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Abstract

We extend radial basis function (RBF) networks to the scenario in which
multiple correlated tasks are learned simultaneously, and present the cor-
responding learning algorithms. We develop the algorithms for learn-
ing the network structure, in either a supervised or unsupervised manner.
Training data may also be actively selected to improve the network’s gen-
eralization to test data. Experimental results based on real data demon-
strate the advantage of the proposed algorithms and support our conclu-
sions.

1 Introduction

In practical applications, one is frequently confronted with situations in which multiple
tasks must be solved. Often these tasks are not independent, implying what is learned from
one task is transferable to another correlated task. By making use of this transferability,
each task is made easier to solve. In machine learning, the concept of explicitly exploiting
the transferability of expertise between tasks, by learning the tasks simultaneously under a
unified representation, is formally referred to as “multi-task learning” [1].

In this paper we extend radial basis function (RBF) networks [4,5] to the scenario of multi-
task learning and present the corresponding learning algorithms. Our primary interest is to
learn the regression model of several data sets, where any given data set may be correlated
with some other sets but not necessarily with all of them. The advantage of multi-task
learning is usually manifested when the training set of each individual task is weak, i.e., it
does not generalize well to the test data. Our algorithms intend to enhance, in a mutually
beneficial way, the weak training sets of multiple tasks, by learning them simultaneously.
Multi-task learning becomes superfluous when the data sets all come from the same gen-
erating distribution, since in that case we can simply take the union of them and treat the
union as a single task. In the other extreme, when all the tasks are independent, there is no
correlation to utilize and we learn each task separately.

The paper is organized as follows. We define the structure of multi-task RBF network
in Section 2 and present the supervised learning algorithm in Section 3. In Section 4 we
show how to learn the network structure in an unsupervised manner, and based on this
we demonstrate how to actively select the training data, with the goal of improving the



generalization to test data. We perform experimental studies in Section 5 and conclude the
paper in Section 6.

2 Multi-Task Radial Basis Function Networ k

Figure 1 schematizes the radial basis function (RBF) network structure customized to mul-
titask learning. The network consists of an input layer, a hidden layer, and an output layer.
The input layer receives a data poit= [z, --- ,z4)T € R? and submits it to the hidden
layer. Each node at the hidden layer has a localized activatior) = ¢(||x — ¢, ||, on),

n = 1,---,N, where|| - || denotes the vector norm ard (-) is a radial basis function
(RBF) localized around,, with the degree of localization parameterizeddyy Choos-

ing ¢(z,0) = exp(—%) gives the Gaussian RBF. The activations of all hidden nodes
are weighted and sent to the output layer. Each output node represents a unique task
and has its own hidden-to-output weights. The weighted activations of the hidden nodes
are summed at each output node to produce the output for the associated task. Denoting
wy = [wor, w1, -+ ,wyi]T as the weights connecting hidden nodes to/tHa output

node, then the output for theth task, in response to input takes the form

Jr(x) = wi 6(x) (1)

whereg(x) = [¢°(x), ¢*(x), ... ,¢>N(x)]T is a column containingv + 1 basis functions
with ¢°(x) = 1 a dummy basis accounting for the bias in Figure 1.
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Figure 1: A multi-task structure of RBF Network. Each of the output nodes represents a unique
task. Each task has its own hidden-to-output weights but all the tasks share the same hidden nodes.
The activation of hidden node is characterized by a basis function(x) = &(||x — cx||,0n). A

typical choice ofp is ¢(z,0) = eXp(f%), which gives the Gaussian RBF.

3 Supervised Learning

Suppose we haveK tasks and the data set of thé-th task is D, =
{(X1ksY1k)s - (X8, Ya.k) . Wherey;;, is the target (desired output) afy,. By defi-
nition, a given data point;;, is said to be supervised if the associated taggets provided
and unsupervised if;; is not provided. The definition extends similarly to a set of data



Table 1: Learning Algorithm of Multi-Task RBF Network
Input: {(x1%,Y2k)s =+ » (XJp ks Y k) fe=1:5, #(-,0), 0, andp;  Output: ¢(-) and
{Wk}i,{:r

1. For m=1:K,Forn=1:J,,,For k=1:K,For i=1:J;
CompUt%?km = ¢(| |Xnm - Xik”a 0)1
2. LN =0,6() = Lieo = X4, |70 — (i + )7 (7 wa)?);
For k=1: K, computeA = Jy,+p, W= (Ju+p) 7% vir;
3. Form=1:K,Forn=1:J,,
If ¢"™ is not marked as “deleted”
For k=1: K, compute
o= N0k G ak = i (G 4 p — L Ay e
If there exists: such thaty, = 0, mark¢™™ as “deleted”;
else, computeie(ep, o) using (5).
If {¢™*};—1.J, k=1.x are all marked as “deleted”, go to 10.
Let (n*,m*) = arg MAX . ot marked as cqeleted€(@,0"™); Mark ¢ ™ as “deleted”.
Tune RBF parametery 1 = arg max , de(@, d(|| - —Xpnxm=|], 7))
Let ¢N+1(') = Qb(H T Xprm* 7JN+1); Update d)() — [¢T(')7¢N+1(')}T;
For k=1:K
ComputeA“* andw}“" respectively by (A-1) and (A-3) in the appendix; Up-
dateA; «— AP, wy — wpew
9. Leteyy =en —de(gp, ¢V Th);  Ifthe sequencée, },,—o:(n+1) IS converged, go
to 10, elseupdateN «— N + 1 and go back to 3.
10.Exit and outpuip(-) and{w; } X ;.

I

points. We are interested in learning the functign&x) for the K tasks, based oo, Dy.
The learning is based on minimizing the squared error

e(p,w) = Zszl {E;]il (W£¢ik - yik)2 + PHWkHQ} 2

where¢,, = &(x;;) for notational simplicity. The regularization terms|wy||?, k =
1,--+, K, are used to prevent singularity of tAematrices defined in (3), anglis typically
set to a small positive number. For fixeds, thew’s are solved by minimizing(¢, w)
with respect tow, yielding

we =AY gy, and Ay = g ol + oL k=1, K (3

In a multi-task RBF network, the input layer and output layer are respectively specified by
the data dimensionality and the number of tasks. We now discuss how to determine the
hidden layer (basis functiong). Substituting the solutions of the’s in (3) into (2) gives

e(@) = Yoy Sty (i — ik wi ) @)

wheree(¢) is a function of¢ only becausew’s are now functions ok as given by
(3). By minimizinge(¢), we can determine. Recalling thatp,, is an abbreviation of

d(xir) = [1,0" (xin), - .. ,qu(Xik;)]T, this amounts to determininy, the number of ba-
sis functions, and the functional form of each basis functith), n = 1,..., N. Consider

the candidate functions)"” (x) = ¢(||x —Xpml|,0) : n=1,--+ , Jp,m=1,--- | K}.

We learn the RBF network structure by selectit@) from these candidate functions such
thate(¢) in (4) is minimized. The following theorem tells us how to perform the selection
in a sequential way; the proof is given in the Appendix.



Theorem 1 Let ¢(x) = [1, ¢ (x),..., oY (x)]T and ¢V *1(x) be a single basis function.
Assume the A matrices corresponding to ¢ and [¢, o™ +1]T are all non-degenerate. Then

Se(d, o™ H1) = e(@) — e([¢, 6™ T) = 1 (Fwi — 5 wand X ) gt ()

N+1 _

where ¢;, = ¢V (pir), wy and A are the same asin (3), and

e =0 u N A= (6N v, gr=d —cEALer  (6)

By the conditions of the theore}** is full rank and hence it is positive definite by con-
struction. By (A-2) in the Appendi)q;k_1 is a diagonal element gAA 7<) 1, thereforeqk_1

is positive and by (5ye(¢, V1) > 0, which means adding™*! to ¢ generally makes

the squared error decrease. The decréa&g, ¢ 1) depends o™V 1. By sequentially
selecting basis functions that bring the maximum error reduction, we achieve the goal of
maximizinge(¢). The details of the learning algorithm are summarized in Table 1.

4 ActiveLearning

In the previous section, the data ip, are supervised (provided with the targets). In this
section, we assume the datalip are initially unsupervised (only is available without
access to the associatgfland we select a subset froby, to be supervised (targets ac-
quired) such that the resulting network generalizes well to the remaining d&a ifihe
approach is generally known as active learning [6]. We first learn the basis fungtions
from the unsupervised data, and basedfoselect data to be supervised. Both of these
steps are based on the following theorem, the proof of which is given in the Appendix.

Theorem 2 Let there be K tasks and the data set of the k-th task is D, U ﬁk where
Dy = {(Xik; ylk)};jil and 51@ = {(Xika yik)}Jk+Jk . Let there be two multi-task RBF

1=Jr+1
networks, whose output nodes are characterized by fi(-) and f.~(-), respectively, for task
k = 1,...,K. The two networks have the same given basis functions (hidden nodes)

#() =[1,0'(), -, o™ ()]", but different hidden-to-output weights. Theweightsof fj.(-)
are trained with D, U Dy, while the weights of f;~(-) are trained using Dj. Then for
k=1,---,K,thesquareerrors committed on D, by fi(-) and f;’(-) arerelated by

0<[detTy] '<A L, o < [0 (i — 8 (ki) ] S0 (i —f (xan) ) *< Mnink <1(7)

where T, = [T+ &7 (pI + &»kéi)—l@k]z with ® = [p(x11), ..., P(xs,1)] and & =
[O(Xgut1,k)s-- - ¢(XJk+jk7k)]’ and Aoz & @nd A, 1 are respectively the largest and
smallest eigenvalues of T'.

—1

Specializing Theorem 2 to the casge= 0, we have

Corollary 1 Let there be K tasks and the data set of the k-th taskis Dy, = { (X, vir) } %,
Let the RBF network, whose output nodes are characterized by fi(-) for task £ =

,..., K, have given basis functions (hidden nodes) ¢(-) = [1,¢'(),- - ,qSN(-)}T and
the hidden-to-output weights of task & be trained with D,.. Then for & = 1,- K the
squared error committed on Dy, by fx(-) is bounded as 0 < [detT]~! < A‘

ma:ck: S

>3] SO (i — fe(xa))? < A < 1, where Ty, = (I+p_1¢'T‘I’k) with
D = [p(x1k)s---, O(xs k)], @ Aoz @NA Ay i @re respectively the largest and
smallest eigenvalues of T'y.

It is evident from the properties of matrix determinant [7] and the definitiod® dhat
detTy = [detpl + @, @])] [det(pD)] "2 = [detpl + Y%, dyyply)] [det(pT)] 2



Using (3) we write succinctlylet T'y, = [det A?][det(pI)]~2. We are interested in se-
lecting the basis functiong that minimize the error, before seeigt. By Corollary 1
and the equatiodet I', = [det A?][det(pI)]~2, the squared error is lower bounded by
7% 2 [det(pT)]2[det A,]~2. Instead of minimizing the error directly, we minimize its
lower bound. Addet(p I)]QZfﬁlyfk does not depend ap, this amounts to selecting to
minimize (det A;)~2. To minimize the errors for all tasks = 1--- , K, we selectp to
minimize [];_, (det A;)~2.

The selection proceeds in a sequential manner. Suppose we have selected basis func-
tions ¢ = [1,¢',---,¢™V]7. The associated. matrices areA; = Zfi]il D +

pINi1yx(nt1), k= 1,---, K. Augmenting basis functions tp", ¥ *+1]T, the A

matrices change ;e = Y27 (@7, 6N T [0k, oX T + pL(nioyx(nta) Us-

ing the determinant formula of block matrices [7], we gﬁf:l(det Anewy=2 =
15, (g det Ay)~2, whereg, is the same as in (6). A, does not depend op™+1,

the left-hand side is minimized by maximizirﬂf=1 q3. The selection is easily imple-
mented by making the following two minor modifications in Table 1: (a) in step 2, compute
eo = Sor In(Jy, + p)~2; in step 3, computée (¢, ¢"™) = S5, Ing?. Employing the
logarithm is for gaining additivity and it does not affect the maximization.

Based on the basis functiogsdetermined above, we proceed to selecting data to be su-
pervised and determining the hidden-to-output weightsom the supervised data using

the equations in (3). The selection of data is based on an iterative use of the following
corollary, which is a specialization of Theorem 2 and was originally given in [8].

Corollary 2 Let there be K tasks and the data set of the k-th taskis Dy, = {(xi, vir) } %,
Let there be two RBF networks, whose output nodes are characterized by fi(-) and
fi (), respectively, for task k = 1,...,K. The two networks have the same given
basis functions ¢(-) = [1,¢'(-),---, ¢~ (-)]7, but different hidden-to-output weights.
The weights of fx(-) are trained with Dy, while the weights of f,7(-) are trained us-
ing D,j = Dy U{(Xsot+1.ksYsp+1.k) - Thenfor k = 1,--- K, the squared errors
committed on (xj, 11,5, Y. +1,k) BY fu(-) and f;F () are related by [f," (x41.6) —

ka+1,1€]2 = [V(XJHLk)}_l[fk(XJkH,k) - ka+1,k:]2, where y(xj,115) = [ +

&7 (X410 A7 Ld(xs110)] = Land Ay = 3275 [+ ¢(xir) " (xi1,)] isthe same
asin (3).

Two observations are made from Corollary 2. Firsty(k s, +1,%) ~ 1, seeingys, +1,x
does not effect the error any, 11 1, indicatingD;, already contain sufficient information
about(xy, 11k, YJ.+1.6)- Second, ify(x;) > 1, seeingy,, +1., greatly decrease the er-
ror onx,, 11k, indicatingx, 41 5 is significantly dissimilar (novel) t@; andxj, 11«
must be supervised to reduce the error. Based on Corollary 2, the selection proceeds se-
quentially. Suppose we have selected data= {(x;,v:x)};*,, from which we com-
pute A,. We select the next data point &g, 11, = argmax;s.j, k=1,...,x V(Xix) =
argmax ;s j, k=1, .k |1 + ¢T(xik)A,:1¢(xik)]2. After x5, 11 is selected, the\, is
updated and the next selection begins. As the iteration advaneés decrease until it
reaches convergence. We use (3) to computieom the selectec and their associated
targetsy, completing learning of the RBF network.

5 Experimental Results

In this section we compare the multi-task RBF network against single-task RBF networks
via experimental studies. We consider three types of RBF networks toAégasks, each



with its data sefD,,. In the first, which we call “one RBF network”, we let thé tasks
share both basis functiors (hidden nodes) and hidden-to output weightsthus we do

not distinguish thd{ tasks and design a single RBF network to learn a union of them. The
second is the multi-task RBF network, where fig¢asks share the sangebut each has its
ownw. In the third, we have( independent networks, each designed for a single task.

We use a school data set from the Inner London Education Authority, consisting of ex-
amination records of 15362 students from 139 secondary schools. The data are available
at http://multilevel.ioe.ac.uk/intro/datasets.html. This data set was originally used to study
the effectiveness of schools and has recently been used to evaluate multi-task algorithms
[2,3]. The goal is to predict the exam scores of the students based on 9 variables: year of
exam (1985, 1986, or 1987), school code (1-139), FSM (percentage of students eligible for
free school meals), VR1 band (percentage of students in school in VR band one), gender,
VR band of student (3 categories), ethnic group of student (11 categories), school gender
(male, female, or mixed), school denomination (3 categories). We consider each school a
task, leading to 139 tasks in total. The remaining 8 variables are used as inputs to the RBF
network. Following [2,3], we converted each categorical variable to a number of binary
variables, resulting in a total number of 27 input variables, xes, R?”. The exam score

is the target to be predicted.

The three types of RBF networks as defined above are designed as follows. The multi-task
RBF network is implemented as the structure as shown in Figure 1 and trained with the
learning algorithm in Table 1. The “one RBF network” is implemented as a special case
of Figure 1, with a single output node and trained using the union of supervised data from
all 139 schools. We design 139 independent RBF networks, each of which is implemented
with a single output node and trained using the supervised data from a single school. We

use the Gaussian RBF” (x) = exp(—%), where the:,,’s are selected from training
data points and,,’s are initialized as 20 and optimized as described in Table 1. The main
role of the regularization parameters to prevent theA matrices from being singular and

it does not affect the results seriously. In the results reported héseet to10~6.

Following [2-3], we randomly tak&5% of the 15362 data points as training (supervised)
data and the remainin2s% as test data. The generalization performance is measured by
the squared errdifx (x;x) — vix)? averaged over all test datg;, of tasksk = 1,--- , K.

We made 10 independent trials to randomly split the data into training and test sets and the
squared error averaged over the test data of all the 139 schools and the trials are shown in
Table 2, for the three types of RBF networks.

Table 2:Squared error averaged over the test data of all 139 schools and the 10 independent trials
for randomly splitting the school data into trainirigh%) and testing (25%) sets.

Multi-task RBF network Independent RBF networks One RBF network
109.89 + 1.8167 136.41 £+ 7.0081 149.48 + 2.8093

Table 2 clearly shows the multi-task RBF network outperforms the other two types of RBF
networks by a considerable margin. The “one RBF network” ignores the difference be-
tween the tasks and the independent RBF networks ignore the tasks’ correlations, therefore
they both perform inferiorly. The multi-task RBF network uses the shared hidden nodes
(basis functions) to capture the common internal representation of the tasks and meanwhile
uses the independent hidden-to-output weights to learn the statistics specific to each task.

We now demonstrate the results of active learning. We use the method in Section 4 to ac-
tively split the data into training and test sets using a two-step procedure. First we learn the
basis functionsgp of multi-task RBF network using all 15362 data (unsupervised). Based

on the¢, we then select the data to be supervised and use them as training data to learn



the hidden-to-output weights. To make the results comparable, we use the same training
data to learn the other two types of RBF networks (including learning theirgpamdw).
The networks are then tested on the remaining data.

Figure 2 shows the results of active learning. Each curve is the squared error averaged over
the test data of all 139 schools, as a function of number of training data. It is clear that
the multi-task RBF network maintains its superior performance all the way down to 5000
training data points, whereas the independent RBF networks have their performances de-
graded seriously as the training data diminish. This demonstrates the increasing advantage
of multi-task learning as the number of training data decreases. The “one RBF network”
seems also insensitive to the number of training data, but it ignores the inherent dissimilar-
ity between the tasks, which makes its performance inferior.
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Figure 2:Squared error averaged over the test data of all 139 schools, as a function of the number
of training (supervised) data. The data are split into training and test sets via active learning.

6 Conclusions

We have presented the structure and learning algorithms for multi-task learning with the
radial basis function (RBF) network. By letting multiple tasks share the basis functions
(hidden nodes) we impose a common internal representation for correlated tasks. Exploit-
ing the inter-task correlation yields a more compact network structure that has enhanced
generalization ability. Unsupervised learning of the network structure enables us to actively
split the data into training and test sets. As the data novel to the previously selected ones are
selected next, what finally remain unselected and to be tested are all similar to the selected
data which constitutes the training set. This improves the generalization of the resulting
network to the test data. These conclusions are substantiated via results on real multi-task
data.
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Appendix
Proof of Theorem 1. Let¢™*" = [, ™ +!]T. By (3), theA matrices corresponding ©"** are
new 3 ¢)7, Ak Ck
Ak :ZL’H[ @{\{C-ﬁl ] [ d’ﬁ ¢£\/IQ+1 ]+PI(N+2)x(N+2) = [ Iy } (A-1)

wherec, andd;, are as in (6). By the conditions of the theorem, the matrikgsand A;“* are all
non-degenerate. Using the block matrix inversion formula [7] we get

_ AV A e teFATY — A tepg
Anew 1:{ k k k kA k Sk A-2
( k ) _qk lcl’_z:Ak 1 qk 1 ( )
wheregy, is as in (6). By (3), the weighter 2 corresponding tép”, ™ 7117 are
Ik . A—l —1
Whew — (ATew -1 Zi:l qubik :| _ |: Wi + ko Crqy Jk ] A-3
§ (A&) { S e —q;, gk *-3)
with gx = cfwir — S5y ™. Hence, (@1) Wi = @lwi + (dlAL  er —

¢ ) grgy ', which is put into (4) to get(¢™ " = 320 STk [y — yan(di) wiet] =
i X [V — yndhows — i (0 AL en — kg ] = e(d) — i, (elwr —
Z;filyimgjl)Qq;l, where in arriving the last equality we have used (3) and (4) @nd=

ctwy — 327k yup tt. The theorem is proved. O
Proof of Theorem 2: The proof applies tok = 1,---,K. For any givenk, define® =
[¢(Xlk)7"'7¢(xjkzk)]v P = [¢(XJR,+1,IC)7--~7¢(XJk+jkﬂk)}, Y = [y1k,...,kak]T, S"k =

[ka+1,k7~",ka+jk,k]T1 fk = [f(xlk)w"vf(x‘]kk)}Tl fl: = [fl:(xlk)v‘“:f;(xJkk)]T!

and Kk = pI + tikti: By (1), (3), and the conditions of the theoreff}, = <I>f (Ak +
&, 87) " (Bryr+®3s) L [BT A (BT AL B+ I-T)(1+B] A, '®) BT AL [®ryst
&3] = [(T+ ®FA; @) BT A [B15s + Bryr] 2 (T+ ®FA; @) 7+ (T+
<I>£A,§1<I>k)71(<1>{A;1<I>k +I-Dyr =y + I+ @{A;lék)fl(f,: — &), Where equa-
tion (a) is due to the Sherman-Morrison-Woodbury formula and equatignresults because
fi = ®T A '@,y Hencef — yi = (I+ ®FA;'®;) "' (£ — yx), which gives

S (yir — fr(xin))® = (B — yi) " (Fe —yi) = (87— yi) T (7 — i) (A-4)
whereTy, = [T+ @A ®4)” = [T+ ®F (pT+ B3, )&,
By constructionI';, has all its eigenvalues no less than 1, Ig,,= Efdiag[)\lk, -, Ag k| B with

EfEk =Tand\, - -, Ay > 1, which makes the first, second, and last inequality in (7) hold.
Using this expansion df'; in (A-4) we get

ZZJ:kl (fk (sz) - ylk)2 = (flrcV - yk‘)TE{diag[o—l_kla sy J;klk ] (fl;V - yk)
< (57 = y0) "EL Dot n DB (7 = ¥k) = Mt s 005, (e (xik) — yin)® (A-5)

where the inequality results becausgi,,r = min(A1k, -+, As, k). From (A-5) follows the
fourth inequality in (7). The third inequality in (7) can be proven in in a similar way. O



