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Abstract

A general analysis of the limiting distribution of neural network functions
is performed, with emphasis on non-Gaussian limits. We show that with
i.i.d. symmetric stable output weights, and more generally with weights
distributed from the normal domain of attraction of a stable variable, that
the neural functions converge in distribution to stable processes. Condi-
tions are also investigated under which Gaussian limits do occur when
the weights are independent but not identically distributed. Some par-
ticularly tractable classes of stable distributions are examined, and the
possibility of learning with such processes.

1 Introduction

Consider the model

fn(x) =
1
sn

n∑

j=1

vjh(x; uj) ≡ 1
sn

n∑

j=1

vjhj(x) (1)

whichcan be viewed as a multi-layer perceptron with inputx, hidden functionsh, weights
uj , output weightsvj , andsn a sequence of normalizing constants. The work of Radford
Neal [1] showed that, under certain assumptions on the parameter priors{vj , hj}, the dis-
tribution over the implied network functionsfn converged to that of a Gaussian process,
in the large network limitn → ∞. The main feature of this derivation consisted of an
invocation of the classical Central Limit Theorem (CLT).

While one cavalierly speaks of “the” central limit theorem, there are in actuality many dif-
ferent CLTs, of varying generality and effect. All are concerned with the limits of suitably
normalised sums of independent random variables (or where some condition is imposed so
that no one variable dominates the sum1), but the limits themselves differ greatly: Gaussian,
stable, infinitely divisible, or, discarding the infinitesimal assumption, none of these. It fol-
lows that in general, the asymptotic process for (1) may not be Gaussian. The following
questions then arise: what is the relationship between choices of distributions on the model
priors, and the asymptotic distribution over the induced neural functions? Under what con-
ditions does the Gaussian approximation hold? If there do exist non-Gaussian limit points,
is it possible to construct analagous generalizations of Gaussian process regression?

1Typically called aninfinitesimalcondition — see [4].



Previous work on these problems consists mainly in Neal’s publication [1], which estab-
lished that when the output weightsvj arefinite varianceandi.i.d., the limiting distribution
is a Gaussian process. Additionally, it was shown that when the weights are i.i.d. symmet-
ric stable (SS), the first-order marginal distributions of the functions are also SS. Unfortu-
nately, no mathematical analysis was presented to show that the higher-order distributions
converged, though empirical evidence was suggestive of that hypothesis. Moreover, the
exact form of the higher-dimensional distributions remained elusive.

This paper conducts a further investigation of these questions, with concentration on the
cases where the weight priors can be 1) of infinite variance, and 2) non-i.i.d. Such assump-
tions fall outside the ambit of the classical CLT, but are amenable to more general limit
methods. In Section 1, we give a general classification of the possible limiting processes
that may arise under an i.i.d. assumption on output weights distributed from a certain class
— roughly speaking, those weights with tails asymptotic to a power-law — and provide
explicit formulae for all the joint distribution functions. As a byproduct, Neal’s preliminary
analysis is completed, a full multivariate prescription attained and the convergence of the
finite-dimensional distributions proved. The subsequent section considers non-i.i.d. priors,
specifically independent priors where the “identically distributed” assumption is discarded.
An example where a finite-variance non-Gaussian process acts as a limit point for a non-
trivial infinite network is presented, followed by an investigation of conditions under which
the Gaussian approximation is valid, via the Lindeberg-Feller theorem. Finally, we raise
the possibility of replacing network models with the processes themselves for learning ap-
plications: here, motivated by the foregoing limit theorems, the set of stable processes
form a natural generalization to the Gaussian case. Classes of stable stochastic processes
are examined where the parameterizations are particularly simple, as well as preliminary
applications to the nonlinear regression problem.

2 Neural Network Limits

Referring to (1), we make the following assumptions:hj(x) ≡ h(x; uj) are uniformly
bounded inx (as for instance occurs ifh is associated with some fixed nonlinearity), and
{uj} is an i.i.d. sequence, so thathj(x) are i.i.d. for fixedx, and independent of{vj}.
With these assumptions, the choice of output priorsvj will tend to dictate large-network
behavior, independently ofuj . In the sequel, we restrict ourselves to functionsfn(x) :
R→ R, as the respective proofs for the generalizations ofx andfn to higher-dimensional
spaces are routine. Finally, all random variables are assumed to be of zero mean whenever
first moments exist. For brevity, we only present sketches of proofs.

2.1 Limits with i.i.d. priors

The Gaussian distribution has the feature that ifX1 andX2 are statistically independent
copies of the Gaussian variableX, then their linear combination is also Gaussian, i.e.
aX1 + bX2 has the same distribution ascX + d for somec andd. More generally, the
stabledistributions [5], [6, Chap. 17] are defined to be the set of all distributions satisfying
the above “closure” property. If one further demands symmetry of the distribution, then
they must have characteristic functionΦ(t) = e−σα|t|α , for parametersσ > 0 (called
the spread), and0 < α ≤ 2, termed the index. Since the characteristic functions are not
generally twice differentiable att = 0, their variances are infinite, the Gaussian distribution
being the only finite variance stable distribution, associated to indexα = 2.

The attractive feature of stable variables, by definition, is closure under the formation of lin-
ear combinations: the linear combination of any two independent stable variables is another
stable variable of the same index. Moreover, the stable distributions are attraction points
of distributions under a linear combiner operator, and indeed, the only such distributions in



thefollowing sense: if{Yj} are i.i.d., andan + 1
sn

∑n
j=1 Yj converges in distribution toX,

thenX must be stable [5]. This fact already has consequences for our network model (1),
and implies that — under i.i.d. priorsvj , and assuming (1) converges at all — convergence
can occur only to stable variables, for eachx.

Multivariate analogues are defined similarly: we say a random vectorX is (strictly) stable
if, for everya, b ∈ R, there exists a constantc such thataX1 + bX2 = cX whereXi are
independent copies ofX and the equality is in distribution. Asymmetricstable random
vector is one which is stable and for which the distribution ofX is the same as−X. The
following important classification theorem gives an explicit Fourier domain description of
all multivariate symmetric stable distributions:

Theorem 1. Kuelbs [5].X is a symmetricα-stable vector if and only if it has characteristic
function

Φ(t) = exp
{
−

∫

Sd−1
|〈t, s〉|α dΓ(s)

}
(2)

whereΓ is a finite measure on the unit(d− 1)-sphereSd−1, and0 < α ≤ 2.

Remark:(2) remains unchanged replacingΓ by the symmetrized measurẽΓ = 1
2 (Γ(A) +

Γ(−A)), for all Borel setsA. In this case, the (unique) symmetrized measureΓ̃ is called
thespectral measureof the stable random vectorX.

Finally, stableprocessesare defined as indexed sets of random variables whose finite-
dimensional distributions are (multivariate) stable.

First we establish the following preliminary result.

Lemma 1. Let v be a symmetric stable random variable of index0 < α ≤ 2, and spread
σ > 0. Leth be independent ofv andE|h|α < ∞. If y = hv, and{yi} are i.i.d. copies of
y, thenSn = 1

n1/α

∑n
i=1 yi converges in distribution to anα-stable variable with charac-

teristic functionΦ(t) = exp{−|σt|αE|h|α}.

Proof. This follows by computing the characteristic functionΦSn , then using standard
theorems in measure theory (e.g. [4]), to obtainlimn→∞ log ΦSn(t) = −|σt|αE|h|α.

Now we can state the first network convergence theorem.

Proposition 1. Let the network (1) have symmetric stable i.i.d. weightsvj of index0 <
α ≤ 2 and spreadσ. Thenfn(x) = 1

n1/α

∑n
j=1 vjhj(x) converges in distribution to a

symmetricα-stable processf(x) asn → ∞. The finite-dimensional stable distribution of
(f(x1), . . . , f(xd)), wherexi ∈ R, has characteristic function:

Ψ(t) = exp (−σαEh |〈t,h〉|α) (3)

whereh = (h(x1), . . . , h(xd)), andh(x) is a random variable with the common distribu-
tion (acrossj) of hj(x). Moreover, ifh = (h(x1), . . . , h(xd)) has joint probability density
p(h) = p(rs), with s on theSd−1 sphere andr the radial component ofh, then the finite
measureΓ corresponding to the multivariate stable distribution of(f(x1), . . . , f(xd)) is
given by

dΓ(s) =
(∫ ∞

0

rα+d−1p(rs) dr

)
ds (4)

whereds is Lebesgue measure onSd−1.

Proof. It suffices to show that every finite-dimensional distribution off(x) converges
to a symmetric multivariate stable characteristic function. We have

∑d
i=1 tifn(xi) =



1
n1/α

∑n
j=1 vj

∑d
i=1 tihj(xi) for constants{x1, . . . , xd} and(t1, . . . , td) ∈ Rd. An ap-

plication of Lemma 1 proves the statement. The relation between the expectation in (3) and
the stable spectral measure (4) is derived from a change of variable to spherical coordinates
in thed-dimensional space ofh.

Remark:Whenα = 2, the exponent in the characteristic function (3) is a quadratic form
in t, and becomes the usual Gaussian multivariate distribution.

The above proposition is the rigorous completion of Neal’s analysis, and gives the explicit
form of the asymptotic process under i.i.d. SS weights. More generally, we can consider
output weights from thenormal domain of attraction of indexα, which, roughly, consists
of those densities whose tails are asymptotic to|x|−(α+1), 0 < α < 2 [6, pg. 547]. With a
similar proof to the previous theorem, one establishes
Proposition 2. Let network (1) have i.i.d. weightsvj from the normal domain of attraction
of an SS variable with indexα, spreadσ. Thenfn(x) = 1

n1/α

∑n
j=1 vjhj(x) converges in

distribution to a symmetricα-stable processf(x), with the joint characteristic functions
given as in Proposition 1.

2.1.1 Example: Distributions with step-function priors

Let h(x) = sgn(a+ ux), wherea andu are independent Gaussians with zero mean. From
(3) it is clear that the limiting network functionf(x) is a constant (in law, hence almost
surely), as|x| → ∞, so that the interesting behavior occurs in some “central region”
|x| < k. Neal in [1] has shown that when the output weightsvj are Gaussian, then the
choice of the signum nonlinearity forh gives rise to local Brownian motion in the central
regime.

There is a natural generalization of the Brownian process within the context of symmet-
ric stable processes, called thesymmetricα-stable Ĺevy motion. It is characterised by an
indexed sequence{wt : t ∈ R} satisfying i)w0 = 0 almost surely, ii) independent incre-
ments, and iii)wt − ws is distributed symmetricα-stable with spreadσ = |t − s|1/α. As
we shall now show, the choice of step-function nonlinearity forh and symmetricα-stable
priors forvj lead to locally Ĺevy stable motion, which provide a theoretical exposition for
the empirical observations in [1].

Fix two nearby positionsx andy, and selectσ = 1 for notational simplicity. From (3)
the random variablef(x) − f(y) is symmetric stable with spread parameter[Eh|h(x) −
h(y)|α]1/α. For step inputs,|h(x)− h(y)| is non-zero only when the step located at−a/u
falls betweenx andy. For small|x−y| approximate the density of this event to be uniform,
so that[Eh|h(x) − h(y)|α] ∼ |x − y|. Hence locally, the incrementf(x) − f(y) is a
symmetric stable variable with spread proportional to|x − y|1/α, which is condition (iii)
of Lévy motion. Next let us demonstrate that the increments are independent. Consider the
vector(f(x1)−f(x2), f(x2)−f(x3), . . . , f(xn−1)−f(xn)), wherex1 < x2 < . . . < xn.
Its joint characteristic function in the variablest1, . . . , tn−1 can be calculated to be

Φ(t1, . . . , tn−1) = exp (−Eh|t1(h(x1)− h(x2)) + · · ·+ tn−1(h(xn−1)− h(xn))|α)
(5)

The disjointness of the intervals(xi−1, xi) implies that the only events which have non-
zero probability within the range[x1, xn] are the events|h(xi)− h(xi−1)| = 2 for somei,
and zero for all other indices. Lettingpi denote the probabilities of those events, (5) reads

Φ(t1, . . . , tn−1) = exp (−2α(p1|t1|α + · · ·+ pn−1|tn−1|α)) (6)
which describes a vector of independentα-stable random variables, as the characteristic
function splits. Thus the limiting process has independent increments.

The differences between sample functions arising from Cauchy priors as opposed to
Gaussian priors is evident from Fig. 1, which displays sample paths from Gaussian and
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Figure1: Sample functions: (a) i.i.d. Gaussian, (b) i.i.d. Cauchy, (c) Brownian motion, (d) Lévy
Cauchy-Stable motion.

Cauchy i.i.d. processeswn and their “integrated” versions
∑n

i=1 wi, simulating the Ĺevy
motions. The sudden jumps in the Cauchy motion arise from the presence of strong outliers
in the respective Cauchy i.i.d. process, which would correspond, in the network, to hidden
units with heavy weighting factorsvj .

2.2 Limits with non-i.i.d. priors

We begin with an interesting example, which shows that if the “identically distributed”
assumption for the output weights is dispensed with, the limiting distribution of (1) can
attain a non-stable (and non-Gaussian) form. Takevj to be independent random variables
with P (vj = 2−j) = P (vj = −2−j) = 1/2. The characteristic functions can easily be
computed asE[eitvj ] = cos(t/2j). Now recall the Viet́e formula:

n∏

j=1

cos(t/2j) =
sin t

2n sin(t/2n)
(7)

Taking n → ∞ shows that the limiting characteristic function is a sinc function, which
corresponds with the uniform density. Selecting the signum nonlinearity forh, it is not
difficult to show with estimates on the tail of the product (7) that all finite-dimensional
distributions of the neural processfn(x) =

∑n
j=1 vjhj(x) converge, so thatfn converges

in distribution to a random process whose first-order distributions are uniform2.

What conditions are required on independent, but not necessarily identically distributed
priors vj for convergence to the Gaussian? This question is answered by the classical
Lindeberg-Feller theorem.

Theorem 2. Central Limit Theorem (Lindeberg-Feller) [4]. Letvj be a sequence of
independent random variables each with zero mean and finite variance, defines2

n =
var[

∑n
j=1 vj ], and assumes1 6= 0. Then the sequence1sn

∑n
j=1 vj converges in distri-

2An intuitive proof is as follows: one thinks of
∑

j
vj as a binary expansion of real numbers in

[-1,1]; the prescription of the probability laws forvj imply all such expansions are equiprobable,
manifesting in the uniform distribution.



bution to anN(0, 1) variable, if

lim
n→∞

1
s2

n

n∑

i=1

∫

|v|≥εsn

v2 dFvj (v) = 0 (8)

for eachε > 0, and whereFvj is the distribution function forvj .

Condition (8) is called the Lindeberg condition, and imposes an “infinitesimal” requirement
on the sequence{vj} in the sense that no one variable is allowed to dominate the sum. This
theorem can be used to establish the following non-i.i.d. network convergence result.
Proposition 3. Let the network (1) have independent finite-variance weightsvj . Defining
s2

n = var[
∑n

j=1 vj ], if the sequence{vj} is Lindeberg thenfn(x) = 1
sn

∑n
j=1 vjhj(x)

converges in distribution to a Gaussian processf(x) of mean zero and covariance function
C(f(x), f(y)) = E[h(x)h(y)] as n → ∞, whereh(x) is a variable with the common
distribution of thehj(x).

Proof. Fix a finite set of points{x1, . . . , xk} in the input space, and look at the joint dis-
tribution (fn(x1), . . . , fn(xn)). We want to show these variables are jointly Gaussian
in the limit as n → ∞, by showing that every linear combination of the compo-
nents converges in distribution to a Gaussian distribution. Fixingk constantsµi, we
have

∑k
i=1 µif(xi) = 1

sn

∑n
j=1 vj

∑k
i=1 µihj(xi). Define ξj =

∑k
i=1 µihj(xi), and

s̃2
n = var(

∑n
j=1 vjξj) = (Eξ2)s2

n, whereξ is a random variable with the common distrib-
ution of ξj . Then for somec > 0:

1
s̃2

n

n∑

j=1

∫

|vjξj |≥εs̃n

|vj(ω)ξj(ω)|2 dP (ω) ≤ c2

Eξ2

1
s2

n

n∑

j=1

∫

|vj |≥ε
(Eξ2)1/2sn

c

|vj(ω)|2 dP (ω)

Theright-hand side can be made arbitrarily small, from the Lindeberg assumption on{vj},
hence{vjξj} is Lindeberg, from which the theorem follows. The covariance function is
easy to calculate.
Corollary 1. If the output weights{vj} are a uniformly bounded sequence of independent
random variables, andlimn→∞ sn = ∞, thenfn(x) in (1) converges in distribution to a
Gaussian process.

The preceding corollary, besides giving an easily verifiable condition for Gaussian limits,
demonstrates that the non-Gaussian convergence in the example initialising Section 2.2 was
made possible precisely because the weightsvj decayed sufficiently quickly withj, with
the result thatlimn sn < ∞.

3 Learning with Stable Processes

One of the original reasons for focusing machine learning interest on Gaussian processes
consisted in the fact that they act as limit points of suitably constructed parametric models
[2], [3]. The problem of learning a regression function, which was previously tackled by
Bayesian inference on a modelling neural network, could be reconsidered by directly plac-
ing a Gaussian process prior on the fitting functions themselves. Yet already in early papers
introducing the technique, reservations had been expressed concerning such wholesale re-
placement [2]. Gaussian processes did not seem to capture the richness of finite neural
networks — for one, the dependencies between multiple outputs of a network vanished in
the Gaussian limit.

Consider the simplest regression problem, that of the estimation of a state processu(x)
from observationsy(xi), under the model

y(x) = u(x) + ε(x) (9)
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Figure2: Scatter plots of bivariate symmetricα-stable distributions with discrete spectral measures.
Top row: α = 1.5; Bottom row:α = 0.5. Left to right: (a)H = identity, (b)H a rotation, (c)H a
2× 3 matrix with columns(−1/16,

√
3/16)T , (0, 1)T , (1/16,

√
3/16)T .

whereε(x) is noise independent ofu. The obvious generalization of Gaussian process re-
gression involves the placement of a stable process prior of indexα on u, and settingε as
i.i.d. stable noise of the same index. Then the observationsy also form a stable process
of index α. Two advantages come with such generalization. First, the use of a heavy-
tailed distribution forε will tend to produce more robust regression estimates, relative to
the Gaussian case; this robustness can be additionally controlled by the stability parameter
α. Secondly, a glance at the classification of Theorem 1 indicates that the correlation struc-
ture of stable vectors (hence processes), is significantly richer than that of the Gaussian; the
space ofn-dimensional stable vectors is already characterised by a whole space of mea-
sures, rather than ann × n covariance matrix. The use of such priors on the datau afford
a significant broadening in the number of interesting dependency relationships that may be
assumed.

An understanding of the dependency structure of multivariate stable vectors can be first
broached by considering the following basic class. Letv be a vector of i.i.d. symmetric
stable variables of the same index, and letH be a matrix of appropriate dimension so that
x = Hv is well-defined. Thenx has a symmetric stable characteristic function, where
the spectral measurẽΓ in Theorem 1 isdiscrete, i.e. concentrated on a finite number of
points. Divergences in the correlation structure are readily apparent even within this class.
In the Gaussian case, there is no advantage in the selection of non-square matricesH, since
the distribution ofx can always be obtained by a square mixing matrixH̃ with the same
number of rows asH. Not so whenα < 2, for then the characteristic function forx in
general possessesn fundamental discontinuities in higher-order derivatives, wheren is the
number of columns ofH. Furthermore, in the square case, replacement ofH with HR,
whereR is any rotation matrix, leaves the distribution invariant whenα = 2; for non-
Gaussian stable vectors, the mixing matricesH andH′ give rise to the same distribution
only when|H−1H′| is a permutation matrix, where| · | is defined component-wise. Figure
2 illustrates the variety of dependency structures which can be attained asH is changed.
A number of techniques already exist in the statistical literature for the estimation of the
spectral measure (and hence the mixingH) of multivariate stable vectors from empirical
data. The infinite-dimensional generalization of the above situation gives rise to the set
of stable processes produced as time-varying filtered versions of i.i.d. stable noise, and



similar to the Gaussian process, are parameterized by a centering (mean) functionµ(x) and
a bivariate filter functionh(x, ν) encoding dependency information. Another simple family
of stable processes consist of the so-calledsub-Gaussian processes. These are processes
defined byu(x) = A1/2G(x) whereA is a totally right-skewα/2 stable variable [5], and
G a Gaussian process of mean zero and covarianceK. The result is a symmetricα-stable
random process with finite-dimensional characteristic functions of form

Φ(t) = exp(−1
2
|〈t,Kt〉|α/2) (10)

Thesub-Gaussian processes are then completely parameterized by the statistics of the sub-
ordinating Gaussian processG. Even more, they have the followinglinear regression prop-
erty [5]: if Y1, . . . , Yn are jointly sub-Gaussian, then

E[Yn|Y1, . . . , Yn−1] = a1Y1 + · · · an−1Yn−1. (11)

Unfortunately, the regression is somewhat trivial, because a calculation shows that the coef-
ficients of regression{ai} are thesameas the case whereYi are assumed jointly Gaussian!
Indeed, this curious property appears anytime the variables take the formY = BG, for
anyfixed scalar random variableB and Gaussian vectorG. It follows that the predictive
mean estimates for (10) employing sub-Gaussian priors are identical to the estimates under
a Gaussian hypothesis. On the other hand, the conditionaldistributionof Yn|Y1, . . . , Yn−1

differs greatly from the Gaussian, and is neither stable nor symmetric about its conditional
mean in general. From Fig. 2 one even sees that the conditional distribution may be multi-
modal, in which case the predictive mean estimates are not particularly valuable. More
useful are MAP estimates, which in the Gaussian scenario coincide with the conditional
mean. In any case, regression on stable processes suggest the need to compute and investi-
gate the entirea posterioriprobability law.

The main thrust of our foregoing results indicate that the class of possible limit points of
network functions is significantly richer than the family of Gaussian processes, even un-
der relatively restricted (e.g. i.i.d.) hypotheses. Gaussian processes are the appropriate
models of large networks with finite variance priors in which no one component dominates
another, but when the finite variance assumption is discarded, stable processes become
the natural limit points. Non-stable processes can be obtained with the appropriate choice
of non-i.i.d. parameters priors, even in an infinite network. Our discussion of the stable
process regression problem has principally been confined to an exposition of the basic the-
oretical issues and principles involved, rather than to algorithmic procedures. Nevertheless,
since simple closed-form expressions exist for the characteristic functions, the predictive
probability laws can all in principle be computed with multi-dimensional Fourier transform
techniques. Stable variables form mathematically natural generalisations of the Gaussian,
with some fundamental, but compelling, differences which suggest additional variety and
flexibility in learning applications.
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