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Abstract

We propose consensus propagation, an asynchronous distributed proto-
col for averaging numbers across a network. We establish convergence,
characterize the convergence rate for regular graphs, and demonstrate
that the protocol exhibits better scaling properties than pairwise averag-
ing, an alternative that has received much recent attention. Consensus
propagation can be viewed as a special case of belief propagation, and
our results contribute to the belief propagation literature. In particular,
beyond singly-connected graphs, there are very few classes of relevant
problems for which belief propagation is known to converge.

1 Introduction

Consider a network of n nodes in which the ith node observes a number yi ∈ [0, 1] and
aims to compute the average

∑n
i=1 yi/n. The design of scalable distributed protocols for

this purpose has received much recent attention and is motivated by a variety of potential
needs. In both wireless sensor and peer-to-peer networks, for example, there is interest
in simple protocols for computing aggregate statistics (see, for example, the references
in [1]), and averaging enables computation of several important ones. Further, averaging
serves as a primitive in the design of more sophisticated distributed information processing
algorithms. For example, a maximum likelihood estimate can be produced by an averaging
protocol if each node’s observations are linear in variables of interest and noise is Gaussian
[2]. As another example, averaging protocols are central to policy-gradient-based methods
for distributed optimization of network performance [3].

In this paper we propose and analyze a new protocol – consensus propagation – for asyn-
chronous distributed averaging. As a baseline for comparison, we will also discuss another
asychronous distributed protocol – pairwise averaging – which has received much recent
attention. In pairwise averaging, each node maintains its current estimate of the average,
and each time a pair of nodes communicate, they revise their estimates to both take on the
mean of their previous estimates. Convergence of this protocol in a very general model of
asynchronous computation and communication was established in [4]. Recent work [5, 6]
has studied the convergence rate and its dependence on network topology and how pairs of
nodes are sampled. Here, sampling is governed by a certain doubly stochastic matrix, and
the convergence rate is characterized by its second-largest eigenvalue.

Consensus propagation is a simple algorithm with an intuitive interpretation. It can also be
viewed as an asynchronous distributed version of belief propagation as applied to approxi-



mation of conditional distributions in a Gaussian Markov random field. When the network
of interest is singly-connected, prior results about belief propagation imply convergence
of consensus propagation. However, in most cases of interest, the network is not singly-
connected and prior results have little to say about convergence. In particular, Gaussian
belief propagation on a graph with cycles is not guaranteed to converge, as demonstrated
by examples in [7].

In fact, there are very few relevant cases where belief propagation on a graph with cy-
cles is known to converge. Some fairly general sufficient conditions have been established
[8, 9, 10], but these conditions are abstract and it is difficult to identify interesting classes
of problems that meet them. One simple case where belief propagation is guaranteed to
converge is when the graph has only a single cycle [11, 12, 13]. Recent work proposes the
use of belief propagation to solve maximum-weight matching problems and proves conver-
gence in that context [14]. [15] proves convergence in the application of belief propogation
to a classification problem. In the Gaussian case, [7, 16] provide sufficient conditions for
convergence, but these conditions are difficult to interpret and do not capture situations that
correspond to consensus propagation.

With this background, let us discuss the primary contributions of this paper: (1) we pro-
pose consensus propagation, a new asynchronous distributed protocol for averaging; (2) we
prove that consensus propagation converges even when executed asynchronously. Since
there are so few classes of relevant problems for which belief propagation is known to
converge, even with synchronous execution, this is surprising; (3) We characterize the con-
vergence time in regular graphs of the synchronous version of consensus propagation in
terms of the the mixing time of a certain Markov chain over edges of the graph; (4) we
explain why the convergence time of consensus propagation scales more gracefully with
the number of nodes than does that of pairwise averaging, and for certain classes of graphs,
we quantify the improvement.

2 Algorithm

Consider a connected undirected graph (V,E) with |V | = n nodes. For each node i ∈
V , let N(i) = {j : (i, j) ∈ E} be the set of neighbors of i. Each node i ∈ V is
assigned a number yi ∈ [0, 1]. The goal is for each node to obtain an estimate of ȳ =∑

i∈V yi/n through an asynchronous distributed protocol in which each node carries out
simple computations and communicates parsimonious messages to its neighbors.

We propose consensus propagation as an approach to the aforementioned problem. In this
protocol, if a node i communicates to a neighbor j at time t, it transmits a message consist-
ing of two numerical values. Let µt

ij ∈ R and Kt
ij ∈ R+ denote the values associated with

the most recently transmitted message from i to j at or before time t. At each time t, node j
has stored in memory the most recent message from each neighbor: {µt

ij ,K
t
ij |i ∈ N(j)}.

The initial values in memory before receiving any messages are arbitrary.

Consensus propagation is parameterized by a scalar β > 0 and a non-negative matrix
Q ∈ Rn×n

+ with Qij > 0 if and only if i 6= j and (i, j) ∈ E. Let ~E ⊆ V × V be a set
consisting of two directed edges (i, j) and (j, i) per undirected edge (i, j) ∈ E. For each
(i, j) ∈ ~E, it is useful to define the following three functions:

Fij(K) =
1 +

∑
u∈N(i)\j Kui

1 + 1
βQij

(
1 +

∑
u∈N(i)\j Kui

) , (1)

Gij(µ,K) =
yi +

∑
u∈N(i)\j Kuiµui

1 +
∑

u∈N(i)\j Kui
, Xi(µ,K) =

yi +
∑

u∈N(i)Kuiµui

1 +
∑

u∈N(i)Kui
. (2)



For each t, denote by Ut ⊆ ~E the set of directed edges along which messages are transmit-
ted at time t. Consensus propagation is presented below as Algorithm 1.

Algorithm 1 Consensus propagation.
1: for time t = 1 to∞ do
2: for all (i, j) ∈ Ut do
3: Kt

ij ← Fij(Kt−1)
4: µt

ij ← Gij(µt−1,Kt−1)
5: end for
6: for all (i, j) /∈ Ut do
7: Kt

ij ← Kt−1
ij

8: µt
ij ← µt−1

ij

9: end for
10: xt ← X (µt,Kt)
11: end for

Consensus propagation is a distributed protocol because computations at each node re-
quire only information that is locally available. In particular, the messages Fij(Kt−1) and
Gij(Kt−1) transmitted from node i to node j depend only on {µt−1

ui ,Kt−1
ui |u ∈ N(i)},

which node i has stored in memory. Similarly, xt
i, which serves as an estimate of y, de-

pends only on {µt
ui,K

t
ui|u ∈ N(i)}.

Consensus propagation is an asynchronous protocol because only a subset of the potential
messages are transmitted at each time. Our convergence analysis can also be extended to
accommodate more general models of asynchronism that involve communication delays,
as those presented in [17].

In our study of convergence time, we will focus on the synchronous version of consensus
propagation. This is where Ut = ~E for all t. Note that synchronous consensus propagation
is defined by:

Kt = F(Kt−1), µt = G(µt−1,Kt−1), xt = X (µt−1,Kt−1). (3)

2.1 Intuitive Interpretation

Consider the special case of a singly connected graph. For any (i, j) ∈ ~E, there is a set
Sij ⊂ V of nodes that can transmit information to Sji = V \ Sij only through (i, j). In
order for nodes in Sji to compute y, they must at least be provided with the average µ∗ij
among observations at nodes in Sij and the cardinality K∗

ij = |Sij |. The messages µt
ij and

Kt
ij can be viewed as estimates. In fact, when β = ∞, µt

ij and Kt
ij converge to µ∗ij and

K∗
ij , as we will now explain.

Suppose the graph is singly connected, β =∞, and transmissions are synchronous. Then,

Kt
ij = 1 +

∑
u∈N(i)\j

Kt−1
ui , (4)

for all (i, j) ∈ ~E. This is a recursive characterization of |Sij |, and it is easy to see that it
converges in a number of iterations equal to the diameter of the graph. Now consider the
iteration

µt
ij =

yi +
∑

u∈N(i)\j K
t−1
ui µt−1

ui

1 +
∑

u∈N(i)\j K
t−1
ui

,

for all (i, j) ∈ ~E. A simple inductive argument shows that at each time t, µt
ij is an average

among observations at Kt
ij nodes in Sij , and after a number of iterations equal to the



diameter of the graph, µt = µ∗. Further, for any i ∈ V ,

y =
yi +

∑
u∈N(i)Kuiµui

1 +
∑

u∈N(i)Kui
,

so xt
i converges to y. This interpretation can be extended to the asynchronous case where it

elucidates the fact that µt and Kt become µ∗ and K∗ after every pair of nodes in the graph
has established bilateral communication through some sequence of transmissions among
adjacent nodes.

Suppose now that the graph has cycles. If β =∞, for any (i, j) ∈ ~E that is part of a cycle,
Kt

ij → ∞ whether transmissions are synchronous or asynchronous, so long as messages
are transmitted along each edge of the cycle an infinite number of times. A heuristic fix
might be to compose the iteration (4) with one that attenuates: K̃t

ij ← 1+
∑

u∈N(i)\j K
t−1
ui ,

andKt
ij ← K̃t

ij/(1+εijK̃t
ij). Here, εij > 0 is a small constant. The message is essentially

unaffected when εijK̃t
ij is small but becomes increasingly attenuated as K̃t

ij grows. This is
exactly the kind of attenuation carried out by consensus propagation when βQij = 1/εij <
∞. Understanding why this kind of attenuation leads to desirable results is a subject of our
analysis.

2.2 Relation to Belief Propagation

Consensus propagation can also be viewed as a special case of belief propagation. In this
context, belief propagation is used to approximate the marginal distributions of a vector
x ∈ Rn conditioned on the observations y ∈ Rn. The mode of each of the marginal
distributions approximates y.

Take the prior distribution over (x, y) to be the normalized product of potential func-
tions {ψi(·)|i ∈ V } and compatibility functions {ψβ

ij(·)|(i, j) ∈ E}, given by ψi(xi) =
exp(−(xi − yi)2), and ψβ

ij(xi, xj) = exp(−βQij(xi − xj)2), where Qij , for each
(i, j) ∈ ~E, and β are positive constants. Note that β can be viewed as an inverse temper-
ature parameter; as β increases, components of x associated with adjacent nodes become
increasingly correlated.

Let Γ be a positive semidefinite symmetric matrix such that xT Γx =
∑

(i,j)∈E Qij(xi −
xj)2. Note that when Qij = 1 for all (i, j) ∈ E, Γ is the graph Laplacian. Given the vector
y of observations, the conditional density of x is

pβ(x) ∝
∏
i∈V

ψi(xi)
∏

(i,j)∈E

ψβ
ij(xi, xj) = exp

(
−‖x− y‖22 − βxT Γx

)
.

Let xβ denote the mode of pβ(·). Since the distribution is Gaussian, each component xβ
i

is also the mode of the corresponding marginal distribution. Note that xβ it is the unique
solution to the positive definite quadratic program

minimize
x

‖x− y‖22 + βxT Γx. (5)

The following theorem, whose proof can be found in [1], suggests that if β is sufficiently
large each component xβ

i can be used as an estimate of the mean value ȳ.

Theorem 1.
∑

i x
β
i /n = ȳ and limβ↑∞ xβ

i = ȳ, for all i ∈ V .

In belief propagation, messages are passed along edges of a Markov random field. In our
case, because of the structure of the distribution pβ(·), the relevant Markov random field



has the same topology as the graph (V,E). The message Mij(·) passed from node i to
node j is a distribution on the variable xj . Node i computes this message using incoming
messages from other nodes as defined by the update equation

M t
ij(xj) = κ

∫
ψij(x′i, xj)ψi(x′i)

∏
u∈N(i)\j

M t−1
ui (x′i) dx

′
i. (6)

Here, κ is a normalizing constant. Since our underlying distribution pβ(·) is Gaussian,
it is natural to consider messages which are Gaussian distributions. In particular, let
(µt

ij ,K
t
ij) ∈ R × R+ parameterize Gaussian message M t

ij(·) according to M t
ij(xj) ∝

exp
(
−Kt

ij(xj − µt
ij)

2
)
. Then, (6) is equivalent to synchronous consensus propagation

iterations for Kt and µt.

The sequence of densities

pt
j(xj) ∝ ψj(xj)

∏
i∈N(j)

M t
ij(xj) = exp

−(xj − yj)2 −
∑

i∈N(j)

Kt
ij(xj − µt

ij)
2

 ,

is meant to converge to an approximation of the marginal conditional distribution of xj .
As such, an approximation to xβ

j is given by maximizing pt
j(·). It is easy to show that,

the maximum is attained by xt
j = Xj(µt,Kt). With this and aforementioned correspon-

dences, we have shown that consensus propagation is a special case of belief propagation.
Readers familiar with belief propagation will notice that in the derivation above we have
used the sum product form of the algorithm. In this case, since the underlying distribution
is Gaussian, the max product form yields equivalent iterations.

3 Convergence

The following theorem is our main convergence result.
Theorem 2. (i) There are unique vectors (µβ ,Kβ) such that Kβ = F(Kβ), and

µβ = G(µβ ,Kβ).

(ii) Assume that each edge (i, j) ∈ ~E appears infinitely often in the sequence of
communication sets {Ut}. Then, independent of the initial condition (µ0,K0),
limt→∞Kt = Kβ , and limt→∞ µt = µβ .

(iii) Given (µβ ,Kβ), if xβ = X (µβ ,Kβ), then xβ is the mode of the distribution
pβ(·).

The proof of this theorem can be found in [1], but it rests on two ideas. First, notice that,
according to the update equation (1), Kt evolves independently of µt. Hence, we analyze
Kt first. Following the work of [7], we prove that the functions {Fij(·)} are monotonic.
This property is used to establish convergence to a unique fixed point. Next, we analyze µt

assuming that Kt has already converged. Given fixed K, the update equations for µt are
linear, and we establish that they induce a contraction with respect to the maximum norm.
This allows us to establish existence of a fixed point and asynchronous convergence.

4 Convergence Time for Regular Graphs

In this section, we will study the convergence time of synchronous consensus propagation.
For ε > 0, we will say that an estimate x̃ of ȳ is ε-accurate if ‖x̃ − ȳ1‖2,n ≤ ε. Here, for
integer m, ‖ · ‖2,m is the norm on Rm defined by ‖x‖2,m = ‖x‖2/

√
m. We are interested

in the number of iterations required to obtain an ε-accurate estimate of the mean ȳ.



4.1 The Case of Regular Graphs

We will restrict our analysis of convergence time to cases where (V,E) is a d-regular graph,
for d ≥ 2. Extension of our analysis to broader classes of graphs remains an open issue.
We will also make simplifying assumptions that Qij = 1, µ0

ij = yi, and K0 = [k0]ij for
some scalar k0 ≥ 0.

In this restricted setting, the subspace of constant K vectors is invariant under F . This
implies that there is some scalar kβ > 0 so thatKβ = [kβ ]ij . This kβ is the unique solution
to the fixed point equation kβ = (1+(d−1)kβ)/((1+(1+(d−1)kβ)/β). Given a uniform
initial condition K0 = [k0]ij , we can study the sequence of iterates {Kt} by examining
the scalar sequence {kt}, defined by kt = (1 + (d − 1)kt−1)(1 + (1 + (d − 1)kt−1)/β).
In particular, we have Kt = [kt]ij , for all t ≥ 0.

Similarly, in this setting, the equations for the evolution of µt take the special form

µt
ij =

yi

1 + (d− 1)kt−1
+

(
1− 1

1 + (d− 1)kt−1

) ∑
u∈N(i)\j

µt−1
ui

d− 1
.

Defining γt = 1/(1 + (d− 1)kt), we have, in vector form,

µt = γt−1ŷ + (1− γt−1)P̂ µt−1, (7)

where ŷ ∈ Rnd is a vector with ŷij = yi and P̂ ∈ Rnd×nd
+ is a doubly stochastic matrix.

The matrix P̂ corresponds to a Markov chain on the set of directed edges ~E. In this chain,
an edge (i, j) transitions to an edge (u, i) with u ∈ N(i)\j, with equal probability assigned
to each such edge. As in (3), we associate each µt with an estimate xt of xβ according to
xt = y/(1 + dkβ) + dkβAµt/(1 + dkβ), where A ∈ Rn×nd

+ is a matrix defined by
(Aµ)j =

∑
i∈N(j) µij/d.

The update equation (7) suggests that the convergence of µt is intimately tied to a notion
of mixing time associated with P̂ . Let P̂ ? be the Cesàro limit P̂ ? = limt→∞

∑t−1
τ=0 P̂

τ/t.
Define the Cesàro mixing time τ? by τ? = supt≥0 ‖

∑t
τ=0(P̂

τ−P̂ ?)‖2,nd. Here, ‖·‖2,nd is
the matrix norm induced by the corresponding vector norm ‖·‖2,nd. Since P̂ is a stochastic
matrix, P̂ ? is well-defined and τ? < ∞. Note that, in the case where P̂ is aperiodic,
irreducible, and symmetric, τ? corresponds to the traditional definition of mixing time: the
inverse of the spectral gap of P̂ .

A time t∗ is said to be an ε-convergence time if estimates xt are ε-accurate for all t ≥ t∗.
The following theorem, whose proof can be found in [1], establishes a bound on the ε-
convergence time of synchronous consensus propagation given appropriately chosen β, as
a function of ε and τ?.
Theorem 3. Suppose k0 ≤ kβ . If d = 2 there exists a β = Θ((τ?/ε)2) and if d > 2 there
exists a β = Θ(τ?/ε) such that some t∗ = O((τ?/ε) log(τ?/ε)) is an ε-convergence time.
Alternatively, suppose k0 = kβ . If d = 2 there exists a β = Θ((τ?/ε)2) and if d > 2 there
exists a β = Θ(τ?/ε) such that some t∗ = O((τ?/ε) log(1/ε)) is an ε-convergence time.

In the first part of the above theorem, k0 is initialized arbitrarily so long as k0 ≤ kβ .
Typically, one might set k0 = 0 to guarantee this. The second case of interest is when
k0 = kβ , so that kt = kβ for all t ≥ 0 Theorem 3 suggests that initializing with k0 = kβ

leads to an improvement in convergence time. However, in our computational experience,
we have found that an initial condition of k0 = 0 consistently results in faster convergence
than k0 = kβ . Hence, we suspect that a convergence time bound of O((τ?/ε) log(1/ε))
also holds for the case of k0 = 0. Proving this remains an open issue. Theorems 3 posits
choices of β that require knowledge of τ?, which may be both difficult to compute and also



requires knowledge of the graph topology. This is not a major restriction, however. It is not
difficult to imagine variations of Algorithm 1 which use a doubling sequence of guesses for
the Cesáro mixing time τ?. Each guess leads to a choice of β and a number of iterations t∗
to run with that choice of β. Such a modified algorithm would still have an ε-convergence
time of O((τ?/ε) log(τ?/ε)).

5 Comparison with Pairwise Averaging

Using the results of Section 4, we can compare the performance of consensus propagation
to that of pairwise averaging. Pairwise averaging is usually defined in an asynchronous
setting, but there is a synchronous counterpart which works as follows. Consider a doubly
stochastic symmetric matrix P ∈ Rn×n such that Pij = 0 if (i, j) /∈ E. Evolve estimates
according to xt = Pxt−1, initialized with x0 = y. Clearly xt = P ty → ȳ1 as t ↑ ∞.

In the case of a singly-connected graph, synchronous consensus propagation converges
exactly in a number of iterations equal to the diameter of the graph. Moreover, when
β =∞, this convergence is to the exact mean, as discussed in Section 2.1. This is the best
one can hope for under any algorithm, since the diameter is the minimum amount of time
required for a message to travel between the two most distant nodes. On the other hand, for
a fixed accuracy ε, the worst-case number of iterations required by synchronous pairwise
averaging on a singly-connected graph scales at least quadratically in the diameter [18].

The rate of convergence of synchronous pairwise averaging is governed by the relation
‖xt−ȳ1‖2,n ≤ λt

2, where λ2 is the second largest eigenvalue of P . Let τ2 = 1/ log(1/λ2),
and call it the mixing time of P . In order to guarantee ε-accuracy (independent of y),
t > τ2 log(1/ε) suffices and t = Ω(τ2 log(1/ε)) is required [6].

Consider d-regular graphs and fix a desired error tolerance ε. The number of iterations
required by consensus propagation is Θ(τ? log τ?), whereas that required by pairwise av-
eraging is Θ(τ2). Both mixing times depend on the size and topology of the graph. τ2
is the mixing time of a process on nodes that transitions along edges whereas τ? is the
mixing time of a process on directed edges that transitions towards nodes. An important
distinction is that the former process is allowed to “backtrack” where as the latter is not.
By this we mean that a sequence of states {i, j, i} can be observed in the vertex process,
but the sequence {(i, j), (j, i)} cannot be observed in the edge process. As we will now il-
lustrate through an example, it is this difference that makes τ2 larger than τ? and, therefore,
pairwise averaging less efficient than consensus propagation.

In the case of a cycle (d = 2) with an even number of nodes n, minimizing the mixing
time over P results in τ2 = Θ(n2) [19]. For comparison, as demonstrated in the following
theorem (whose proof can be found in [1]), τ? is linear in n.
Theorem 4. For the cycle with n nodes, τ? ≤ n/

√
2.

Intuitively, the improvement in mixing time arises from the fact that the edge process moves
around the cycle in a single direction and therefore explores the entire graph within n
iterations. The vertex process, on the other hand, randomly transitions back and forth
among adjacent nodes, relying on chance to eventually explore the entire cycle.

The cycle example demonstrates a Θ(n/ log n) advantage offered by consensus propaga-
tion. Comparisons of mixing times associated with other graph topologies remains an issue
for future analysis. But let us close by speculating on a uniform grid of n nodes over the
m-dimensional unit torus. Here, n1/m is an integer, and each vertex has 2m neighbors,
each a distance n−1/m away. With P optimized, it can be shown that τ2 = Θ(n2/m) [20].
We put forth a conjecture on τ?.

Conjecture 1. For the m-dimensional torus with n nodes, τ? = Θ(n(2m−1)/m2
).
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