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Abstract 

We propose a model by which dopamine (DA) and norepinepherine 
(NE) combine to alternate behavior between relatively exploratory 
and exploitative modes. The model is developed for a target 
detection task for which there is extant single neuron recording 
data available from locus coeruleus (LC) NE neurons. An 
exploration-exploitation trade-off is elicited by regularly switching 
which of the two stimuli are rewarded. DA functions within the 
model to change synaptic weights according to a reinforcement 
learning algorithm. Exploration is mediated by the state of LC 
firing, with higher tonic and lower phasic activity producing 
greater response variability. The opposite state of LC function, 
with lower baseline firing rate and greater phasic responses, favors 
exploitative behavior. Changes in LC firing mode result from 
combined measures of response conflict and reward rate, where 
response conflict is monitored using models of anterior cingulate 
cortex (ACC). Increased long-term response conflict and decreased 
reward rate, which occurs following reward contingency switch, 
favors the higher tonic state of LC function and NE release. This 
increases exploration, and facilitates discovery of the new target. 

1  Introduct ion 

A central problem in reinforcement learning is determining how to adaptively move 
between exploitative and exploratory behaviors in changing environments.  We 
propose a set of neurophysiologic mechanisms whose interaction may mediate this 
behavioral shift. Empirical work on the midbrain dopamine (DA) system has 
suggested that this system is particularly well suited for guiding exploitative 
behaviors. This hypothesis has been reified by a number of studies showing that a 
temporal difference (TD) learning algorithm accounts for activity in these neurons 
in a wide variety of behavioral tasks [1,2]. DA release is believed to encode a 
reward prediction error signal that acts to change synaptic weights relevant for 
producing behaviors [3]. Through learning, this allows neural pathways to predict 
future expected reward through the relative strength of their synaptic connections 



 

[1]. Decision-making procedures based on these value estimates are necessarily 
greedy. Including reward bonuses for exploratory choices supports non-greedy 
actions [4] and accounts for additional data derived from DA neurons [5]. We show 
that combining a DA learning algorithm with models of response conflict detection 
[6] and NE function [7] produces an effective annealing procedure for alternating 
between exploration and exploitation.  

NE neurons within the LC alternate between two firing modes [8]. In the first mode, 
known as the phasic mode, NE neurons fire at a low baseline rate but have relatively 
robust phasic responses to behaviorally salient stimuli. The second mode, called the 
tonic mode, is associated with a higher baseline firing and absent or attenuated 
phasic responses. The effects of NE on efferent areas are modulatory in nature, and 
are well captured as a change in the gain of efferent inputs so that neuronal 
responses are potentiated in the presence of NE [9]. Thus, in phasic mode, the LC 
provides transient facilitation in processing, time-locked to the presence of 
behaviorally salient information in motor or decision areas. Conversely, in tonic 
mode, higher overall LC discharge rate increases gain generally and hence increases 
the probability of arbitrary responding. Consistent with this account, for periods 
when NE neurons are in the phasic mode, monkey performance is nearly perfect. 
However, when NE neurons are in the tonic mode, performance is more erratic, with 
increased response times and error rate [8]. These findings have led to a recent 
characterization of the LC as a dynamic temporal filter, adjusting the system's 
relative responsivity to salient and irrelevant information [8]. In this way, the LC is 
ideally positioned to mediate the shift between exploitative and exploratory 
behavior. 

The parameters that underlie changes in LC firing mode remain largely unexplored. 
Based on data from a target detection task by Aston-Jones and colleagues [10], we 
propose that LC firing mode is determined in part by measures of response conflict 
and reward rate as calculated by the ACC and OFC, respectively [8]. Together, the 
ACC and OFC are the principle sources of cortical input to the LC [8]. Activity in 
the ACC is known, largely through human neuroimaging experiments, to change in 
accord with response conflict [6]. In brief, relatively equal activity in competing 
behavioral responses (reflecting uncertainty) produces high conflict. Low conflict 
results when one behavioral response predominates. We propose that increased 
long-term response conflict biases the LC towards a tonic firing mode. Increased 
conflict necessarily follows changes in reward contingency. As the previously 
rewarded target no longer produces reward, there will be a relative increase in 
response ambiguity and hence conflict. This relationship between conflict and LC 
firing is analogous to other modeling work [11], which proposes that increased tonic 
firing reflects increased environmental uncertainty. 

As a final component to our model, we hypothesize that the OFC maintains an 
ongoing estimate in reward rate, and that this estimate of reward rate also influences 
LC firing mode. As reward rate increases, we assume that the OFC tends to bias the 
LC in favor of phasic firing to target stimuli. 

We have aimed to fix model parameters based on previous work using simpler 
networks. We use parameters derived primarily from a previous model of the LC by 
Gilzenrat and colleagues [7]. Integration of response conflict by the ACC and its 
influence on LC firing was borrowed from unpublished work by Gilzenrat and 
colleagues in which they fit human behavioral data in a diminishing utilities task. 
Given this approach, we interpret our observed improvement in model performance 
with combined NE and DA function as validation of a mechanism for automatically 
switching between exploitative and exploratory action selection. 



 

2  Go-No-Go Task and Core Model  

We have modeled an experiment in which monkeys performed a target detection 
task [10]. In the task, monkeys were shown either a vertical bar or a horizontal bar 
and were required to make or omit a motor response appropriately. Initially, the 
vertical bar was the target stimulus and correctly responding was rewarded with a 
squirt of fruit juice (r=1 in the model). Responding to the non-target horizontal 
stimulus resulted in time out punishment (r=-.1; Figure 1A). No responses to either 
the target or non-target gave zero reward. 

After the monkeys had fully acquired the task, the experimenters periodically 
switched the reward contingency such that the previously rewarded stimulus (target) 
became the distractor, and vice versa. Following such reversals, LC neurons were 
observed to change from emitting phasic bursts of firing to the target, to tonic firing 
following the switch, and slowly back to phasic firing for the new target as the new 
response criteria was obtained [10]. 

  

 
Figure 1: Task and model design. (A) Responses were required for targets in order 
to obtain reward. Responses to distractors resulted in a minor punishment. No 
responses gave zero reward. (B) In the model, vertical and horizontal bar inputs (I1 
and I2) fed to integrator neurons (X1 and X2) which then drove response units (Y1 and 
Y2). Responses were made if Y1 or Y2 crossed a threshold while input units were 
active. 

 

We have previously modeled this task [7,12] with a three-layer connectionist 
network in which two input units, I1 and I2, corresponding to the vertical and 
horizontal bars, drive two mutually inhibitory integrator units, X1 and X2. The 
integrator units subsequently feed two response units, Y1 and Y2 (Figure 1B). 
Responses are made whenever output from Y1 or Y2 crosses a threshold level of 
activity, θ. Relatively weak cross connections from each input unit to the opposite 
integrator unit (I1 to X2 and I2 to X1) are intended to model stimulus similarity. 

Both the integrator and response units were modeled as noisy, leaky accumulators: 
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The ξi terms represent stochastic noise variables. The response function for each 
unit is sigmoid with gain, gt, determined by current LC activity (Eq. 9, below) 
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Response units, Y, were given a positive bias, b, and integrator units were unbiased. 
All weight values, biases, and variance of noise are as reported in [7]. 



 

Integration was done with a Euler method at time steps of 0.02. Simulation of 
stimulus presentations involved setting one of the input units to a value of 1.0 for 20 
units of model time. Activation of I1 and I2 were alternated and 20 units of model 
time were allowed between presentations for the integrator and response units to 
relax to baseline levels of activity. Input 1 was initially set to be the target and input 
2 the distractor. After 50 presentations of I1 and I2 the reward contingencies were 
switched; the model was run through 6 such blocks and reversals. The response 
during each stimulus presentation was determined by which of the two response 
units first crossed a threshold of output activity (i.e. f(Y1) > θ), or was a no response 
if neither unit crossed threshold. 

3  Performance of model with DA-mediated learning 

In order to obtain a benchmark level of performance to compare against, we first 
determined how learning progresses with DA-mediated reinforcement learning 
alone. A reward unit, r, was included that had activity 0 except at the end of each 
stimulus presentation when its activity was set equal to the obtained reward 
outcome. Inhibitory inputs from the response units served as measures of expected 
reward. At the end of every trial, the DA unit, δ, obtained a value given by 
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where Z(Y) is a threshold function that is 1 if f(Y)≥θ and is 0 otherwise. 

The output of dopamine neurons was used to update the weights along the pathway 
that lead to the response. Thus, at the end of every stimulus presentation, the 
weights between response units and DA neurons were updated according to 
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where the learning rate, λ, was set to 0.3 for all simulations. This learning rule 
allowed the weights to converge to the expected reward for selecting each of the two 
actions. Weights between integrator and response units were updated using the same 
rule as in Eq. 5, except the weights were restricted to a minimum value of 0.8. When 
the weight values were allowed to decrease below 0.8, sufficient activity never 
accumulated in the response units to allow discovery to new reward contingencies. 

As the model learned, the weights along the target pathway obtained a maximum 
value while those along the distractor pathway obtained a minimum value. After 
reversals, the model initially adapted by reducing the weights along the pathway 
associated with the previous target. The only way the model was able to obtain the 
new target was by noise pushing the new target response unit above threshold. 
Because of this, the performance of the model was greatly dependent of the value of 
the threshold used in the simulation (Figure 2B). When the threshold was low 
relative to noise, the model was able to quickly adapt to reversals. However, this 
also resulted in a high rate of responding to non-target stimuli even after learning. In 
order to reduce responding to the distractor, the threshold had to be raised, which 
also increased the time required to adapt following reward reversals. 

The network was initialized with equal preference for responding to input 1 or 2, 
and generally acquired the initial target faster than after reversals (see Figure 2B). 
Because of this, all subsequent analyses ignore this first learning period. For each 
value of threshold studied, we ran the model 100 times. Plots shown in Figures 2 
and 3 show the probability that the model responded, when each input was 
activated, as a function of trial number (i.e. P(f(Yi)≥θ | Ii=1)). 

 



 

Figure 2: Model performance with DA alone. (A) DA neurons, δ, modulated weights 
from integrator to response units in order to modulate the probability of responding 
to each input. (B) The model successfully increases and decreases responding to 
inputs 1 and 2 as reward contingencies reverse. However, the model is unable to 
simultaneously obtain the new response quickly and maintain a low error rate once 
the response is learned. When threshold is relatively low (left plot), the model 
adapts quickly but makes frequent responses to the distractor. At higher threshold, 
responses are correctly omitted to the distractor, but the model acquires the new 
response slowly. 

4  Improvement  with NE-mediated annealing 

We used the FitzHugh-Nagumo set of differential equations to model LC activity. 
(These equations are generally used to model individual neurons, but we use them to 
model the activity in the nucleus as a whole.) Previous work has shown that these 
equations, with simple modifications, capture the fundamental aspects of tonic and 
phasic mode activity in the LC [7]. The FitzHugh-Nagumo equations involve two 
interacting variables v and u, where v is an activity term and u is an inhibitory 
dampening term. The output of the LC is given by the value of u, which 
conveniently captures the fact that the LC is self-inhibitory and that the post-
synaptic effect of NE release is somewhat delayed [7]. 

The model included two inputs to the LC from the integrator units (X1 and X2) with 
modifiable weights. The state of the LC is then given by 
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where the function h is defined by 
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and governs the firing mode of the LC. In order to change firing mode, h can be 
modified so that the dynamics of u depend entirely on the state of the LC or so that 
the dynamics are independent of state. This alternation is governed by the parameter 
C. When C is equal to 1.0, the model is appropriately dampened and can burst 
sharply and return to a relatively low baseline level of activity (phasic mode). When 
C is small, the LC receives a fixed level of inhibition, which simultaneously reduces 
bursting activity and increases baseline activity (tonic mode) [7]. 

The primary function of the LC in the model is to modify the gain, g, of the 
response function of the integrator and response units as in equation 3. We let gain 
be a linear function of u with base value G and dependency on u given by k 
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The value of C was updated after every trial by measures of response conflict and 
reward rate. Response conflict was calculated as a normalized measure of the energy 
in the response units during the trial. For convenience, define Y1 to be a vector of 
the activity in unit Y1 at each point of time during a trial, f(Y1(t)). Let Y2 be defined 
similarly. The conflict during the trial is 
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which correctly measures energy since Y1 and Y2 are connected with weight –1. This 
normalization procedure was necessary to account for changes in the magnitude of 
Y1 and Y2 activity due to learning. 

Based on previous work [8], we let conflict modify C separately based on a short-
term, KS, and long-term, KL, measure. The variable KS was updated at the end of 
every Tth trial according to 
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where εS was 0.2 and KS(T+1) was used to calculate the value of C used for the 
T+1th trial. KL was update with the same rule as KS except εL was 0.05. We let 
short- and long-term conflict have opposing effect on the firing mode of the LC. 
This was developed previously to capture human behavior in a diminishing utilities 
task. When short-term conflict increases, the LC is biased towards phasic firing 
(increased C). This allows the model to recover from occasional errors. However, 
when long-term conflict increases this is taken to indicate that the current decision 
strategy is not working. Therefore, increased long-term conflict biases the LC to the 
tonic mode so as to increase response volatility. 

 

Figure 3: Model performance with DA and NE. (A) The full model includes a 
conflict detection unit, K, and a reward rate measure, R, which combine to modify 
activity in the LC. The LC modifies the gain in the integrator and response units. (B) 
The benefit of including the LC in the model is insignificant when the response 
threshold is regularly crossed by noise alone, and hence when the error rate is high. 
(C) However, when the threshold is greater and error rate lower, NE dramatically 
improves the rate at which the new reward contingencies are learned after reversal. 

 

Reward rate, R, was updated at the end of every trial according to 
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where r is the reward earned on the Tth trial. Increased reward rate was assumed to 
bias the LC to phasic firing. 

Reward rate, short-term conflict, and long-term conflict updated C according to 
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where each σ is a sigmoid function with a gain of 6.0 and no bias as determined by 
fitting to behavior with previous models. 

As with the model with DA alone, the effect of NE depended significantly on the 
value of the threshold θ. When θ was small, the improvement afforded by the LC 
was negligible (Figure 3B). However, when the threshold was significantly greater 
than noise, the improvement was substantial (Figure 3C). 

Monkeys were able to perform this task with accuracy greater than 90% and 
simultaneously were able to adapt to reversals within 50 trials [10]. While it is 
impossible to compare the output of our model with monkey behavior, we can make 
the qualitative assertion that, as with monkeys, our NE-based annealing model 
allows for high accuracy (and high threshold) decision-making while preserving 
adaptability to changes in reward contingencies. In order to better demonstrate this 
improvement, we fit single exponential curves to the plots of probability of 
accurately responding to the new target by trial number (as in Figure 3B,C). Shown 
in Figure 4 is the time constant for these exponential fits, which we term the 
discovery time constant, for different values of the threshold. As can be seen, the 
model with NE-mediated annealing maintains a relatively fast discovery time even 
as the threshold becomes relatively large. 

  

 
Figure 4: Summary of model performance with and without NE. 

5  Discussion

We have demonstrated that a model incorporating behavioral and learning effects 
previously ascribed to DA and NE produces an adaptive mechanism for switching 
between exploratory and exploitative decision-making. Our model uses measures of 
response conflict and reward rate to modify LC firing mode, and hence to change 
network dynamics in favor of more or less volatile behavior. In essence, combining 
previous models of DA and NE function produces a performance-based auto-
annealing algorithm. 

There are several limitations to this model that can be remedied by greater 
sophistication in the learning algorithm. The primary limitation is that the model 
varies between more or less volatile action selection only over the range of reward 
relevant to our studied task. Model parameters could be altered on a task-by-task 
basis to correct this; however, a more general scheme may be accomplished with a 
mean reward learning algorithm [13]. It has previously been argued that DA neurons 
may actually emit an average reward TD error [14]. This change may require 
allowing both short- and long-term reward rate control the LC firing mode (Eq. 13). 

Another limitation of this model is that, while exploration is increased as 
performance measures wane, exploration is not managed intelligently. This does not 
significantly affect the performance of our model since there are only two available 
actions. As the number of alternatives increases, rapid learning may require 
something akin to reward bonuses [4,5]. 



 

Understanding the interplay between DA and NE function in learning and decision-
making is also relevant for understanding disease. Numerous psychiatric disorders 
are known to involve dysregulation of NE and DA release. Furthermore, hallmark 
features of ADHD and schizophrenia include cognitive disorders in which behavior 
appears either too volatile (ADHD) or too inflexible (schizophrenia) [15,16]. 
Improved models of DA-NE interplay during learning and decision-making, coupled 
with empirical data, may simultaneously improve knowledge of how the brain 
handles the exploration-exploitation dilemma and how this goes awry in disease. 
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