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Abstract

We present a simple and scalable algorithm for large-margin estima-
tion of structured models, including an important class of Markov net-
works and combinatorial models. We formulate the estimation problem
as a convex-concave saddle-point problem and apply the extragradient
method, yielding an algorithm with linear convergence using simple gra-
dient and projection calculations. The projection step can be solved us-
ing combinatorial algorithms for min-cost quadratic flow. This makes the
approach an efficient alternative to formulations based on reductions to
a quadratic program (QP). We present experiments on two very different
structured prediction tasks: 3D image segmentation and word alignment,
illustrating the favorable scaling properties of our algorithm.

1 Introduction
The scope of discriminative learning methods has been expanding to encompass prediction
tasks with increasingly complex structure. Much of this recent development builds upon
graphical models to capture sequential, spatial, recursive or relational structure, but as we
will discuss in this paper, the structured prediction problem is broader still. For graphical
models, two major approaches to discriminative estimation have been explored: (1) maxi-
mum conditional likelihood [13] and (2) maximum margin [6, 1, 20]. For the broader class
of models that we consider here, the conditional likelihood approach is intractable, but the
large margin formulation yields tractable convex problems.

We interpret the term structured output model very broadly, as a compact scoring scheme
over a (possibly very large) set of combinatorial structures and a method for finding the
highest scoring structure. In graphical models, the scoring scheme is embodied in a prob-
ability distribution over possible assignments of the prediction variables as a function of
input variables. In models based on combinatorial problems, the scoring scheme is usu-
ally a simple sum of weights associated with vertices, edges, or other components of a
structure; these weights are often represented as parametric functions of a set of features.
Given training instances labeled by desired structured outputs (e.g., matchings) and a set of



features that parameterize the scoring function, the learning problem is to find parameters
such that the highest scoring outputs are as close as possible to the desired outputs.

Example of prediction tasks solved via combinatorial optimization problems include bipar-
tite and non-bipartite matching in alignment of 2D shapes [5], word alignment in natural
language translation [14] and disulfide connectivity prediction for proteins [3]. All of these
problems can be formulated in terms of a tractable optimization problem. There are also
interesting subfamilies of graphical models for which large-margin methods are tractable
whereas likelihood-based methods are not; an example is the class of Markov random fields
with restricted potentials used for object segmentation in vision [12, 2].

Tractability is not necessarily sufficient to obtain algorithms that work effectively in prac-
tice. In particular, although the problem of large margin estimation can be formulated as a
quadratic program (QP) in several cases of interest [2, 19], and although this formulation
exploits enough of the problem structure so as to achieve a polynomial representation in
terms of the number of variables and constraints, off-the-shelf QP solvers scale poorly with
problem and training sample size for these models. To solve large-scale machine learning
problems, researchers often turn to simple gradient-based algorithms, in which each indi-
vidual step is cheap in terms of computation and memory. Examples of this approach in the
structured prediction setting include the Structured Sequential Minimal Optimization algo-
rithm [20, 18] and the Structured Exponentiated Gradient algorithm [4]. These algorithms
are first-order methods for solving QPs arising from low-treewidth Markov random fields
and other decomposable models. They are able to scale to significantly larger problems
than off-the-shelf QP solvers. However, they are limited in scope in that they rely on dy-
namic programming to compute essential quantities such as gradients. They do not extend
to models in which dynamic programming is not applicable, for example, to problems such
as matchings and min-cuts.

In this paper, we present an estimation methodology for structured prediction problems
that does not require a general-purpose QP solver. We propose a saddle-point formulation
which allows us to exploit simple gradient-based methods [11] with linear convergence
guarantees. Moreover, we show that the key computational step in these methods—a cer-
tain projection operation—inherits the favorable computational complexity of the underly-
ing optimization problem. This important result makes our approach viable computation-
ally. In particular, for matchings and min-cuts, projection involves a min-cost quadratic
flow computation, a problem for which efficient, highly-specialized algorithms are avail-
able. We illustrate the effectiveness of this approach on two very different large-scale
structured prediction tasks: 3D image segmentation and word alignment in translation.

2 Structured models
We begin by discussing two special cases of the general framework that we subsequently
present: (1) a class of Markov networks used for segmentation, and (2) a bipartite matching
model for word alignment. Despite significant differences in the setup for these models,
they share the property that in both cases the problem of finding the highest-scoring output
can be formulated as a linear program (LP).

Markov networks. We consider a special class of Markov networks, common in vision
applications, in which inference reduces to a tractable min-cut problem [7]. Focusing on
binary variables, y = {y1, . . . , yN}, and pairwise potentials, we define a joint distribution
over {0, 1}N via P (y) ∝

∏

j∈V φj(yj)
∏

jk∈E φjk(yj , yk), where (V, E) is an undirected
graph, and where {φj(yj); j ∈ V} are the node potentials and {φjk(yj , yk), jk ∈ E} are
the edge potentials.

In image segmentation (see Fig. 1(a)), the node potentials capture local evidence about
the label of a pixel or laser scan point. Edges usually connect nearby pixels in an image,
and serve to correlate their labels. Assuming that such correlations tend to be positive
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Figure 1: Examples of structured prediction applications: (a) articulated object segmenta-
tion and (b) word alignment in machine translation.

(connected nodes tend to have the same label), we restrict the form of edge potentials to be
of the form φjk(yj , yk) = exp{−sjk1I(yj 6= yk)}, where sjk is a non-negative penalty for
assigning yj and yk different labels. Expressing node potentials as φj(yj) = exp{sjyj},

we have P (y) ∝ exp
{

∑

j∈V sjyj −
∑

jk∈E sjk1I(yj 6= yk)
}

. Under this restriction of the

potentials, it is known that the problem of computing the maximizing assignment, y∗ =
arg max P (y | x), has a tractable formulation as a min-cut problem [7]. In particular, we
obtain the following LP:

max
0≤z≤1

∑

j∈V

sjzj −
∑

jk∈E

sjkzjk s.t. zj − zk ≤ zjk, zk − zj ≤ zjk, ∀jk ∈ E . (1)

In this LP, a continuous variable zj is a relaxation of the binary variable yj . Note that the
constraints are equivalent to |zj −zk| ≤ zjk. Because sjk is positive, zjk = |zk −zj | at the
maximum, which is equivalent to 1I(zj 6= zk) if the zj , zk variables are binary. An integral
optimal solution always exists, as the constraint matrix is totally unimodular [17] (that is,
the relaxation is not an approximation).

We can parametrize the node and edge weights sj and sjk in terms of user-provided features
xj and xjk associated with the nodes and edges. In particular, in 3D range data, xj might be
spin image features or spatial occupancy histograms of a point j, while xjk might include
the distance between points j and k, the dot-product of their normals, etc. The simplest
model of dependence is a linear combination of features: sj = w>

n fn(xj) and sjk =
w>

e fe(xjk), where wn and we are node and edge parameters, and fn and fe are node and
edge feature mappings, of dimension dn and de, respectively. To ensure non-negativity
of sjk, we assume the edge features fe to be non-negative and restrict we ≥ 0. This
constraint is easily incorporated into the formulation we present below. We assume that
the feature mappings f are provided by the user and our goal is to estimate parameters
w from labeled data. We abbreviate the score assigned to a labeling y for an input x as
w>f(x,y) =

∑

j yjw
>
n fn(xj) −

∑

jk∈E yjkw
>
e fe(xjk), where yjk = 1I(yj 6= yk).

Matchings. Consider modeling the task of word alignment of parallel bilingual sen-
tences (see Fig. 1(b)) as a maximum weight bipartite matching problem, where the nodes
V = Vs ∪ Vt correspond to the words in the “source” sentence (Vs) and the “target” sen-
tence (Vt) and the edges E = {jk : j ∈ Vs, k ∈ Vt} correspond to possible alignments
between them. For simplicity, assume that each word aligns to one or zero words in the
other sentence. The edge weight sjk represents the degree to which word j in one sentence
can translate into the word k in the other sentence. Our objective is to find an alignment that
maximizes the sum of edge scores. We represent a matching using a set of binary variables



yjk that are set to 1 if word j is assigned to word k in the other sentence, and 0 otherwise.
The score of an assignment is the sum of edge scores: s(y) =

∑

jk∈E sjkyjk. The max-
imum weight bipartite matching problem, arg max

y∈Y s(y), can be found by solving the
following LP:

max
0≤z≤1

∑

jk∈E

sjkzjk s.t.
∑

j∈Vs

zjk ≤ 1,∀k ∈ Vt;
∑

k∈Vt

zjk ≤ 1,∀j ∈ Vs, (2)

where again the continuous variables zjk correspond to the relaxation of the binary vari-
ables yjk. As in the min-cut problem, this LP is guaranteed to have integral solutions for
any scoring function s(y) [17].

For word alignment, the scores sjk can be defined in terms of the word pair jk and input
features associated with xjk. We can include the identity of the two words, relative position
in the respective sentences, part-of-speech tags, string similarity (for detecting cognates),
etc. We let sjk = w>f(xjk) for some user-provided feature mapping f and abbreviate
w>f(x,y) =

∑

jk yjkw
>f(xjk).

General structure. More generally, we consider prediction problems in which the in-
put x ∈ X is an arbitrary structured object and the output is a vector of values y =
(y1, . . . , yLx

), for example, a matching or a cut in the graph. We assume that the length
Lx and the structure of y depend deterministically on the input x. In our word alignment
example, the output space is defined by the length of the two sentences. Denote the output
space for a given input x as Y(x) and the entire output space as Y =

⋃

x∈X Y(x).

Consider the class of structured prediction models H defined by the linear family: hw(x) =
arg max

y∈Y(x) w
>f(x,y), where f(x,y) is a vector of functions f : X × Y 7→ IRn. This

formulation is very general. Indeed, it is too general for our purposes—for many f ,Y pairs,
finding the optimal y is intractable. Below, we specialize to the class of models in which
the arg max problem can be solved in polynomial time using linear programming (and
more generally, convex optimization); this is still a very large class of models.

3 Max-margin estimation
We assume a set of training instances S = {(xi,yi)}

m
i=1, where each instance consists

of a structured object xi (such as a graph) and a target solution yi (such as a matching).
Consider learning the parameters w in the conditional likelihood setting. We can define
Pw(y | x) = 1

Zw(x) exp{w>f(x,y)}, where Zw(x) =
∑

y′∈Y(x) exp{w>f(x,y′)},
and maximize the conditional log-likelihood

∑

i log Pw(yi | xi), perhaps with additional
regularization of the parameters w. However, computing the partition function Zw(x)
is #P-complete [23, 10] for the two structured prediction problems we presented above,
matchings and min-cuts. Instead, we adopt the max-margin formulation of [20], which
directly seeks to find parameters w such that: yi = arg max

y
′

i
∈Yi

w>f(xi,y
′
i), ∀i,

where Yi = Y(xi) and yi denotes the appropriate vector of variables for example i. The
solution space Yi depends on the structured object xi; for example, the space of possible
matchings depends on the precise set of nodes and edges in the graph.

As in univariate prediction, we measure the error of prediction using a loss function
`(yi,y

′
i). To obtain a convex formulation, we upper bound the loss `(yi, hw(xi)) using

the hinge function: maxy
′

i
∈Yi

[w>fi(y
′
i) + `i(y

′
i)] − w>fi(yi), where `i(y

′
i) = `(yi,y

′
i),

and fi(y
′
i) = f(xi,y

′
i). Minimizing this upper bound will force the true structure yi to be

optimal with respect to w for each instance i. We add a standard L2 weight penalty ||w||2

2C
:

min
w∈W

||w||2

2C
+

∑

i

max
y
′

i
∈Yi

[w>fi(y
′
i) + `i(y

′
i)] − w>fi(yi), (3)



where C is a regularization parameter and W is the space of allowed weights (for example,
W = IRn or W = IRn

+). Note that this formulation is equivalent to the standard formulation
using slack variables ξ and slack penalty C presented in [20, 19].

The key to solving Eq. (3) efficiently is the loss-augmented inference problem,
maxy

′

i
∈Yi

[w>fi(y
′
i) + `i(y

′
i)]. This optimization problem has precisely the same form as

the prediction problem whose parameters we are trying to learn—maxy
′

i
∈Yi

w>fi(y
′
i)—

but with an additional term corresponding to the loss function. Tractability of the loss-
augmented inference thus depends not only on the tractability of maxy

′

i
∈Yi

w>fi(y
′
i), but

also on the form of the loss term `i(y
′
i). A natural choice in this regard is the Hamming

distance, which simply counts the number of variables in which a candidate solution y′
i

differs from the target output yi. In general, we need only assume that the loss function
decomposes over the variables in yi.

For example, in the case of bipartite matchings the Hamming loss counts the number of
different edges in the matchings yi and y′

i and can be written as: `H
i (y′

i) =
∑

jk yi,jk +
∑

jk(1 − 2y′
i,jk)yi,jk. Thus the loss-augmented matching problem for example i can be

written as an LP similar to Eq. (2) (without the constant term
∑

jk yi,jk):

max
0≤z≤1

∑

jk

zi,jk[w>f(xi,jk) + 1 − 2yi,jk] s.t.
∑

j

zi,jk ≤ 1,
∑

k

zi,jk ≤ 1.

Generally, when we can express maxy
′

i
∈Yi

w>fi(y
′
i) as an LP, maxzi∈Zi

w>Fizi, where
Zi = {zi : Aizi ≤ bi, zi ≥ 0}, for appropriately defined constraints Ai,bi and fea-
ture matrix Fi, we have a similar LP for the loss-augmented inference for each exam-
ple i: di + maxzi∈Zi

(w>Fi + ci)
>zi for appropriately defined di,Fi, ci,Ai,bi. Let

z = {z1, . . . , zm}, Z = Z1 × . . . ×Zm.

We could proceed by making use of Lagrangian duality, which yields a joint convex opti-
mization problem; this is the approach described in [19]. Instead we take a different tack
here, posing the problem in its natural saddle-point form:

min
w∈W

max
z∈Z

||w||2

2C
+

∑

i

[

w>Fizi + c>i zi − w>fi(yi)
]

. (4)

As we discuss in the following section, this approach allows us to exploit the structure of
W and Z separately, allowing for efficient solutions for a wider range of structure spaces.

4 Extragradient method
The key operations of the method we present below are gradient calculations and Euclidean

projections. We let L(w, z) = ||w||2

2C
+

∑

i

[

w>Fizi + c>i zi − w>fi(yi)
]

, with gradients
given by: ∇wL(w, z) = w

C
+

∑

i Fizi − fi(yi) and ∇zi
L(w, z) = F>

i w+ ci. We denote
the projection of a vector zi onto Zi as πZi

(zi) = arg min
z
′

i
∈Zi

||z′i − zi|| and similarly,
the projection onto W as πW(w′) = arg min

w∈W ||w′ − w||.

A well-known solution strategy for saddle-point optimization is provided by the extragra-
dient method [11]. An iteration of the extragradient method consists of two very simple
steps, prediction (w, z) → (wp, zp) and correction (wp, zp) → (wc, zc):

wp = πW(w − β∇wL(w, z)); z
p
i = πZi

(zi + β∇zi
L(w, z)); (5)

wc = πW(w − β∇wL(wp, zp)); zc
i = πZi

(zi + β∇zi
L(wp, zp)); (6)

where β is an appropriately chosen step size. The algorithm starts with a feasible point
w = 0, zi’s that correspond to the assignments yi’s and step size β = 1. After each pre-
diction step, it computes r = β ||∇L(w,z)−∇L(wp,zp)||

(||w−wp||+||z−zp||) . If r is greater than a threshold ν, the



step size is decreased using an Armijo type rule: β = (2/3)β min(1, 1/r), and a new pre-
diction step is computed until r ≤ ν, where ν ∈ (0, 1) is a parameter of the algorithm. Once
a suitable β is found, the correction step is taken and (wc, zc) becomes the new (w, z). The
method is guaranteed to converge linearly to a solution w∗, z∗ [11, 9]. See the longer ver-
sion of this paper at http://www.cs.berkeley.edu/˜taskar/extragradient.pdf
for details. By comparison, Exponentiated Gradient [4] has sublinear convergence rate
guarantees, while Structured SMO [18] has none.

The key step influencing the efficiency of the algorithm is the Euclidean projection onto
the feasible sets W and Zi. In case W = IRn, the projection is the identity operation;
projecting onto IRn

+ consists of clipping negative weights to zero. Additional problem-
specific constraints on the weight space can be efficiently incorporated in this step (although
linear convergence guarantees only hold for polyhedral W). In case of word alignment, Zi

is the convex hull of bipartite matchings and the problem reduces to the much-studied
minimum cost quadratic flow problem. The projection zi = πZi

(z′i) is given by

min
0≤z≤1

∑

jk

1

2
(z′i,jk − zi,jk)2 s.t.

∑

j

zi,jk ≤ 1,
∑

k

zi,jk ≤ 1.

We use a standard reduction of bipartite matching to min-cost flow by introducing a source
node s linked to all the nodes in Vs

i (words in the “source” sentence), and a sink node t
linked from all the nodes in V t

i (words in the “target” sentence), using edges of capacity 1
and cost 0. The original edges jk have a quadratic cost 1

2 (z′i,jk − zi,jk)2 and capacity 1.
Minimum (quadratic) cost flow from s to t is the projection of z′

i onto Zi.

The reduction of the projection to minimum quadratic cost flow for the min-cut
polytope Zi is shown in the longer version of the paper. Algorithms for solving
this problem are nearly as efficient as those for solving regular min-cost flow prob-
lems. In case of word alignment, the running time scales with the cube of the
sentence length. We use publicly-available code for solving this problem [8] (see
http://www.math.washington.edu/˜tseng/netflowg_nl/).

5 Experiments
We investigate two structured models we described above: bipartite matchings for word
alignments and restricted potential Markov nets for 3D segmentation. A commercial QP-
solver, MOSEK, runs out of memory on the problems we describe below using the QP
formulation [19]. We compared the extragradient method with the averaged perceptron
algorithm [6]. A question which arises in practice is how to choose the regularization
parameter C. The typical approach is to run the algorithm for several values of the reg-
ularization parameter and pick the best model using a validation set. For the averaged
perceptron, a standard method is to run the algorithm tracking its performance on a valida-
tion set, and selecting the model with best performance. We use the same training regime
for the extragradient by running it with C = ∞.

Object segmentation. We test our algorithm on a 3D scan segmentation problem us-
ing the class of Markov networks with potentials that were described above. The dataset
is a challenging collection of cluttered scenes containing articulated wooden puppets [2].
It contains eleven different single-view scans of three puppets of varying sizes and posi-
tions, with clutter and occluding objects such as rope, sticks and rings. Each scan con-
sists of around 7, 000 points. Our goal was to segment the scenes into two classes—
puppet and background. We use five of the scenes for our training data, three for val-
idation and three for testing. Sample scans from the training and test set can be seen at
http://www.cs.berkeley.edu/˜taskar/3DSegment/. We computed spin images
of size 10 × 5 bins at two different resolutions, then scaled the values and performed PCA
to obtain 45 principal components, which comprised our node features. We used the sur-
face links output by the scanner as edges between points and for each edge only used a
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Figure 2: Both plots show test error for the averaged perceptron and the extragradient (left
y-axis) and training loss per node or edge for the extragradient (right y-axis) versus number
of iterations for (a) object segmentation task and (b) word alignment task.

single feature, set to a constant value of 1 for all edges. This results in all edges having the
same potential. The training data contains approximately 37, 000 nodes and 88, 000 edges.
Training time took about 4 hours for 600 iterations on a 2.80GHz Pentium 4 machine.
Fig. 2(a) shows that the extragradient has a consistently lower error rate (about 3% for ex-
tragradient, 4% for averaged perceptron), using only slightly more expensive computations
per iteration. Also shown is the corresponding decrease in the hinge-loss upperbound on
the training data as the extragradient progresses.

Word alignment. We also tested our learning algorithm on word-level alignment using a
data set from the 2003 NAACL set [15], the English-French Hansards task. This corpus
consists of 1.1M automatically aligned sentences, and comes with a validation set of 39
sentence pairs and a test set of 447 sentences. The validation and test sentences have been
hand-aligned and are marked with both sure and possible alignments. Using these align-
ments, alignment error rate (AER) is calculated as: AER(A,S, P ) = 1 − |A∩S|+|A∩P |

|A|+|S| .

Here, A is a set of proposed index pairs, S is the set of sure gold pairs, and P is the set of
possible gold pairs (where S ⊆ P ).

We used the intersection of the predictions of the English-to-French and French-to-English
IBM Model 4 alignments (using GIZA++ [16]) on the first 5000 sentence pairs from the
1.1M sentences. The number of edges for 5000 sentences was about 555,000. We tested
on the 347 hand-aligned test examples, and used the validation set to select the stopping
point. The features on the word pair (ej , fk) include measures of association, orthography,
relative position, predictions of generative models (see [22] for details). It took about 3
hours to perform 600 training iterations on the training data using a 2.8GHz Pentium 4
machine. Fig. 2(b) shows the extragradient performing slightly better (by about 0.5%)
than average perceptron.

6 Conclusion
We have presented a general solution strategy for large-scale structured prediction prob-
lems. We have shown that these problems can be formulated as saddle-point optimization
problems, problems that are amenable to solution by the extragradient algorithm. Key
to our approach is the recognition that the projection step in the extragradient algorithm
can be solved by network flow algorithms. Network flow algorithms are among the most
well-developed in the field of combinatorial optimization, and yield stable, efficient al-
gorithmic platforms. We have exhibited the favorable scaling of this overall approach in
two concrete, large-scale learning problems. It is also important to note that the general
approach extends to a much broader class of problems. In [21], we show how to apply
this approach efficiently to other types of models, including general Markov networks and
weighted context-free grammars, using Bregman projections.
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