
Variable KD-Tree Algorithms for Spatial Pattern
Search and Discovery

Jeremy Kubica
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213
jkubica@ri.cmu.edu

Joseph Masiero
Institute for Astronomy
University of Hawaii
Honolulu, HI 96822

masiero@ifa.hawaii.edu

Andrew Moore
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

awm@cs.cmu.edu

Robert Jedicke
Institute for Astronomy
University of Hawaii
Honolulu, HI 96822

jedicke@ifa.hawaii.edu

Andrew Connolly
Physics & Astronomy Department

University of Pittsburgh
Pittsburgh, PA 15213
ajc@phyast.pitt.edu

Abstract

In this paper we consider the problem of finding sets of points that con-
form to a given underlying model from within a dense, noisy set of ob-
servations. This problem is motivated by the task of efficiently linking
faint asteroid detections, but is applicable to a range of spatial queries.
We survey current tree-based approaches, showing a trade-off exists be-
tween single tree and multiple tree algorithms. To this end, we present a
new type of multiple tree algorithm that uses a variable number of trees
to exploit the advantages of both approaches. We empirically show that
this algorithm performs well using both simulated and astronomical data.

1 Introduction

Consider the problem of detecting faint asteroids from a series of images collected on a
single night. Inherently, the problem is simply one of connect-the-dots. Over a single
night we can treat the asteroid’s motion as linear, so we want to find detections that, up
to observational errors, lie along a line. However, as we consider very faint objects, sev-
eral difficulties arise. First, objects near our brightness threshold may oscillate around this
threshold, blinking into and out-of our images and providing only a small number of actual
detections. Second, as we lower our detection threshold we will begin to pick up more spu-
rious noise points. As we look for really dim objects, the number of noise points increases
greatly and swamps the number of detections of real objects.

The above problem is one example of a model based spatial search. The goal is to identify
sets of points that fit some given underlying model. This general task encompasses a wide
range of real-world problems and spatial models. For example, we may want to detect
a specific configuration of corner points in an image or search for multi-way structure in
scientific data. We focus our discussion on problems that have a high density of both true



and noise points, but which may have only a few points actuallyfrom the model of interest.
Returning to the asteroid linking example, this corresponds to finding a handful of points
that lie along a line within a data set of millions of detections.

Below we survey several tree-based approaches for efficiently solving this problem. We
show that both single tree and conventional multiple tree algorithms can be inefficient and
that a trade-off exists between these approaches. To this end, we propose a new type of
multiple tree algorithm that uses avariable number of tree nodes. We empirically show
that this new algorithm performs well using both simulated and real-world data.

2 Problem Definition

Our problem consists of finding sets of points that fit a given underlying spatial model. In
doing so, we are effectively looking for known types of structure buried within the data. In
general, we are interested in finding sets withk or more points, thus providing a sufficient
amount of support to confirm the discovery. Finding this structure within the data may
either be our end goal, such as in asteroid linkage, or may just be a preprocessor for a more
sophisticated statistical test, such as renewal strings [1]. We are particularly interested in
high-density, low-support domains where there may be many hundreds of thousands of
points, but only a handful actually support our model.

Formally, the data consists ofN uniqueD-dimensional points. We assume that the un-
derlying model can be estimated fromc unique points. Sincek ≥ c, the model may over-
constrained. In these cases we divide the points into two sets:Model Points andSupport
Points. Model points are thec points used to fully define the underlying model. Support
points are the remaining points used to confirm the model. For example, if we are search-
ing for sets ofk linear points, we could use a set’s endpoints as model points and treat the
middlek−2 as support points. Or we could allow any two points to serve as model points,
providing an exhaustive variant of the RANSAC algorithm [2].

The prototypical example used in this paper is the (linear) asteroid linkage problem:

For each pair of points find thek−2 best support points for the line that
they define (such that we use at most one point at each time step).

In addition, we place restrictions on the validity of the initial pairs by providing velocity
bounds. It is important to note that although we use this problem as a running example, the
techniques described can be applied to a range of spatial problems.

3 Overview of Previous Approaches

3.1 Constructive Algorithms

Constructive algorithms “build up” valid sets of points by repeatedly finding additional
points that are compatible with the current set. Perhaps the simplest approach is to perform
a two-tieredbrute force search. First, we exhaustively test all sets ofc points to determine
if they define a valid model. Then, for each valid set we test all of the remaining points for
support. For example in the asteroid linkage problem, we can initially search over allO(N2)
pairs of points and for each of the resulting lines test allO(N) points to determine if they
support that line. A similar approach within the domain of target tracking is sequential
tracking (for a good introduction see [3]), where points at early time steps are used to
estimate a track that is then projected to later time steps to find additional support points.

In large-scale domains, these approaches can often be made tractable by using spatial struc-
ture in the data. Again returning to our asteroid example, we can place the points in a



KD-tree [4]. We can then limit the number of initial pairs examined by using this tree to
find points compatible with our velocity constraints. Further, we can use the KD-tree to
only search for support points in localized regions around the line, ignoring large numbers
of obviously infeasible points. Similarly, trees have been used in tracking algorithms to
efficiently find points near predicted track positions [5]. We call these adaptationssingle
tree algorithms, because at any given time the algorithm is searching at most one tree.

3.2 Parameter Space Methods

Another approach is to search for valid sets of points by searching the model’s parameter
space, such as in the Hough transform [6]. The idea behind these approaches is that we can
test whether each point is compatible with a small set of model parameters, allowing us to
search parameter space to find the valid sets. However, this method can be expensive in
terms of both computation and memory, especially for high dimensional parameter spaces.
Further, if the model’s total support is low, the true model occurrences may be effectively
washed out by the noise. For these reasons we do not consider parameter space methods.

3.3 Multiple Tree Algorithms

The primary benefit of tree-based algorithms is that they are able to use spatial structure
within the data to limit the cost of the search. However, there is a clear potential to push
further and use structure from multiple aspects of the searchat the same time. In doing
so we can hopefully avoid many of the dead ends and wrong turns that may result from
exploring bad initial associations in the first few points in our model. For example, in the
domain of asteroid linkage we may be able to limit the number of short, initial associations
that we have to consider by using information from later time steps. This idea forms the
basis of multiple tree search algorithms [7, 8, 9].

Multiple tree methods explicitly search for the entire set of points at once by searching
overcombinations of tree nodes. In standard single tree algorithms, the search tries to find
individual points satisfying some criteria (e.g. the next point to add) and the search state
is represented by a single node thatcould contain such a point. In contrast, multiple tree
algorithms represent the current search state with multiple tree nodes thatcould contain
points that together conform to the model. Initially, the algorithm begins withk root nodes
from either the same or different tree data structures, representing thek different points that
must be found. At each step in the search, it narrows in on a set of mutually compatible
spatial regions and thus a set of individual points that fit the model by picking one of the
model nodes and recursively exploring its children. As with a standard “single tree” search,
we constantly check for opportunities to prune the search.

There are several important drawbacks to multiple tree algorithms. First, additional trees
introduce a higher branching factor in the search and increase the potential for taking deep
“wrong turns.” Second, care must be taken in order to deal with missing or a variable
number of support points. Kubicaet. al. discuss the use of an additional “missing” tree
node to handle these cases [9]. However, this approach can effectively make repeated
searches over subsets of trees, making it more expensive both in theory and practice.

4 Variable Tree Algorithms

In general we would like to exploit structural information from all aspects of our search
problem, but do so while branching the search on just the parameters of interest. To this
end we propose a new type of search that uses avariable number of tree nodes. Like a
standard multiple tree algorithm, the variable tree algorithm searches combinations of tree
nodes to find valid sets of points. However, we limit this search to just those points required



(A) (B)

Figure 1: The model nodes’ bounds (1 and 2) define a region of feasible support (shaded)
for any combination of model points from those nodes (A). As shown in (B), we can classify
entire support tree nodes as feasible (node b) or infeasible (nodes a and c).

to define, and thus bound, the models currently under consideration. Specifically, we useM
model tree nodes,1 which guide the recursion and thus the search. In addition, throughout
the search we maintain information about other potentialsupporting points that can be used
to confirm the final track or prune the search due to a lack of support.

For example in the asteroid linking problem each line is defined by only 2 points, thus we
can efficiently search through the models using a multiple tree search with 2model trees.
As shown in Figure 1.A, the spatial bounds of our current model nodes immediately limit
the set of feasible support points forall line segments compatible with these nodes. If we
track which support points are feasible, we can use this information to prune the search due
to a lack of support forany model defined by the points in those nodes.

The key idea behind the variable tree search is that we can use adynamic representation of
the potential support. Specifically, we can place the support points in trees and maintain
a dynamiclist of currently valid support nodes. As shown in Figure 1.B, by only testing
entire nodes (instead of individual points), we are using spatial coherence of the support
points to remove the expense of testing each support point at each step in the search. And
by maintaining a list of support tree nodes, we are no longer branching the search over
these trees. Thus we remove the need to make a hard “left or right” decision. Further, using
a combination of a list and a tree for our representation allows us to refine our support
representation on the fly. If we reach a point in the search where a support node is no
longer valid, we can simply drop it off the list. And if we reach a point where a support
node provides too coarse a representation of the current support space, we can simply
remove it and add both of its children to the list.

This leaves the question of when to split support nodes. If we split them too soon, we may
end up with many support nodes in our list and mitigate the benefits of the nodes’ spatial
coherence. If we wait too long to split them, then we may have a few large support nodes
that cannot efficiently be pruned. Although we are still investigating splitting strategies, the
experiments in this paper use a heuristic that seeks to provide a small number of support
nodes that are a reasonable fit to the feasible region. We effectively split a support node
if doing so would allow one of its two children to be pruned. For KD-trees this roughly
means checking whether the split value lies outside the feasible region.

The full variable tree algorithm is given in Figure 2. A simple example of findinglinear
tracks while using the track’s endpoints (earliest and latest in time) as model points and

1Typically M = c, although in some cases it may be beneficial to use a different number of model
nodes.



Variable Tree Model Detection
Input: A set ofM current model tree nodesM

A set of current support tree nodesS
Output : A list Z of feasible sets of points

1. S′←{} andScurr← S
2. IF we cannot prune based on the mutual compatibility ofM :
3. FOR eachs∈ Scurr
4. IF s is compatible withM :
5. IF s is “too wide”:
6. Adds’s left and right child to the end ofScurr.
7. ELSE
8. Adds to S′.
9. IF we have enough valid support points:
10. IF all ofm ∈M are leaves:
11. Test all combinations of points owned by the model nodes, using

the support nodes’ points as potential support.
Add valid sets toZ.

12. ELSE
13. Letm∗ be the non-leaf model tree node that owns the most points.
14. Search usingm∗’s left child in place ofm∗ andS′ instead ofS.
15. Search usingm∗’s right child in place ofm∗ andS′ instead ofS.

Figure 2: A simple variable tree algorithm for spatial structure search. This algorithm
shown uses simple heuristics such as: searching the model node with the most points and
splitting a support node if it is too wide. These heuristics can be replaced by more accurate,
problem-specific ones.

using all other points for support is illustrated in Figure 3. The first column shows all
the tree nodes that are currently part of the search. The second and third columns show
the search’s position on the two model trees and the current set of valid support nodes
respectively. Unlike the pure multiple tree search, the variable tree search does not “branch
off” on the support trees, allowing us to consider multiple support nodes from the same
time step at any point in the search. Again, it is important to note that by testing the
support points as we search, we are both incorporating support information into the pruning
decisions and “pruning” the support points for entire sets of models at once.

5 Results on the Asteroid Linking Domain

The goal of the single-night asteroid linkage problem is to find sets of 2-dimensional point
detections that correspond to a roughly linear motion model. In the below experiments we
are interested in finding sets of at least 7 detections from a sequence of 8 images. The
movements were constrained to have a speed between 0.05 and 0.5 degrees per day and
were allowed an observational error threshold of 0.0003 degrees. All experiments were run
on a dual 2.5 GHz Apple G5 with 4 GB of RAM.

The asteroid detection data consists of detections from 8 images of the night sky separated
by half-hour intervals. The images were obtained with the MegaCam instrument on the
3.6-meter Canada-France-Hawaii Telescope. The detections, along with confidence levels,
were automatically extracted from the images. We can pre-filter the data to pull out only
those observations above a given confidence thresholdσ. This allows us to examine how
the algorithms perform as we begin to look for increasingly faint asteroids. It should be
noted that only limited preprocessing was done to the data, resulting in a very high level



Search Step 1:

Search Step 2:

Search Step 5:

Figure 3: The variable tree algorithm performs a depth first search over the model nodes.
At each level of the search the model nodes are checked for mutual compatibility and each
support node on the list is check for compatibility with theset of model nodes. Since we
are not branching on the support nodes, we can split a support node and addboth children
to our list. This figure shows the current model and support nodes and their spatial regions.

Table 1: The running times (in seconds) for the asteroid linkers with different detection
thresholdsσ and thus different numbersN and density of observations.

σ 10.0 8.0 6.0 5.0 4.0
N 3531 5818 12911 24068 48646

Single Tree 2 7 61 488 2442
Multiple Tree 1 3 30 607 4306
Variable Tree < 1 1 4 40 205

of false detections. While future data sets will contain significantly reduced noise, it is
interesting to examine the performance of the algorithms on this real-world high noise,
high density data.

The results on the intra-night asteroid tracking domain, shown in Table 1, illustrate a clear
advantage to using a variable tree approach. As the significance thresholdσ decreases,
the number and density of detections increases, allowing the support tree nodes to capture
feasibility information for a large number of support points. In contrast, neither the full
multiple tree algorithm nor the single-tree algorithm performed well. For the multiple tree
algorithm, this decrease in performance is likely due to a combination of the high number
of time steps, the allowance of a missing observation, and the high density. In particular,
the increased density can reduce opportunities for pruning, causing the algorithm to explore
deeper before backtracking.



Table 2: Average running times (in seconds) for a 2-dimensional rectangle search with
different numbers of pointsN. The brute force algorithm was only run toN = 2500.

N 500 1000 2000 2500 5000 10000 25000 50000
Brute Force 0.37 2.73 21.12 41.03 n/a n/a n/a n/a
Single Tree 0.02 0.07 0.30 0.51 2.15 10.05 66.24 293.10
Multi-Tree 0.01 0.02 0.06 0.09 0.30 1.11 6.61 27.79

Variable-Tree 0.01 0.02 0.05 0.07 0.22 0.80 4.27 16.30

Table 3: Average running times (in seconds) for a rectangle search with different numbers
of required cornersk. For this experimentN = 10000 andD = 3.

k 8 7 6 5 4
Single Tree 4.71 4.72 4.71 4.71 4.71
Multi-Tree 3.96 19.45 45.02 67.50 78.81

Variable-Tree 0.65 0.75 0.85 0.92 1.02

6 Experiments on the Simulated Rectangle Domain

We can apply the above techniques to a range of other model-based spatial search problems.
In this section we consider a toy template matching problem, finding axis-aligned hyper-
rectangles inD-dimensional space by findingk or morecorners that fit a rectangle. We
use this simple, albeit artificial, problem both to demonstrate potential pattern recognition
applications and to analyze the algorithms as we vary the properties of the data.

Formally, we restrict the model to use the upper and lower corners as the two model points.
Potential support points are those points that fall within some threshold of the other 2D−2
corners. In addition, we restrict the allowable bounds of the rectangles by providing a
maximum width.

To evaluate the algorithms’ relative performance, we used random data generated from a
uniform distribution on a unit hyper-cube. The threshold and maximum width were fixed
for all experiments at 0.0001 and 0.2 respectively. All experiments were run on a dual 2.5
GHz Apple G5 with 4 GB of RAM.

The first factor that we examined was how each algorithm scales with the number of points.
We generated random data with 5 known rectangles andN additional random points and
computed the average wall-clock running time (over ten trials) for each algorithm. The
results, shown in Table 2, show a graceful scaling of all of the multiple tree algorithms. In
contrast, the brute force and single tree algorithms run into trouble as the number of points
becomes moderately large. The variable tree algorithm consistently performs the best, as it
is able to avoid significant amounts of redundant computation.

One potential drawback of the full multiple tree algorithm is that since it branches on all
points, it may become inefficient as the allowable number of missing support points grows.
To test this we looked at 3-dimensional data and varied the minimum number of required
support pointsk. As shown in Table 3, all multiple tree methods becomemore expensive
as the number of required support points decreases. This is especially the case for the
multi-tree algorithm, which has to perform several almost identical searches to account for
missing points. However, the variable-tree algorithm’s performance degrades gracefully
and is the best for all trials.



7 Conclusions

Tree-based spatial algorithms provide the potential for significant computational savings
with multiple tree algorithms providing further opportunities to exploit structure in the
data. However, a distinct trade-off exists between ignoring structure from all aspects of
the problem and increasing the combinatorics of the search. We presented a variable tree
approach that exploits the advantages of both single tree and multiple tree algorithms. A
combinatorial search is carried out over just the minimum number of model points, while
still tracking the feasibility of the various support points. As shown in the above experi-
ments, this approach provides significant computational savings over both the traditional
single tree and and multiple tree searches. Finally, it is interesting to note that the dynamic
support technique described in this paper is general and may be applied to a range of other
algorithms, such as the Fast Hough Transform [10], that maintain information on which
points support a given model.

Acknowledgments

Jeremy Kubica is supported by a grant from the Fannie and John Hertz Foundation. Andrew
Moore and Andrew Connolly are supported by a National Science Foundation ITR grant
(CCF-0121671).

References

[1] A.J. Storkey, N.C. Hambly, C.K.I. Williams, and R.G. Mann. Renewal Strings for
Cleaning Astronomical Databases. InUAI 19, 559-566, 2003.

[2] M.A. Fischler and R.C. Bolles. Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography.Comm. of
the ACM, 24:381–395, 1981.

[3] S. Blackman and R. Popoli.Design and Analysis of Modern Tracking Systems. Artech
House, 1999.

[4] J.L. Bentley . Multidimensional Binary Search Trees Used for Associative Searching.
Comm. of the ACM, 18 (9), 1975.

[5] J. K. Uhlmann. Algorithms for multiple-target tracking.American Scientist,
80(2):128–141, 1992.

[6] P. V. C. Hough. Machine analysis of bubble chamber pictures. InInternational Con-
ference on High Energy Accelerators and Instrumentation. CERN, 1959.

[7] A. Gray and A. Moore. N-body problems in statistical learning. In T. K. Leen and
T. G. Dietterich, editors,Advances in Neural Information Processing Systems. MIT
Press, 2001.

[8] G. R. Hjaltason and H. Samet. Incremental distance join algorithms for spatial
databases. InProc. of the 1998 ACM-SIGMOD Conference, 237–248, 1998.

[9] J. Kubica, A. Moore, A. Connolly, and R. Jedicke. A Multiple Tree Algorithm for the
Efficient Association of Asteroid Observations. InKDD’05. August 2005.

[10] H. Li, M.A. Lavin, and R.J. Le Master. Fast Hough Transform: A Hierarchical
Approach. InComputer Vision, Graphics, and Image Processing, 36(2-3):139–161,
November 1986.


