection from neuron j to neuron i. Each spike leads to the usage of a portion of the
resources of the presynaptic neuron, hence, at the next synaptic event less transmitters will
be available i.e. activity will be depressed. Between spikes vesicles are slowly recovering
on a timescale τ1. The parameter ui,j denotes the actual fraction of vesicles on the presy-
naptic side of the connection from neuron j to neuron i, which will be used in the synaptic
transmission. When a spike arrives at the presynaptic side j, it causes an increase of ui,j .
Between spikes, ui,j slowly decrease to zero on a timescale τ2. The combined effect of
Ji,j and ui,j results in the facilitation or depression of the synapse. The dynamics of a
membrane potential hi consists of the integration of excitatory postsynaptic currents over
all synapses of the neuron and the slowly delivered random input. When the membrane
potential exceeds threshold, the neuron emits a spike and hi resets to a smaller value. The
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Figure 1: Probability distributions of avalanche sizes P (L,N, α). (a) in the subcritical,
α = 0.52, (b) the critical, α = 0.53, and (c) supra-critical regime, α = 0.74. In (a-c) the
solid lines and symbols denote the numerical results for the avalanche size distributions,
dashed lines show the best matching power-law. Here the curves are temporal averages
over 106 avalanches with N = 100, u0 = 0.1, τ1 = τ2 = 0.1. Sub-figure (d) displays
P (L,N, α) as a function of L for α varying from 0.34 to 0.98 with step 0.01. The presented
curves are temporal averages over 106 avalanches with N = 200, u0 = 0.1, τ1 = τ2 = 0.1.

joint dynamics can be written as a system of differential equations

J̇i,j =
1

τ1τs
(J0 − Ji,j) − ui,jJi,jδ(t − tjsp), (1)

u̇i,j = −
1

τ2τs
ui,j + u0(1 − ui,j)δ(t − tjsp), (2)

ḣi =
1

τs
δ(r(t) − i)cξ +

N
∑

j=1

ui,jJi,jδ(t − tjsp) (3)

Here δ(t) is the Dirac delta-function, tj
sp is the spiking time of neuron j, J0 is the resting

value of Ji,j , u0 is the minimal value of ui,j , and τs is a parameter separating time-scales
of random input and synaptic events. In the following study we will use the discrete version
of equations (1-3).
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Figure 2: The best matching power-law exponent. The black line represents the present
model, while the grey stands for model [6]. Average synaptic efficiency α varies from 0.3
to 1.0 with step 0.001. Presented curves are temporal averages over 107 avalanches with
N = 200, u0 = 0.1, τ1 = τ2 = 10. Note that for a network of 200 units, the absolute
critical exponent is smaller than the large system limit γ = −1.5 and that the step size has
been drastically reduced in the vicinity of the phase transition.

3 Discrete version of the model

We consider time being measured in discrete steps, t = 0, 1, 2, . . .. Because synaptic val-
ues are essentially determined presynaptically, we assume that all synapses of a neuron are
identical, i.e. Jj , uj are used instead of Ji,j and ui,j respectively. The system is initialized
with arbitrary values hi ∈ [0, 1), i = 1, . . . , N , where the threshold θ is fixed at 1. De-
pending on the state of the system at time t, the i-th element receives external input I ext

i (t)
or internal input I int

i (t) from other neural elements. The two effects result in an activation
h̃ at time t + 1,

h̃i(t + 1) = hi(t) + Iext
i (t) + I int

i (t) (4)

From the activation h̃i(t + 1), the membrane potential of the i-th element at time t + 1 is
computed as

hi(t + 1) =

{

h̃i(t + 1) if h̃i(t + 1) < 1,

h̃i(t + 1) − 1 if h̃i(t + 1) ≥ 1,
(5)

i.e. if the activation exceeds the threshold, it is reset but retains the supra-threshold portion
h̃i(t + 1) − 1 of the membrane potential.

The external input Iext
i (t) is a random amount c ξ, received by a randomly chosen neuron.

Here, c is input strength scale, parameter of the model, ξ is uniformly distributed on [0, 1]
and independent of i. The external input is considered to be delivered slowly compared
to the internal relaxation dynamics (which corresponds to τsep � 1), i.e. it occurs only if
no element has exceeded the threshold in the previous time step. This corresponds to an
infinite separation of the time scales of external driving and avalanche dynamics discussed
in the literature on self-organized criticality [12, 14]. The present results, however, are
not affected by a continuous external input even during the avalanches. The external input
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Figure 3: The mean squared deviation from the best fit power-law. The grey code and
parameters are the same as in Fig. 2 For the fit, avalanches of a size larger than 1 and
smaller than N/2 have been used. Clearly, an error levels above 0.1 indicates that the
fitted curve is far from being a candidate for a power law. Near to α = 1, when the non-
dynamical model develops a supercritical behavior, the range of the power-law is quite
limited. Interesting is again the sharp transition of the dynamical model, which is due to
the facilitation strength surpassing a critical level.

can formally be written as Iext
i (t) = c δr,i(t) |δM(t−1)|, 0 ξ, where r is an integer random

variable between 1 and N indicating the chosen element, M(t − 1) is the set of indices of
supra-threshold elements in the previous time step i.e. M(t) = {i|h̃i(t) ≥ 1}, and δ.. is the
Kronecker delta. We will consider c = J0, thus an external input is comparable with the
typical internal input.

The internal input I int
i (t) is given by

I int
i (t) =

∑

j∈M(t−1)

Jj(t)uj(t).

The system is initialized with ui = u0, Ji = J0, where J0 = α/(Nu0) and α is the
connection strength parameter. Similar to the membrane potentials dynamics, we can dis-
tinguish two situations: either there were supra-threshold neurons at the previous moment
of time or not.

uj(t + 1) =

{

uj(t) −
1
τ2

u0uj(t)) · δ|M(t)|,0 if h̃i(t) < 1,

uj(t) + (1 − uj(t))u0(t) if h̃i(t) ≥ 1,
(6)

Jj(t + 1) =

{

Jj(t) + 1
τ1

(J0 − Jj(t)) · δ|M(t)|,0 if h̃i(t) < 1,

Jj(t)(1 − uj(t)) if h̃i(t) ≥ 1,
(7)

Thus, we have a model with parameters α, u0, τ1, τ2 and N . Our main focus will be on
the influence of α on the cumulative dynamics of the network. The dependence on N has
been studied in [6], where it was found that the critical parameter of the distribution scales
as αcr = 1 − N−1/2. In the same way, the exponent will be smaller in modulus than -3/2
for finite systems.



0.053 0.0534 0.0538 0.0542 0.0546 0.055 
0.65

0.7

0.75

0.8

0.85

0.9

α

σ i
0

0.05

0.1

0.15

0.2

0.25

0.3

δ

Averaged synaptic efficacy
Deviation from a power−law

Figure 4: Average synaptic efficacy for the parameter α varied from 0.53 to 0.55 with step
0.0005 (left axis). Dashed line depicts deviation from a power-law (right axis).

If at time t0 an element receives an external input and fires, then an avalanche starts and
|M(t0)| = 1. The system is globally coupled, such that during an avalanche all elements
receive internal input including the unstable elements themselves. The avalanche duration
D ≥ 0 is defined to be the smallest integer for which the stopping condition |M(t0+D)| =

0 is satisfied. The avalanche size L is given by L =
∑D−1

k=0 |M(t0 + k)|. The subject of
our interest is the probability distribution of avalanche size P (L,N, α) depending on the
parameter α.

4 Results

Similarly, as in model [6] we considered the avalanche size distribution for different values
of α, cf. Fig. 1. Three qualitatively different regimes can be distinguished: subcritical,
critical, and supra-critical. For small values of α, subcritical avalanche-size distributions
are observed. The subcriticality is characterized by the neglible number of avalanches of
a size close to the system size. For αcr, the system has an avalanche distribution with an
approximate power-law behavior for L, inside a range from 1 almost up to the size of the
system, where the exponential cut-off is observed (Fig. 1b). Above the critical value αcr,
avalanche size distributions become non-monotonous (Fig. 1c). Such supra-critical curves
have a minimum at an intermediate avalanche size.

There is the sharp transition from subcritical to critical regime and then a long critical
region, where the distribution of avalanche size stays close to the power-law. For a system
of 200 neurons this transition is shown in Fig. 2. To characterize this effect we used the
least-squares estimate of the closest power-law parameters Cnorm and γ.

p(L,N, α) ≈ CnormLγ

The mean squared deviation from the estimated power-law undergoes a fast change Fig. 3
(bottom) near αcr = 0.54. At this point the transition from the subcritical to the critical
regime occurs. Then there is a long interval of parameters for which the deviation from
the power-law is about 2%. Also, the parameters of the power-law approximately stay
constant. For different system-sizes different values of αcr and γ are observed. At large
system sizes γ is close to −1.5

In order to develop more extensive analysis we considered also a number of additional sta-
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Figure 5: Difference between synaptic efficacy after and before avalanche averaged over
all synapses . Values larger than zero mean facilitation, smaller ones mean depression.
Presented curves are temporal averages over 106 avalanches with N = 100, u0 = 0.1,
τ1 = τ2 = 10.

tistical quantities at the beginning and after the avalanche. The average synaptic efficacy
σ = 〈σi〉 = 〈Jiui〉 is determined by taking the average over all neurons participating
in an avalanche. This average shows the mean input, which neurons receive at each step
of avalanche. This characteristic quantity undergoes a sharp transition together with the
avalanches distribution, cf. Fig. 4. The meaning of the quantity σ in the present model
is similar to the coupling strength α/N in the model discussed in [6]. It is equal to the
average EPSP which all postsynaptic neurons will receive after presynaptic neuron spikes.
The transition from a subcritical to a critical regime happens when σ jumps into the vicin-
ity of αcr/N of the previous model (for N = 100 and αcr = 0.9). This points to the
correspondence between the two models.

When α is large, then the synaptic efficacy is high and, hence, avalanches are large and
intervals between them are small. The depression during the avalanche dominates facilita-
tion and decrease synaptic efficacy and vise versa. When avalanches are small, facilitation
dominates depression. Thus, the synaptic dynamics stabilizes the network to remain near
the critical value for a large interval of parameters α. In Fig. 4 shown the averaged effect
of an avalanche for different values of parameter α. For α > αcr, depression during the
avalanche is stronger than facilitation and avalanches on average decrease synaptic efficacy.
When α is very small, the effect of facilitation is washed out during the inter-avalanche pe-
riod where synaptic parameters return to the resting state. To illustrate this, Fig. 5 shows
the difference, ∆σ = 〈σafter〉−〈σbefore〉, between the average synaptic efficacies after and
before the avalanche depending on the parameter α. If this difference is larger than zero,
synapses are facilitated by avalanche. If it is smaller than zero, synapses are depressed. For
small values of the parameter α avalanches lead to facilitation, while, for large values of α
avalanches depress synapses.

In the limit N → ∞, the synaptic dynamics should be rescaled such that the maximum of
transmitter available at a time t divided by the average avalanche size converges to a value
which scales as 1 − N−1/2. In this way, if the average avalanche size is smaller than crit-
ical, synapses will essentially be enhanced, or they will otherwise experience depression.
The necessary parameters for the model (such as the time-scales) have shown to be easily
achievable in the small (although time-consuming) simulations presented here.



5 Conclusion

We presented a simple biologically plausible complement to a model of a non-leaky
integrate-and-fire neurons network which exhibits a power-law avalanche distribution for a
wide range of connectivity parameters. In previous studies [6] we showed, that the simplest
model with only one parameter α, characterizing synaptic efficacy of all synapses exhibits
subcritical, critical and supra critical regimes with continuous transition from one to an-
other, depending on parameter α. These main classes are also present here but the region
of critical behavior is immensely enlarged. Both models have a power-law distribution with
an exponent approximately equal to -3/2, although the exponent is somewhat smaller for
small network sizes. For network sizes close to those in the experiments described in [3]
the result is indistinguishable from the limiting value.
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