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Abstract

We present a family of approximation techniques for probabilistic graph-
ical models, based on the use of graphical preconditioners developed in
the scientific computing literature. Our framework yields rigorous upper
and lower bounds on event probabilities and the log partition function
of undirected graphical models, using non-iterative procedures that have
low time complexity. As in mean field approaches, the approximations
are built upon tractable subgraphs; however, we recast the problem of op-
timizing the tractable distribution parameters and approximate inference
in terms of the well-studied linear systems problem of obtaining a good
matrix preconditioner. Experiments are presented that compare the new
approximation schemes to variational methods.

1 Introduction

Approximate inference techniques are enabling sophisticated new probabilistic models to
be developed and applied to a range of practical problems. One of the primary uses of
approximate inference is to estimate the partition function and event probabilities for undi-
rected graphical models, which are natural tools in many domains, from image processing
to social network modeling. A central challenge is to improve the accuracy of existing ap-
proximation methods, and to derive rigorous rather than heuristic bounds on probabilities in
such graphical models. In this paper, we present a simple new approach to the approximate
inference problem, based upon non-iterative procedures that have low time complexity. We
follow the variational mean field intuition of focusing on tractable subgraphs, however we
recast the problem of optimizing the tractable distribution parameters as a generalized lin-
ear system problem. In this way, the task of deriving a tractable distribution conveniently
reduces to the well-studied problem of obtaining a gpretonditionerfor a matrix (Bo-

man and Hendrickson, 2003). This framework has the added advantage that tighter bounds
can be obtained by reducing the sparsity of the preconditioners, at the expense of increasing
the time complexity for computing the approximation.

In the following section we establish some notation and background. In Section 3, we
outline the basic idea of our proposed framework, and explain how to use preconditioners
for deriving tractable approximate distributions. In Sections 3.1 and 4, we then describe
the underlying theory, which we call the generalized support theory for graphical models.
In Section 5 we present experiments that compare the new approximation schemes to some
of the standard variational and optimization based methods.



2 Notation and Background

Consider a graplty = (V, E), whereV denotes the set of nodes aftddenotes the set
of edges. LetX; be a random variable associated with nadéor i € V, yielding a
random vectorX = {X;,...,X,}. Let¢ = {¢,,a € I} denote the set gbotential
functionsor sufficient statistics, for a sétof cliques in G. Associated with is a vector of
parameterd = {0,,« € I}. With this notation, the exponential family of distributions of
X, associated witlh andG, is given by

p(l‘;@) = €xXp (Z ea(ba - W(@)) . (1)

For traditional reasons through connections with statistical phyBies.exp ¥ (6) is called

the partition function. As discussed in (Yedidia et al., 2001), at the expense in increasing
the state space one can assume without loss of generality that the graphical model is a
pairwise Markov random field,e., the set of cliques is the set of edge$§(s,t) € E}.

We shall assume a pairwise random field, and thus can express the potential function and
parameter vectors in more compact form as matrices:

O ... b ¢11(CU17$1) ¢1n($17$n)
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In the following we will denote the trace of the product of two matrideand B by the in-

ner product(A, B)). Assuming that eacl; is finite-valued, the partition functiof(0) is

then given byZ(©) = >_, . exp (O, ®(x))). The computation of (©) has a complex-

ity exponential in the tree-width of the grajghand hence is intractable for large graphs.
Our goal is to obtain rigorous upper and lower bounds for this partition function, which can
then be used to obtain rigorous upper and lower bounds for general event probabilities; this
is discussed further in (Ravikumar and Lafferty, 2004).

2.1 Preconditioners in Linear Systems

Consider a linear systemixz = ¢, where the variable: is n dimensional, and4 is an

n X m matrix with m non-zero entries. Solving far via direct methods such as Gaussian
elimination has a computational complexi®(n?), which is impractical for large values
of n. Multiplying both sides of the linear system by the inverse of an invertible matrix
B, we get an equivalent “preconditioned” systeRT,' Az = B~ 'c. If B is similar to A,
B~!Aisin turn similar tol, the identity matrix, making the preconditioned system easier
to solve. Such an approximating mat#ixis called a preconditioner.

The computational complexity of preconditioned conjugate gradient is given by

1
T(4) = VR B) (m + 7(5) g ©
whereT(A) is the time required for ag-approximate solutionz(A, B) is thecondition
numberof A and B which intuitively corresponds to the quality of the approximati®n
andT'(B) is the time required to solvBy = c.

Recent developments in the theory of preconditioners are in part basagpart graph

theory, where the linear system matrix is viewed as the Laplacian of a graph, and graph-
based techniques can be used to obtain good approximations. While these methods re-
quire diagonally dominant matrices (A> Z#i |4;;]), they yield “ultra-sparse” (tree

plus a constant number of edges) preconditioners with a low condition number. In our



experiments, we use two elementary tree-based precorglision this family, Vaidya’'s
Spanning Tree preconditioner Vaidya (1990), and Gremban-Miller's Support Tree precon-
ditioner Gremban (1996).

3 Graphical Model Preconditioners

Our proposed framework follows the generalized mean field intuition of looking at sparse
graph approximations of the original graph, but solving a different optimization problem.
We begin by outlining the basic idea, and then develop the underlying theory.

Consider the graphical model with gragh potential-function matrixp(x), and parameter
matrix ©. For purposes of intuition, think of the graphical model “ener¥, ®(z))) as
the matrix normz™©x. We would like to obtain a sparse approximatiBrfor ©. If B
approximate® well, then the condition numberis small:

x'Ox . 'Oz
k(©,B) = max ———- /mlln By = Amaz (0, B) /Amin(©, B) 4)
This suggests the following procedure for approximate inference. First, choose a Batrix
that minimizes the condition number wiéh (rather than KL divergence as in mean-field).
Then, scaleB appropriately, as detailed in the following sections. Finally, use the scaled
matrix B as the parameter matrix for approximate inference. Note thHatibrresponds to

a tree, approximate inference has linear time complexity.

3.1 Generalized Eigenvalue Bounds

Given a graphical model with grapfi, potential-function matrix®(x), and parameter
matrix ©, our goal is to obtain parameter matric®g and©,, corresponding to sparse
graph approximations @, such that

Z(0L) < Z(0) < Z(6v). (®)

That is, the partition functions of the sparse graph parameter maBicesd© ;, are upper

and lower bounds, respectively, of the partition function of the original graph. However,
we will instead focus on a seemingly mustiongercondition; in particular, we will look

for @, and©y that satisfy

(O, 2(z)) <(©6,2(x)) < (Ov,(x)) (6)

for all x. By monotonicity ofexp, this stronger condition implies condition (5) on the
partition function, by summing over the valuesXf However, this stronger condition will
give us greater flexibility, and rigorous bounds for general event probabilities since then

exp (O, () exp (Ou, 2(x)))
—— = " < p(x;0) < ————— 21 7
Z(©v) < p(a:©) Z(©r) )
In contrast, while variational methods give bounds on the log partition function, the derived
bounds on general event probabilities via the variational parameters are only heuristic.

Let S be a set of sparse graphs; for examplanay be the set of all trees. Focusing on the
upper bound, we for now would like to obtain a gra@h € S with parameter matrix3,
which approximategs, and whose partition function upper bounds the partition function
of the original graph. Following (6), we require,

(0,®(x))) < (B,®(x)), suchthaG(B) € S ®)

whereG(B) denotes the graph corresponding to the parameter niatriow, we would
like the distribution corresponding t8 to be as close as possible to the distribution corre-
sponding ta®; that is, (B, ®(x))) should not only upper bound®, ®(z))) but should be



close to it. The distance measure we use for this is the minoiisance. In other words,

while the upper bound requires that

(0, 3(x))
(B.o@) "

(e, 2())
(BB (@)

we would like

9)

(10)

to be as high as possible. Expressing these desiderata in the form of an optimization prob-

lem, we have

(©,2(z))

(Fa)) such that

B* = argmax min
B:G(B)es ©

(©,2(x)))
(B,2(z))

<1.

Before solving this problem, we first make some definitions, which are generalized versions

of standard concepts in linear systems theory.

Definition 3.1. For a pairwise Markov random field with potential function matbik:);
the generalized eigenvalues of a pair of parameter matriteB) are defined as

) o (Ae)
Amad 4, B) - = <(B,<1>E%z))> (B, ®(z)) o

® - min M
Amn(A,B) = (B B )

Note that
5 — max << (ac)})

)‘max(A7 aB) = z: (aB,®(x)) 50 <<OéB O(x))) )
1 (A 2@ —iye 4 gy 4

max
oz (B,o@@))20 (B, ®(z))

We state the basic properties of the generalized eigenvalues in the following lemma.

Lemma 3.2. The generalized eigenvalues satisfy
A &(x)))

® (A B)< «’7

A4 B) = B ()

A2 (A aB) =a '\? (A B)
)‘ﬁﬁn(A O‘B) = ail/\giun(AvB)

1
Amin(A, B) = m

< Ap (A, B)

(15)

(16)
17)

(18)

In the following, we will useA to generically denote the parameter maéiof the model.
We can now rewrite the optimization problem for the upper bound in equation (11) as

(ProblemA;)

max
: G(B)ES

Arin(A, B), suchthatAf, (A, B) <1

(19)

We shall express the optimal solution of Probldmin terms of the optimal solution of a
companion problem. Towards that end, consider the optimization problem

Amax(4, C)

ProblemA
( 2) c: G(cn)es A2 (A, C)

min

(20)

The following proposition shows the sense in which these problems are equivalent.



Proposition 3.3. If C attains the optimum in Problef,, thenC = AP (A, @) C attains
the optimum of Problen ;.

Proof. For any feasible solutioB of ProblemA, we have

B)

An(4.8) < 238D (qincers (4.5) < 1) @)
)‘max( B)
< Ain(A (1) (sinceC is the optimum of Problem,)  (22)
max(
= A\ (A,)\E;ax(A,(j‘)é> (from Lemma 3.2) (23)
= A2.(A,0). (24)

Thus,C upper bounds all feasible solutions in Probldm However, it itself is a feasible
solution, since

~ PR 1 ~
N4, C) = Mo (4, N4, C)C) = AT e C) =1 @)
max ’

from Lemma 3.2. Thug;' attains the maximum in the upper bound Problem O
The analysis for obtaining an upper bound parameter mBtfor a given parameter matrix

A carries over for the lower bound; we need to replace a maximin problem with a minimax
problem. For the lower bound, we want a matixsuch that

. (A, @(2))) (A, @(2))
B, = min ma —— = suchthat———<->1 (26
B: GIB)ES {w: (B.b()) 20} (B, ®(x))) (B, o(2)) (26)
This leads to the following lower bound optimization problem.
(ProblemA 3) B:g&n)es A (A, B), suchthatA® (4,B) > 1. (27)

The proof of the following statement closely parallels the proof of Proposition 3.3.

Proposition 3.4. If C attains the optimum in Problef,, thenC = \2. (A, C)C attains

the optimum of the lower bound Problek3.

min

Finally, we state the following basic lemma, whose proof is easily verified.

Lemma 3.5. For any pair of parameter-matriced, B), we have
(Amin(4, B)B,®(x))) < (A,®(x))) < ((Amad A, B)B, ®(x))). (28)

3.2 Main Procedure

We now have in place the machinery necessary to describe the procedure for solving the
main problem in equation (6), to obtain upper and lower bound matrices for a graphical
model. Lemma 3.5 shows how to obtain upper and lower bound parameter matrices with
respect to any matri®, given a parameter matrig, by solving a generalized eigenvalue
problem. Propositions 3.3 and 3.4 tell us, in principle, how to obtain the optimal such
upper and lower bound matrices. We thus have the following procedure. First, obtain a
parameter matrix’ such that(C) € S, which minimizes\2,,(0,C)/\%,.(©,C). Then

A (6, C) C gives the optimal upper bound parameter matrix 2fig(©, C') C gives the
optimal lower bound parameter matrix. However, as things stand, this recipe appears to
be even more challenging to work with than the generalized mean field procedures. The
difficulty lies in obtaining the matrixC. In the following section we offer a series of
relaxations that help to simplify this task.



4 Generalized Support Theory for Graphical Models

In what follows, we begin by assuming that the potential function matrix is positive semi-
definite,®(z) > 0, and later extend our results to genebal

Definition 4.1. For a pairwise MRF with potential function matrixxz) = 0, thegener-
alized support numbeof a pair of parameter matricéd, B), whereB = 0, is

0®(A,B) = min {1 € R| (tB, ®(x))) > (A, ®(z))) for all 2} (29)

The generalized support number can be thought of as the “number of cepids3 re-
quired to “support’A so that{(rB — A, ®(z))) > 0. The usefulness of this definition is
demonstrated by the following result.

Proposition 4.2. If B = 0 then\%,(A, B) < 0®(A, B).

Proof. From the definition of the generalized support number for a graphical model,
we have that(c® (A, B)B — A, ®(z))) > 0. Now, since we assume thé{(z) = 0, if
i (A, D (@) 3
?r:SOB = 0then((B,®(x))) > 0. Therefore, it follows tha B < © (A, B), and
us

A (A, B) = max m <o%(A,B) (30)

giving the statement of the propositiond
This leads to our first relaxation of the generalized eigenvalue bound for a model. From
Lemma 3.2 and Proposition 4.2 we see that
Avax(A, B)
/\ﬁlin (A7 B)

Thus, this result suggests that to approximate the graphical f®dél) we can search for
a parameter matri®*, with corresponding simple graghi(B*) € S, such that

B* = argmin 0®(©, B)o® (B, ©) (32)
B

= )‘ﬁax(A7B))‘$ax(BaA) < U‘b(AvB)U(b(BvA) (31)

While this relaxation may lead to effective bounds, we will now go further, to derive an
additional relaxation that relates our generalized graphical model support number to the
“classical” support number.

Proposition 4.3. For a potential function matrig(x) = 0, 0®(A, B) < o(A, B), where
o(A,B) =min{r| (tB — A) = 0}.

Proof. Sincer(A, B)B—A > 0by definition andb(z) > 0 by assumption, we have
that((oc(A, B)B — A, ®(z))) > 0. Thereforeg® (A, B) < o(A, B) from the definition of
generalized support numbero

The above result reduces the problem of approximating a graphical model to the problem
of minimizing classical support numbers, the latter problem being well-studied in the sci-
entific computing literature (Boman and Hendrickson, 2003; Bern et al., 2001), where the
expressiorns (4, C)o(C, A) is called thecondition numberand a matrix that minimizes

it within a simple family of graphs is called greconditioner. We can thus plug in any
algorithm for finding a sparse preconditioner €@y carrying out the optimization

B* = argmino (0, B) o(B, 0) (33)
B



and then use that matri®* in our basic procedure.

One example is Vaidya’s preconditioner Vaidya (1990), which is essentially the maximum

spanning tree of the graph. Another is the support tree of Gremban (1996), which intro-
duces Steiner nodes, in this case auxiliary nodes introduced via a recursive partitioning
of the graph. We present experiments with these basic preconditioners in the following
section.

Before turning to the experiments, we comment that our generalized support number anal-
ysis assumed that the potential function mafeix:) was positive semi-definite. The case
when it is not can be handled as follows. We first add a large positive diagonal matrix

so that®’(z) = ®(z) + D = 0. Then, for a given parameter mattx we use the above
machinery to get an upper bound parameter mdrsuch that

(A, ®(x) + D)) < (B, ®(z) + D)) = (A, ®(x)) < {(B,2(z))) + (B - 4, D>>(34)
Exponentiating and summing both sides over x, we then get the required upper bound for
the parameter matrix A; the same can be done for the lower bound.

5 Experiments

As the previous sections detailed, the preconditioner based bounds are in principle quite
easy to compute—we compute a sparse preconditioner for the parameter matrix (typi-
cally O(n) to O(n?)) and use the preconditioner as the parameter matrix for the bound
computation (which is linear if the preconditioner matrix corresponds to a tree). This
yields a simple, non-iterative deterministic procedure as compared to the more complex
propagation-based or iterative update procedures. In this section we evaluate these bounds
on small graphical models for which exact answers can be readily computed, and compare
the bounds to variational approximations.

We show simulation results averaged over a randomly generated set of graphical models.
The graphs used were 2D grid graphs, and the edge potentials were selected according to a
uniform distribution Uniforni—2d.,.,, 0) for various coupling strength&.,.,,,. We report

the relative error(bound— log-partition-function /log-partition-function.

As a baseline, we use the mean field and structured mean field methods for the lower bound,
and the Wainwright et al. (2003) tree-reweighted belief propagation approximation for the
upper bound. For the preconditioner based bounds, we use two very simple precondition-
ers, (a) Vaidya’'s maximum spanning tree preconditioner (Vaidya, 1990), which assumes the
input parameter matrix to be a Laplacian, and (b) Gremban (1996)’s support tree precon-
ditioner, which also gives a sparse parameter matrix corresponding to a tree, with Steiner
(auxiliary) nodes. To compute bounds over these larger graphs with Steiner nodes we aver-
age an internal node over its children; this is the technique used with such preconditioners
for solving linear systems. We note that these preconditioners are quite basic, and the use
of better preconditioners (yielding a better condition number) has the potential to achieve
much better bounds, as shown in Propositions 3.3 and 3.4. We also reiterate that while our
approach can be used to derive bounds on event probabilities, the variational methods yield
bounds only for the partition function, and only apply heuristically to estimating simple
event probabilities such as marginals.

As the plots in Figure 1 show, even for the simple preconditioners used, the new bounds
are quite close to the actual values, outperforming the mean field method and giving com-
parable results to the tree-reweighted belief propagation method. The spanning tree pre-
conditioner provides a good lower bound, while the support tree preconditioner provides a
good upper bound, however not as tight as the bound obtained using tree-reweighted be-
lief propagation. Although we cannot compute the exact solution for large graphs, we can
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compare bounds. The bottom plot of Figure 1 compares lower bounds for graphs with up
to 900 nodes; a larger bound is necessarily tighter, and the preconditioner bounds are seen
to outperform mean field.
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