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Abstract

When trying to understand the brain, it is of fundamental importance to
analyse (e.g. from EEG/MEG measurements) what parts of the cortex
interact with each other in order to infer more accurate models of brain
activity. Common techniques like Blind Source Separation (BSS) can es-
timate brain sources and single out artifacts by using the underlying as-
sumption of source signal independence. However, physiologically inter-
esting brain sources typically interact, so BSS will—by construction—
fail to characterize them properly. Noting that there are truly interacting
sources and signals that only seemingly interact due to effects of volume
conduction, this work aims to contribute by distinguishing these effects.
For this a new BSS technique is proposed that uses anti-symmetrized
cross-correlation matrices and subsequent diagonalization. The resulting
decomposition consists of the truly interacting brain sources and sup-
presses any spurious interaction stemming from volume conduction. Our
new concept of interacting source analysis (ISA) is successfully demon-
strated on MEG data.

1 Introduction

Interaction between brain sources, phase synchrony or coherent states of brain activity
are believed to be fundamental for neural information processing (e.g. [2, 6, 5]). So it is
an important topic to devise new methods that can more reliably characterize interacting
sources in the brain. The macroscopic nature and the high temporal resolution of elec-
troencephalography (EEG) and magnetoencephalography (MEG) in the millisecond range
makes these measurement technologies ideal candidates to study brain interactions. How-
ever, interpreting data from EEG/MEG channels in terms of connections between brain
sources is largely hampered by artifacts of volume conduction, i.e. the fact that activities of
single sources are observable as superposition in all channels (with varying amplitude). So
ideally one would like to discard all—due to volume conduction—seemingly interacting
signals and retain only truly linked brain source activity.

So far neither existing source separation methods nor typical phase synchronization anal-



ysis (e.g. [1, 5] and references therein) can adequately handle signals when the sources
are both superimposed and interacting i.e. non-independent (cf. discussions in [3, 4]). It
is here where we contribute in this paper by proposing a new algorithm to distinguish true
from spurious interaction. A prerequisite to achieve this goal was recently established by
[4]: as a consequence of instantaneous and linear volume conduction, the cross-spectra
of independent sources are real-valued, regardless of the specifics of the volume conduc-
tor, number of sources or source configuration. Hence, a non-vanishing imaginary part of
the cross-spectra must necessarily reflect a true interaction. Drawbacks of Nolte’s method
are: (a) cross-spectra for all frequencies in multi-channel systems contain a huge amount
of information and it can be tedious to find the interesting structures, (b) it is very much
possible that the interacting brain consists of several subsystems which are independent
of each other but are not separated by that method, and (c) the method is well suited for
rhythmic interactions while wide-band interactions are not well represented.
A recent different approach by [3] uses BSS as preprocessing step before phase synchro-
nization is measured. The drawback of this method is the assumption that there are not
more sources than sensors, which is often heavily violated because, e.g., channel noise
trivially consists of as many sources as channels, and, furthermore, brain noise can be very
well modelled by assuming thousands of randomly distributed and independent dipoles.

To avoid the drawbacks of either method we will formulate an algorithm called interacting
source analysis (ISA) which is technically based on BSS using second order statistics but
is only sensitive to interacting sources and, thus, can be applied to systems with arbitrary
noise structure. In the next section, after giving a short introduction to BSS as used for this
paper, we will derive some fundamental properties of our new method. In section 3 we will
show in simulated data and real MEG examples that the ISA procedure finds the interacting
components and separates interacting subsystems which are independent of each other.

2 Theory

The fundamental assumption of ICA is that a data matrix X , without loss of generality
assumed to be zero mean, originates from a superposition of independent sources S such
that

X = AS (1)

where A is called the mixing matrix which is assumed to be invertible. The task is to find
A and hence S (apart from meaningless ordering and scale transformations of the columns
of A and the rows of S) by merely exploiting statistical independence of the sources. Since
independence implies that the sources are uncorrelated we may choose W , the estimated
inverse mixing matrix, such that the covariance matrix of

Ŝ ≡ WX (2)

is equal to the identity matrix. This, however, does not uniquely determine W because for
any such W also UW , where U is an arbitrary orthogonal matrix, leads to a unit covariance
matrix of Ŝ. Uniqueness can be restored if we require that W not only diagonalizes the
covariance matrix but also cross-correlation matrices for various delays τ , i.e. we require
that

WCX(τ)W † = diag (3)

with
CX(τ) ≡ 〈x(t)x†(t + τ)〉 (4)

where x(t) is the t.th column of X and 〈.〉 means expectation value which is estimated by
the average over t. Although at this stage all expressions are real-valued we introduce a
complex formulation for later use.



Note, that since under the ICA assumption the cross-correlation matrices CS(τ) of the
source signals are diagonal

CS
ij(τ) = 〈si(t)si(t + τ)〉δij = CS

ji, (5)

the cross-correlation matrices of the mixtures are symmetric:

CX(τ) = ACS(τ)A† =
(

ACS(τ)A†
)†

= CX†(τ) (6)

Hence, the antisymmetric part of CX(τ) can only arise due to meaningless fluctuations and
can be ignored. In fact, the above TDSEP algorithm uses symmetrized versions of CX(τ)
[8].

Now, the key and new point of our method is that we will turn the above argument up-
side down. Since non-interacting sources do not contribute (systematically) to the anti-
symmetrized correlation matrices

D(τ) ≡ CX(τ) − CX†(τ) (7)

any (significant) non-vanishing elements in D(τ) must arise from interacting sources, and
hence the analysis of D(τ) is ideally suited to study the interacting brain. In doing so
we exploit that neuronal interactions necessarily take some time which is well above the
typical time resolution of EEG/MEG measurements.

It is now our goal to identify one or many interacting systems from a suitable spatial trans-
formation which corresponds to a demixing of the systems rather than individual sources.
Although we concentrate on those components which explicitly violate the independence
assumption we will use the technique of simultaneous diagonalization to achieve this goal.
We first note that a diagonalization of D(τ) using a real-valued W is meaningless since
with D(τ) also WD(τ)W † is anti-symmetric and always has vanishing diagonal elements.
Hence D(τ) can only be diagonalized with a complex-valued W with subsequent interpre-
tation of it in terms of a real-valued transformation.

We will here discuss the case where all interacting systems consist of pairs of neuronal
sources. Properties of systems with more than two interacting systems will be discussed
below. Furthermore, for simplicity we assume an even number of channels. Then a real-
valued spatial transformation W1 exists such that the set of D(τ) becomes decomposed
into K = N/2 blocks of size 2 × 2
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1
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Each block can be diagonalized e.g. with

W̃2 =

(

1 −i
1 i

)

(9)

and with
W2 = idK×K ⊗ W̃2 (10)

we get
W2W1D(τ)W †

1
W †

2
= diag (11)

From a simultaneous diagonalization of D(τ) we obtain an estimate of the demixing matrix
Ŵ of the true demixing matrix W = W2W1. We are interested in the columns of W−1

1

which correspond to the spatial patterns of the interacting sources. Let us denote the N ×2



submatrix of a matrix B consisting of the (2k− 1).th and the 2k.th column as (B)k. Then
we can write

(W−1

1
)k ∼ (W−1)kW̃2 (12)

and hence the desired spatial patterns of the k.th system are a complex linear superposition
of the (2k − 1).th and the 2k.th column of W . The subspace spanned in channel-space by
the two interacting sources, denoted as span((A)k), can now be found by separating real
and imaginary part of W−1

span((A)k) = span
((

<((W−1)k),=((W−1)k)
))

(13)

According to (13) we can calculate from W just the 2D-subspaces spanned by the inter-
acting systems but not the patterns of the sources themselves. The latter would indeed be
impossible because all we analyze are anti-symmetric matrices which are, for each system,
constructed as anti-symmetric outer products of the two respective field patterns. These
anti-symmetric matrices are, apart from an irrelevant global scale, invariant with respect to
a linear and real-valued mixing of the sources within each system.

The general procedure can now be outlined as follows.

1. From the data construct anti-symmetric cross-correlation matrices as defined in
Eq.(7) for reasonable set of delays τ .

2. Find a complex matrix W such that WD(τ)W † is approximately diagonal for all
τ .

3. If the system consists of subsystems of paired interactions (and indeed, accord-
ing to our own experience, very much in practice) the diagonal elements in
WD(τ)W † come in pairs in the form ±iλ. Each pair constitutes one interact-
ing system. The corresponding two columns in W−1, with separated real and
imaginary parts, form an N × 4 matrix V with rank 2. The span of V coincides
with the space spanned by the respective system. In practice, V will have two sin-
gular values which are just very small rather than exactly zero. The corresponding
singular vectors should then be discarded. Instead of analyzing V in the above
way it is also possible to simply take the real and imaginary part of either one of
the two columns.

4. Similar to the spatial analysis, it is not possible to separate the time-courses of two
interacting sources within one subsystem. In general, two estimated time-courses,
say ŝ1(t) and ŝ2(t), are an unknown linear combination of the true source activa-
tions s1(t) and s2(t). To understand the type of interaction it is still recommended
to look at the power and autocorrelation functions. Invariant with respect to lin-
ear mixing with one subsystem is the anti-symmetrized cross-correlation between
ŝ1(t) and ŝ2(t) and, equivalently, the imaginary part of the cross-spectral density.
For the k.th system, these quantities are given by the k.th diagonal λk(τ) and
their respective Fourier transforms.

While (approximate) simultaneous diagonalization of D(τ) using complex demixing matri-
ces is always possible with pairwise interactions we can expect only block-diagonal struc-
ture if a larger number of sources are interacting within one or more subsystems. We will
show below for simulated data that the algorithm still finds these blocks although the actual
goal, i.e. diagonal WD(τ)W †, is not reachable.



3 Results

3.1 Simulated data

Matrices were approximately simultaneously diagonalized with the DOMUNG-algorithm
[7], which was generalized to the complex domain. Here, an initial guess for the demixing
matrix W is successively optimized using a natural gradient approach combined with line
search according to the requirement that the off-diagonals are minimal under the constraint
det(W ) = 1. Special care has to be taken in the choice of the initial guess. Due to the
complex-conjugation symmetry of our problem (i.e., W ∗ diagonalizes as well as W ) the
initial guess may not be set to a real-valued matrix because then the component of the
gradient in imaginary direction will be zero and W will converge to a real-valued saddle
point.

We simulated two random interacting subsystems of dimensions NA and NB which were
assumed to be mutually independent. The two subsystems were mapped into N =
NA +NB channels with a random mixture matrix. The anti-symmetrized cross-correlation
matrices read

D(τ) = A

(

DA(τ) 0
0 DB(τ)

)

A† (14)

where A is a random real-valued N ×N matrix, and DA(τ) (DB(τ)), with τ = 1...20, are
a set of random anti-symmetric NA ×NA (NB ×NB) matrices. Note, that in this context,
τ has no physical meaning.

As expected, we have found that if one of the subsystems is two-dimensional the respec-
tive block can always be diagonalized exactly for any number of τs. We have also seen,
that the diagonalization procedure always perfectly separates the two subsystems even if
a diagonalization within a subsystem is not possible. A typical result for NA = 2 and
NB = 3 is presented in Fig.1. In the left panel we show the average of the absolute value
of correlation matrices before spatial mixing. In the middle panel we show the respective
result after random spatial mixture and subsequent demixing, and in the right panel we
show W1A where W1 is the estimated real version of the demixing matrix as explained in
the preceding section. We note again, that also for the two-dimensional block, which can
always be diagonalized exactly, one can only recover the corresponding two-dimensional
subspace and not the source components themselves.
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Figure 1: Left: average of the absolute values of correlation matrices before spatial mixing;
middle: same after random spatial mixture and subsequent demixing; right: product of the
estimated demixing matrix and the true mixing matrix (W1A). White indicates zero and
black the maximum value for each matrix.



3.2 Real MEG data

We applied our method to real data gathered in 93 MEG channels during triggered finger
movements of the right or left hand. We recall that for each interacting component we get
two results: a) the 2D subspace spanned by the two components and b) the diagonals of the
demixed system, say ±iλk(τ). To visualize the 2D subspace in a unique way we construct
from the two patterns of the k.th system, say x1 and x2, the anti-symmetric outer product

Dk ≡ x1x
T
2
− x2x

T
1

(15)

Indeed, the k.th subsystem contributes this matrix to the anti-symmetrized cross-
correlations D(τ) with varying amplitude for all τ .

The matrix Dk is now visualized as shown in Figs.3. The i.th row of Dk corresponds
to the interaction of the i.th channel to all others and this interaction is represented by
the contour-plot within the i.th circle located at the respective channel location. In this
example, the observed structure clearly corresponds to the interaction between eye-blinks
and visual cortex since occipital channels interact with channels close to the eyes and vice
versa.

In the upper panels of Fig.2 we show the corresponding temporal and spectral structures of
this interaction, represented by λk(τ), and its Fourier transform, respectively. We observe
in the temporal domain a peak at a delay around 120 ms (indicated by the arrow) which
corresponds well to the response time of the primary visual cortex to visual input.

In the lower panels of Fig.2 we show the temporal and spectral pattern of another interacting
component with a clear peak in the alpha range (10 Hz). The corresponding spatial pattern
(Fig.4) clearly indicates an interacting system in occipital-parietal areas.
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Figure 2: Diagonals of demixed antisymmetric correlation matrices as a function of delay
τ (left panels) and, after Fourier transformation, as a function of frequency (right panels).
Top: interaction of eye-blinks and visual cortex; bottom: interaction of alpha generators.



Figure 3: Spatial pattern corresponding to the interaction between eye-blinks and visual
cortex.

4 Conclusion

When analyzing interaction between brain sources from macroscopic measurements like
EEG/MEG it is important to distinguish physiologically reasonable patterns of interaction
and spurious ones. In particular, volume conduction effects make large parts of the cortex
seemingly interact although in reality such contributions are purely artifactual. Existing
BSS methods that have been used with success for artifact removal and for estimation of
brain sources will by construction fail when attempting to separate interacting i.e. non-
independent brain sources. In this work we have proposed a new BSS algorithm that uses
anti-symmetrized cross-correlation matrices and subsequent diagonalization and can thus
reliably extract meaningful interaction while ignoring all spurious effects. Experiments
using our interacting source analysis (ISA) reveal interesting relationships that are found
blindly, e.g. inferring a component that links both eyes with visual cortex activity in a
self-paced finger movement experiment. A more detailed look at the spectrum exhibits a
peak at the typing frequency, and, in fact going back to the original MEG traces, eye-blinks
were strongly coupled with the typing speed. This simple finding exemplifies that ISA
is a powerful new technique for analyzing dynamical correlations in macroscopic brain
measurements.

Future studies will therefore apply ISA to other neurophysiological paradigms in order
to gain insights into the coherence and synchronicity patterns of cortical dynamics. It is
especially of high interest to explore the possibilities of using true brain interactions as
revealed by the imaginary part of cross-spectra as complementing information to improve
the performance of brain computer interfaces.
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Figure 4: Spatial pattern corresponding to the interaction between alpha generators.
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