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Abstract

There have been many graph-based approaches for semi-supervised clas-
sification. One problem is that of hyperparameter learning: performance
depends greatly on the hyperparameters of the similarity graph, trans-
formation of the graph Laplacian and the noise model. We present a
Bayesian framework for learning hyperparameters for graph-based semi-
supervised classification. Given some labeled data, which can contain
inaccurate labels, we pose the semi-supervised classification as an in-
ference problem over the unknown labels. Expectation Propagation is
used for approximate inference and the mean of the posterior is used for
classification. The hyperparameters are learned using EM for evidence
maximization. We also show that the posterior mean can be written in
terms of the kernel matrix, providing a Bayesian classifier to classify new
points. Tests on synthetic and real datasets show cases where there are
significant improvements in performance over the existing approaches.

1 Introduction

A lot of recent work on semi-supervised learning is based on regularization on graphs [5].
The basic idea is to first create a graph with the labeled and unlabeled data points as the
vertices and with the edge weights encoding the similarity between the data points. The aim
is then to obtain a labeling of the vertices that is both smooth over the graph and compatible
with the labeled data. The performance of most of these algorithms depends upon the edge
weights of the graph. Often the smoothness constraints on the labels are imposed using a
transformation of the graph Laplacian and the parameters of the transformation affect the
performance. Further, there might be other parameters in the model, such as parameters
to address label noise in the data. Finding a right set of parameters is a challenge, and
usually the method of choice is cross-validation, which can be prohibitively expensive for
real-world problems and problematic when we have few labeled data points.

Most of the methods ignore the problem of learning hyperparameters that determine the
similarity graph and there are only a few approaches that address this problem. Zhu et al.
[8] propose learning non-parametric transformation of the graph Laplacians using semidef-
inite programming. This approach assumes that the similarity graph is already provided;
thus, it does not address the learning of edge weights. Other approaches include label



entropy minimization [7] and evidence-maximization using the Laplace approximation [9].

This paper provides a new way to learn the kernel and hyperparameters for graph based
semi-supervised classification, while adhering to a Bayesian framework. The semi-
supervised classification is posed as a Bayesian inference. We use the evidence to si-
multaneously tune the hyperparameters that define the structure of the similarity graph,
the parameters that determine the transformation of the graph Laplacian, and any other
parameters of the model. Closest to our work is Zhu et al. [9], where they proposed a
Laplace approximation for learning the edge weights. We use Expectation Propagation
(EP), a technique for approximate Bayesian inference that provides better approximations
than Laplace. An additional contribution is a new EM algorithm to learn the hyperparam-
eters for the edge weights, the parameters of the transformation of the graph spectrum.
More importantly, we explicitly model the level of label noise in the data, while [9] does
not do. We provide what may be the first comparison of hyperparameter learning with
cross-validation on state-of-the-art algorithms (LLGC [6] and harmonic fields [7]).

2 Bayesian Semi-Supervised Learning

We assume that we are given a set of data points X = {x1,..,Xp4+m}, of which X =
{x1,..,%,} are labeled as t;, = {¢1,..,t,} and Xy = {Xpn41,..,Xn4+m } are unlabeled.
Throughout this paper we limit ourselves to two-way classification, thus ¢t € {—1,1}. Our
model assumes that the hard labels ¢; depend upon hidden soft-labels y; for all 7. Given
the dataset D = [{X,t.}, Xy], the task of semi-supervised learning is then to infer the
posterior p(ty|D), where ty = [tn41, .-, tntm]. The posterior can be written as:

p(ty|D) = / p(t]y)p(y|D) &

In this paper, we propose to first approximate the posterior p(y|D) and then use (1) to
classify the unlabeled data. Using the Bayes rule we can write:

p(y|D) = p(y|X,tr) x p(y|X)p(trly)

The term, p(y|X) is the prior. It enforces a smoothness constraint and depends upon the
underlying data manifold. Similar to the spirit of graph regularization [5] we use similarity
graphs and their transformed Laplacian to induce priors on the soft labels y. The second
term, p(tr|y) is the likelihood that incorporates the information provided by the labels.

In this paper, p(y|D) is inferred using Expectation Propagation, a technique for approxi-
mate Bayesian inference [3]. In the following subsections first we describe the prior and
the likelihood in detail and then we show how evidence maximization can be used to learn
hyperparameters and other parameters in the model.

2.1 Priorsand Regularization on Graphs

The prior plays a significant role in semi-supervised learning, especially when there is only
a small amount of labeled data. The prior imposes a smoothness constraint and should be
such that it gives higher probability to the labelings that respect the similarity of the graph.

The prior, p(y|X), is constructed by first forming an undirected graph over the data points.
The data points are the nodes of the graph and edge-weights between the nodes are based
on similarity. This similarity is usually captured using a kernel. Examples of kernels
include RBF, polynomial etc. Given the data points and a kernel, we can construct an
(n+m) x (n+m) kernel matrix K, where K;; = k(x;,x;) foralli € {1,..,n +m}.

Lets consider the matrix X, which is same as the matrix &, except that the diagonals are set
to zero. Further, if G is a diagonal matrix such that G;; = Zj K;;, then we can construct the



combinatorial Laplacian (A = G — K) or the normalized Laplacian (A = I— G~z KG~2)
of the graph. For brevity, in the text we use A as a notation for both the Laplacians. Both
the Laplacians are symmetric and positive semidefinite. Consider the eigen decomposition
of A where {v;} denote the eigenvectors and {\; } the corresponding eigenvalues; thus, we
can write A = > \;v;vT. Usually, a transformation r(A) = S #(\)viv] that
modifies the spectrum of A is used as a regularizer. Specifically, the smoothness imposed
by this regularizer prefers soft labeling for which the norm y 7 (A)y is small. Equivalently,
we can interpret this probabilistically as following:

p(yX) oc e 3V T = N(0,r(A) ) )

Where r(A)~! denotes the pseudo-inverse if the inverse does not exist. Equation (2) sug-
gests that the labelings with the small value of y7'(A)y are more probable than the others.
Note, that when r(A) is not invertible the prior is improper. The fact that the prior can
be written as a Gaussian is advantageous as techniques for approximate inference can be
easily applied. Also, different choices of transformation functions lead to different semi-
supervised learning algorithms. For example, the approach based on Gaussian fields and
harmonic functions (Harmonic) [7] can be thought of as using the transformation r(\) = A
on the combinatorial Laplacian without any noise model. Similarly, the approach based in
local and global consistency (LLGC) [6] can be thought of as using the same transforma-
tion but on the normalized Laplacian and a Gaussian likelihood. Therefore, it is easy to see
that most of these algorithms can exploit the proposed evidence maximization framework.
In the following we focus only on the parametric linear transformation () = A+ §. Note
that this transformation removes zero eigenvalues from the spectrum of A.

2.2 ThelLikelihood

Assuming conditional independence of the observed labels given the hidden soft labels, the
likelihood p(ty |y) can be written as p(t.|y) = [1;_, p(t:ly:). The likelihood models the
probabilistic relation between the observed label ¢; and the hidden label y;. Many real-
world datasets contain hand-labeled data and can often have labeling errors. While most
people tend to model label errors with a linear or quadratic slack in the likelihood, it has
been noted that such an approach does not address the cases where label errors are far from
the decision boundary [2]. The flipping likelihood can handle errors even when they are far
from the decision boundary and can be written as:

ptilyi) = (1 — @(yi - ;) + (1 — €)@(yi - i) = € + (1 — 2€)P(y; - 1) 3)

Here, @ is the step function, e is the labeling error rate and the model admits possibility of
errors in labeling with a probability e. This likelihood has been earlier used in the context
of Gaussian process classification [2][4]. The above described likelihood explicitly models
the labeling error rate; thus, the model should be more robust to the presence of label noise
in the data. The experiments in this paper use the flipping noise likelihood shown in (3).

2.3 Approximate I nference

In this paper, we use EP to obtain a Gaussian approximation of the posterior p(y|D).
Although, the prior derived in section 2.1 is a Gaussian distribution, the exact posterior
is not a Gaussian due to the form of the likelihood. We use EP to approximate the posterior
as a Gaussian and then equation (1) can be used to classify unlabeled data points. EP has
been previously used [3] to train a Bayes Point Machine, where EP starts with a Gaussian
prior over the classifiers and produces a Gaussian posterior. Our task is very similar and we
use the same algorithm. In our case, EP starts with the prior defined in (2) and incorporates
likelihood to approximate the posterior p(y|D) ~ N(y, X,).



2.4 Hyperparameter Learning

We use evidence maximization to learn the hyperparameters. Denote the parameters of
the kernel as Ok and the parameters of transformation of the graph Laplacian as ©r.
Let © = {Ok,Or, €}, where ¢ is the noise hyperparameter. The goal is to solve 6 =
arg maxe log[p(tL|X, O)].

Non-linear optimization techniques, such as gradient descent or Expectation Maximization
(EM) can be used to optimize the evidence. When the parameter space is small then the
Matlab function f m nbnd, based on golden section search and parabolic interpolation,
can be used. The main challenge is that the gradient of evidence is not easy to compute.

Previously, an EM algorithm for hyperparameter learning [2] has been derived for Gaus-
sian Process classification. Using similar ideas we can derive an EM algorithm for semi-
supervised learning. In the E-step EP is used to infer the posterior ¢(y) over the soft labels.
The M-step consists of maximizing the lower bound:

B oo PIIX, O)p(trly, ©)
F—/yq(y)l g )

_ / a(y) log a(y) + / a(y) log N(y:0,7(A) ™)

vy
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The EM procedure alternates between the E-step and the M-step until convergence.

e E-Step: Given the current parameters ©°, approximate the posterior q(y) ~
N(y,%y) by EP.

o M-Step: Update
i+l = .© ,©
O+ = arg maxe fy q(y)log p(y|X (q)(:;()tL\y 9)

In the M-step the maximization with respect to the © cannot be computed in a closed
form, but can be solved using gradient descent. For maximizing the lower bound, we used
gradient based projected BFGS method using Armijo rule and simple line search. When
using the linear transformation (\) = A + ¢ on the Laplacian A, the prior p(y|X, ©) can
be written as N (0, (A+61)~"). Define Z = A+ 41 then, the gradients of the lower bound
with respect to the parameters are as follows:

OF 1 . L 0A . 1.400A _ 1. 0A
L Y A B R R P il )
sor — 2% 36:) "3 de.Y 2 (Ge )
OF _ 1, o1y _lor_ 1

s = 5tr(@ ) = 597y - 5tr(Sy)

OF 1—2®(t; - 5:)

=~
~

€

s.
i M:
I

€+ (1 — 26)‘1)(ti - ﬂz) where: 4; = Lyiq(y)

It is easy to show that the provided approximation of the derivative %—f equals zero, when

€= T’j where k is the number of labeled data points differing in sign from their posterior
means. The EM procedure described here is susceptible to local minima and in a few cases
might be too slow to converge. Especially, when the evidence curve is flat and the initial
values are far from the optimum, we found that the EM algorithm provided very small
steps, thus, taking a long time to converge.

Whenever we encountered this problem in the experiments, we used an approximate gradi-
ent search to find a good value of initial parameters for the EM algorithm. Essentially as the
gradients of the evidence are hard to compute, they can be approximated by the gradients
of the lower bound and can be used in any gradient ascent procedure.
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Figure 1: Evidence curves showing similar properties across different datasets (half-moon,
odd vs even and PC vs MAC). The top row figures (a), (b) and (c) show the evidence curves
for different amounts of labeled data per class. The bottom row figures (d), (e) and (f) show
the correlation between recognition accuracy on unlabeled points and the evidence.

2.5 Classifying New Points

Since we compute a posterior distribution over the soft-labels of the labeled and unla-
beled data points, classifying a new point is tricky. Note, that from the parameteriza-
tion lemma for Gaussian Processes [1] it follows that given a prior distribution p(y|X) ~
N(0,7(A)~1), the mean of the posterior p(y|D) is a linear combination of the columns of
r(A)~L. Thatis:
y=r(A)"'a where, aec R

Further, if the similarity matrix K is a valid kernel matrix* then we can write the mean
directly in terms of the linear combination of the columns of K:

y=KK 'r(A)"'a=Kb (4)

Here, b = [by,.., b, is a column vector and is equal to K ~'r(A)~'a. Thus, we
have that ¢; = Z;’;’” b; - K(x;,x;). This provides a natural extension of the framework
to classify new points.

3 Experiments

We performed experiments to evaluate the three main contributions of this work: Bayesian
hyperparameter learning, classification of unseen data points, and robustness with respect
to noisy labels. For all the experiments we use the linear transformation r(A\) = A + ¢
either on normalized Laplacian (EP-NL) or the combinatorial Laplacian (EP-CL). The ex-
periments were performed on one synthetic (Figure 4(a)) and on three real-world datasets.
Two real-world datasets were the handwritten digits and the newsgroup data from [7]. We
evaluated the task of classifying odd vs even digits (15 labeled, 485 unlabeled and rest new

1The matrix K is the adjacency matrix of the graph and depending upon the similarity criterion
might not always be positive semi-defi nite. For example, discrete graphs induced using K-nearest
neighbors might result in K that is not positive semi-defi nite.
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Figure 2: Evidence curves showing similar properties across different parameters of the
model. The figures (a), (b) and (c) show the evidence curves for different amount of labeled
data per class for the three different parameters in the model.
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(unseen) points per class) and classifying PC vs MAC (5 labeled, 895 unlabeled and rest as
new (unseen) points per class). An RBF kernel was used for handwritten digits, whereas

kernel K (x;,x;) = exp[f%(l - |xi;‘j‘ )] was used on 10-NN graph to determine similar-
ity. The third real-world dataset labels the level of interest (61 samples of high interest and
75 samples of low interest) of a child solving a puzzle on the computer. Each data point is
a 19 dimensional real vector summarizing 8 seconds of activity from the face, posture and
the puzzle. The labels in this database are suspected to be noisy because of human labeling.

All the experiments on this data used K-nearest neighbor to determine the kernel matrix.

Hyperparameter learning: Figure 1 (a), (b) and (c) plots log evidence versus kernel pa-
rameters that determine the similarity graphs for the different datasets with varying size of
the labeled set per class. The value of § and e were fixed to the values shown in the plots.
Figure 2 (a), (b) and (c) plots the log evidence versus the noise parameter (), the kernel
parameter (k in k-NN) and the transformation parameter (¢) for the affect dataset. First,
we see that the evidence curves generated with very little data are flat and as the number of
labeled data points increases we see the curves become peakier. When there is very little
labeled data, there is not much information available for the evidence maximization frame-
work to prefer one parameter value over the other. With more labeled data, the evidence
curves become more informative. Figure 1 (d), (e) and (f) show the correlation between the
evidence curves and the recognition rate on the unlabeled data and reveal that the recogni-
tion over the unlabeled data points is highly correlated with the evidence. Note that both
of these effects are observed across all the datasets as well as all the different parameters,
justifying evidence maximization for hyperparameter learning.
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Figure 4: Semi-supervised classification in presence of label noise. (a) Input data with label
noise. Classification (b) without flipping noise model and with (c) flipping noise model.

How good arethelearnt parameter s? We performed experiments on the handwritten dig-
its and on the newsgroup data and compared with 1-NN, LLGC and Harmonic approach.
The kernel parameters for both LLGC and Harmonic were estimated using leave one out
cross validation?. Note that both the approaches can be interpreted in terms of the new
proposed Bayesian framework (see sec 2.1). We performed experiments with both the nor-
malized (EP-NL) and the combinatorial Laplacian (EP-CL) with the proposed framework
to classify the digits and the newsgroup data. The approximate gradient descent was first
used to find an initial value of the kernel parameter for the EM algorithm. All three pa-
rameters were learnt and the top row in figure 3 shows the average error obtained for 5
different runs on the unlabeled points. On the task of classifying odd vs even the error rate
for EP-NL was 14.46+4-4.4%, significantly outperforming the Harmonic (23.984+-4.9%) and
1-NN (24.23+1.1%). Since the prior in EP-NL is determined using the normalized Lapla-
cian and there is no label noise in the data, we expect EP-NL to at least work as well as
LLGC (16.02 + 1.1%). Similarly for the newsgroup dataset EP-CL (9.28-+0.7%) signif-
icantly beats LLGC (18.03+3.5%) and 1-NN (46.8840.3%) and is better than Harmonic
(10.8642.4%). Similar, results are obtained on new points as well. The unseen points were
classified using eq. (4) and the nearest neighbor rule was used for LLGC and Harmonic.

Handling label noise: Figure 4(a) shows a synthetic dataset with noisy labels. We per-
formed semi-supervised classification both with and without the likelihood model given in
(3) and the EM algorithm was used to tune all the parameters including the noise (¢). Be-
sides modifying the spectrum of the Laplacian, the transformation parameter ¢ can also be
considered as latent noise and provides a quadratic slack for the noisy labels [2]. The results
are shown in figure 4 (b) and (c). The EM algorithm can correctly learn the noise parameter
resulting in a perfect classification. The classification without the flipping model, even with
the quadratic slack, cannot handle the noisy labels far from the decision boundary.

I's there label noise in the data? It was suspected that due to the manual labeling the
affect dataset might have some label noise. To confirm this and as a sanity check, we first
plotted evidence using all the available data. For all the semi-supervised methods in these
experiments, we use 3-NN to induce the adjacency graph. Figure 5(a) shows the plot for
the evidence against the noise parameter (¢). From the figure, we see that the evidence
peaks at ¢ = 0.05 suggesting that the dataset has around 5% of labeling noise. Figure
5(b) shows comparisons with other semi-supervised (LLGC and SVM with graph kernel)
and supervised methods (SVM with RBF kernel) for different sizes of the labeled dataset.
Each point in the graph is the average error on 20 random splits of the data, where the
error bars represent the standard error. EM was used to tune € and § in every run. We
used the same transformation »(\) = A + § on the graph kernel in the semi-supervised
SVM. The hyperparameters in both the SVMs (including ¢ for the semi-supervised case)
were estimated using leave one out. When the number of labeled points are small, both

2Search space for o (odd vs even) was 100 to 400 with increments of 10 and for v (PC vs MAC)
was 0.01 to 0.2 with increments of 0.1



-7 EP-NL

. + SVM (RBF)
\ { - SVM (N-Laplacian)

—3 5210~4
}vadence curve for the whole affect data (K=3, 3=10"") ?\ LLGC

EP-NL (N =80)  fo}

Log evidence
Error on unlabeled data

Harmonic (N = 92) )
05 10 15

°r o o2 om 03 0®  of  om  0s g 10 15 £ 2
Noise parameter (g) Number of labels per class Error rate on unlabeled points (1 vs 2)

(@) (b) (©

Figure 5: (a) Evidence vs noise parameter plotted using all the available data in the affect
dataset. The maximum at e = 0.05 suggests that there is around 5% label noise in the
data. (b) Performance comparison of the proposed approach with LLGC, SVM using graph
kernel and the supervised SVM (RBF kernel) on the affect dataset which has label noise.
The error bars represent the standard error. (c) Comparison of the proposed EM method for
hyperparameter learning with the result reported in [7] using label entropy minimization.
The plotted error bars represent the standard deviation.

LLGC and EP-NL perform similarly beating both the SVMs, but as the size of the labeled
data increases we see a significant improvement of the proposed approach over the other
methods. One of the reasons is when you have few labels the probability of the labeled set
of points containing a noisy label is low. As the size of the labeled set increases the labeled
data has more noisy labels. And, since LLGC has a Gaussian noise model, it cannot handle
flipping noise well. As the number of labels increase, the evidence curve turns informative
and EP-NL starts to learn the label noise correctly, outperforming the other Both the SVMs
show competitive performance with more labels but still are worse than EP-NL. Finally, we
also test the method on the task of classifying “1” vs “2” in the handwritten digits dataset.
With 40 labeled examples per class (80 total labels and 1800 unlabeled), EP-NL obtained
an average recognition accuracy of 99.72 + 0.04% and figure 5(c) graphically shows the
gain over the accuracy of 98.56 4 0.43% reported in [7], where the hyperparameter were
learnt by minimizing label entropy with 92 labeled and 2108 unlabeled examples.

4 Conclusion

We presented and evaluated a Bayesian framework for learning hyperparameters for graph-
based semi-supervised classification. The results indicate that evidence maximization
works well for learning hyperparameters, including the amount of label noise in the data.
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