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Abstract

This paper presents a new framework based on walks in a graph for anal-
ysis and inference in Gaussian graphical models. The key idea is to de-
compose correlations between variables as a sum over all walks between
those variables in the graph. The weight of each walk is given by a
product of edgewise partial correlations. We provide a walk-sum inter-
pretation of Gaussian belief propagation in trees and of the approximate
method of loopy belief propagation in graphs with cycles. This perspec-
tive leads to a better understanding of Gaussian belief propagation and of
its convergence in loopy graphs.

1 Introduction

We consider multivariate Gaussian distributions defined on graphs. The nodes of the graph
denote random variables and the edges indicate statistical dependencies between variables.
The family of all Gauss-Markov models defined on a graph is naturally represented in the
information formof the Gaussian density which is parameterized by the inverse covari-
ance matrix, i.e., theinformation matrix. This information matrix is sparse, reflecting the
structure of the defining graph such that only the diagonal elements and those off-diagonal
elements corresponding to edges of the graph are non-zero.

Given such a model, we consider the problem of computing the mean and variance of
each variable, thereby determining the marginal densities as well as the mode. In princi-
ple, these can be obtained by inverting the information matrix, but the complexity of this
computation is cubic in the number of variables. More efficient recursive calculations are
possible in graphs with very sparse structure – e.g., in chains, trees and in graphs with
“thin” junction trees. For these models, belief propagation (BP) or its junction tree vari-
ants efficiently compute the marginals [1]. In more complex graphs, even this approach
can become computationally prohibitive. Then, approximate methods such as loopy belief
propagation (LBP) provide a tractable alternative to exact inference [1, 2, 3, 4].

We develop a “walk-sum” formulation for computation of means, variances and correla-
tions that holds in a wide class of Gauss-Markov models which we callwalk-summable. In
particular, this leads to a new interpretation of BP in trees and of LBP in general. Based on
this interpretation we are able to extend the previously known sufficient conditions for con-



vergence of LBP to the class of walk-summable models (which includes all of the follow-
ing: trees, attractive models, and pairwise-normalizable models). Our sufficient condition
is tighter than that given in [3] as the class of diagonally-dominant models is a strict subset
of the class of pairwise-normalizable models. Our results also explain why no examples
were found in [3] where LBP did not converge. The reason is that they presume a pairwise-
normalizable model. We also explain why, in walk-summable models, LBP converges to
the correct means but not to the correct variances (proving “walk-sum” analogs of results in
[3]). In general, walk-summability is not necessary for LBP convergence. Hence, we also
provide a tighter (essentially necessary) condition for convergence of LBP variances based
on walk-summability of the LBP computation tree. This provides deeper insight into why
LBP can fail to converge – because the LBP computation tree is not always well-posed –
which suggests connections to [5]. This paper presents the key ideas and outlines proofs of
the main results. A more detailed presentation will appear in a technical report [6].

2 Preliminaries

A Gauss-Markov model (GMM) is defined by a graphG = (V, E) with edge setE ⊂
(

V
2

)

,
i.e., some set of two-element subsets ofV , and a collection of random variablesx =
(xi, i ∈ V ) with probability density given ininformation form1:

p(x) ∝ exp{−
1

2
x′Jx + h′x} (1)

whereJ is a symmetric positive definite (J� 0) matrix which is sparse so as to respect the
graphG: if {i, j} 6∈ E thenJi,j = 0. We callJ the information matrixandh thepotential
vector. LetN(i) = {j|{i, j} ∈ E} denote theneighborsof i in the graph. The mean
µ ≡ E{x} and covarianceP ≡ E{(x − µ)(x − µ)′} are given by:

µ = J−1h and P = J−1 (2)

Thepartial correlation coefficientsare given by:

ρi,j ≡
cov(xi;xj |xV \{i,j})

√

var(xi|xV \{i,j})var(xj |xV \{i,j})
= −

Ji,j
√

Ji,iJj,j

(3)

Thus,Jij = 0 if and only if xi andxj are independent given the other variablesxV \{i,j}.
We say that this model isattractiveif all partial correlations are non-negative. It ispairwise-
normalizableif there exists a diagonal matrixD � 0 and a collection of non-negative
definite matrices{Je � 0, e ∈ E}, where(Je)i,j is zero unlessi, j ∈ e, such that:

J = D +
∑

e∈E

Je (4)

It is diagonally-dominantif for all i ∈ V :
∑

j 6=i |Ji,j | < Ji,i. The class of diagonally-
dominant models is a strict subset of the class of pairwise-normalizable models [6].

Gaussian Elimination and Belief Propagation Integrating (1) over all possible values
of xi reduces toGaussian elimination(GE) in the information form (see also [7]), i.e.,

p(x\i) ≡

∫

p(x\i, xi)dxi ∝ exp{−
1

2
x′
\iĴ\ix\i + ĥ′

\ix\i} (5)

where\i ≡ V \ {i}, i.e. all variables excepti, and

Ĵ\i = J\i,\i − J\i,iJ
−1
i,i Ji,\i and ĥ\i = h\i − J\i,iJ

−1
i,i hi (6)

1The work also applies top(x|y), i.e. where some variablesy are observed. However, the obser-
vationsy are fixed, and we redefinep(x) , p(x|y) (conditioning ony is implicit throughout). With
local observationsp(x|y) ∝ p(x)

Q

i
p(yi|xi), conditioning does not change the graph structure.
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Figure 1: (a) Graph of a GMM with nodes{1, 2, 3, 4} and with edge weights (partial corre-
lations) as shown. In (b) and (c) we illustrate the first three levels of the LBP computation
tree rooted at nodes 1 and 2. After 3 iterations of LBP in (a), the marginals at nodes 1 and
2 are identical to the marginals at the root of (b) and (c) respectively.

In trees, the marginal of any given node can be efficiently computed by sequentially elimi-
nating leaves of the tree until just that node remains. BP may be seen as a message-passing
form of GE in which a message passed from nodei to nodej ∈ N(i) captures the effect of
eliminating the subtree rooted ati. Thus, by a two-pass procedure, BP efficiently computes
the marginals atall nodes of the tree. The equations for LBP are identical except that mes-
sages are updated iteratively and in parallel. There are two messages per edge, one for each
ordered pair(i, j) ∈ E . We specify each message in information form with parameters:
∆h

(n)
i→j ,∆J

(n)
i→j (initialized to zero forn = 0). These are iteratively updated as follows.

For each(i, j) ∈ E , messages fromN(i) \ j are fused at nodei:

ĥ
(n)
i\j

= hi +
∑

k∈N(i)\j

∆h
(n)
k→i and Ĵ

(n)
i\j

= Ji,i +
∑

k∈N(i)\j

∆J
(n)
k→i (7)

This fused information at nodei is predicted to nodej:

∆h
(n+1)
i→j = −Jj,i(Ĵ

(n)
i\j

)−1ĥ
(n)
i\j

and ∆J
(n+1)
i→j = −Jj,i(Ĵ

(n)
i\j

)−1Ji,j (8)

After n iterations, the marginal of nodei is obtained by fusing all incoming messages:

ĥ
(n)
i = hi +

∑

k∈N(i)

∆h
(n)
k→i and Ĵ

(n)
i = Ji,i +

∑

k∈N(i)

∆J
(n)
k→i (9)

The mean and variance are given by(Ĵ
(n)
i )−1ĥ

(n)
i and (Ĵ

(n)
i )−1. In trees, this is the

marginal at nodei conditioned on zero boundary conditions at nodes(n + 1) steps away
and LBP converges to the correct marginals after a finite number of steps equal to the diam-
eter of the tree. In graphs with cycles, LBP may not converge and only yields approximate
marginals when it does. A useful fact about LBP is the following [2, 3, 5]: the marginal
computed at nodei aftern iterations is identical to the marginal at the root of then-step
computation treerooted at nodei. This tree is obtained by “unwinding” the loopy graph
for n steps (see Fig. 1). Note that each node of the graph may be replicated many times
in the computation tree. Also, neighbors of a node in the computation tree correspond ex-
actly with neighbors of the associated node in the original graph (except at the last level of
the tree where some neighbors are missing). The correspondingJ matrix defined on the
computation tree has the same node and edge values as in the original GMM.

3 Walk-Summable Gauss-Markov Models

In this section we present the walk-sum formulation of inference in GMMs. Let%(A)
denote thespectral radiusof a symmetric matrixA, defined to be the maximum of the
absolute values of the eigenvalues ofA. The geometric series(I +A+A2+ . . . ) converges



if and only if %(A) < 1. If it converges, it converges to(I −A)−1. Now, consider a GMM
with information matrixJ . Without loss of generality, letJ be normalized (by rescaling
variables) to haveJi,i = 1 for all i. Then,ρi,j = −Ji,j and the (zero-diagonal) matrix of
partial correlations is given byR = I − J . If %(R) < 1, then we have a geometric series
for the covariance matrix:

∞
∑

l=0

Rl = (I − R)−1 = J−1 = P (10)

Let R̄ = (|rij |) denote the matrix of element-wise absolute values. We say that the model
is walk-summableif %(R̄) < 1. Walk-summability implies%(R) < 1 andJ � 0.

Example 1. Consider a 5-node cycle with normalized information matrixJ , which has
all partial correlations on the edges set toρ. If ρ = −.45, then the model is valid (i.e.
positive definite) with minimum eigenvalueλmin(J) ≈ .2719 > 0, and walk-summable
with %(R̄) = .9 < 1. However, whenρ = −.55, then the model is still valid with
λmin(J) ≈ .1101 > 0, but no longer walk-summable with%(R̄) = 1.1 > 1.

Walk-summability allows us to interpret (10) as computing walk-sums in the graph. Recall
that the matrixR reflects graph structure:ρi,j = 0 if {i, j} 6∈ E . These act as weights
on the edges of the graph. Awalk w = (w0, w1, ..., wl) is a sequence of nodeswi ∈ V
connected by edges{wi, wi+1} ∈ E wherel is thelengthof the walk. Theweightρ(w) of
walk w is the product of edge weights along the walk:

ρ(w) =

l
∏

s=1

ρws−1,ws
(11)

At each nodei ∈ V , we also define a zero-length walkw = (i) for whichρ(w) = 1.

Walk-Sums.Given a set of walksW, we define thewalk-sumoverW by

ρ(W) =
∑

w∈W

ρ(w) (12)

which is well-defined (i.e., independent of summation order) because%(R̄) < 1 implies
absolute convergence. LetW

i
l
→j

denote the set ofl-length walks fromi to j and let

Wi→j = ∪∞
l=0Wi

l
→j

. The relation between walks and the geometric series (10) is that

the entries ofRl correspond to walk-sums overl-length walks fromi to j in the graph, i.e.,
(Rl)i,j = ρ(W

i
l
→j

). Hence,

Pi,j =

∞
∑

l=0

(Rl)i,j =
∑

l

ρ(W
i

l
→j

) = ρ(∪lW
i

l
→j

) = ρ(Wi→j) (13)

In particular, the varianceσ2
i ≡ Pi,i of variablei is the walk-sum taken over the setWi→i

of self-return walksthat begin and end ati (defined so that(i) ∈ Wi→i). The means can
be computed as reweighted walk-sums, i.e., where each walk is scaled by the potential at
the start of the walk:ρ(w;h) = hw0

ρ(w), andρ(W;h) =
∑

w∈W ρ(w;h). Then,

µi =
∑

j∈V

Pi,jhj =
∑

j

ρ(Wj→i)hj = ρ(W∗→i;h) (14)

whereW∗→i ≡ ∪j∈V Wj→i is the set of all walks which end at nodei.

We have found that a wide class of GMMs are walk-summable:

Proposition 1 (Walk-Summable GMMs) All of the following classes of GMMs are walk-
summable:2 (i) attractive models, (ii) trees and (iii) pairwise-normalizable3 models.

2That is if we take a valid model (withJ � 0) in these classes then it automatically has%(R̄) < 1.
3In [6], we also show that walk-summability is actually equivalent to pairwise-normalizability.



Proof Outline. (i) R = R̄ andJ = I − R̄ � 0 implies λmax(R̄) < 1. BecauseR̄ has
non-negative elements,%(R̄) = λmax(R̄) < 1. In (ii) & (iii), negating anyρij , it still
holds thatJ = I − R � 0 : (ii) negatingρij doesn’t affect the eigenvalues ofJ (remove
edge{i, j} and, in each eigenvector, negate all entries in one subtree); (iii) negatingρij

preservesJ{i,j} � 0 in (4) soJ � 0. Thus, making allρij > 0, we findI − R̄ � 0 and
R̄ ≺ I. Similarly, making allρij < 0, −R̄ ≺ I. Therefore,%(R̄) < 1. �

4 Recursive Walk-Sum Calculations on Trees

In this section we derive a recursive algorithm which accrues the walk-sums (over infinite
sets of walks) necessary for exact inference on trees and relate this to BP. Walk-summability
guarantees correctness of this algorithm which reorders walks in a non-trivial way.

We start with a chain ofN nodes: its graphG has nodesV = {1, . . . , N} and edges
E = {e1, .., eN−1} whereei = {i, i + 1}. The variance at nodei is σ2

i = ρ(Wi→i). The
setWi→i can be partitioned according to the number of times that walks return to node
i: Wi→i = ∪∞

r=0W
(r)
i→i whereW(r)

i→i is the set of all self-return walks which return toi

exactlyr times. In particular,W(0)
i→i = {(i)} for which ρ(W

(0)
i→i) = 1. A walk which

starts at nodei and returnsr times is a concatenation ofr single-revisit self-return walks,
soρ(W

(r)
i→i) = ρ(W

(1)
i→i)

r. This means:

ρ(Wi→i) = ρ(∪∞
r=0W

(r)
i→i) =

∞
∑

r=0

ρ(W
(r)
i→i) =

∞
∑

r=0

ρ(W
(1)
i→i)

r =
1

1 − ρ(W
(1)
i→i)

(15)

This geometric series converges since the model is walk-summable. Hence, calculating the
single-revisit self-return walk-sumρ(W

(1)
i→i) determines the varianceσ2

i . The single-revisit
walks at nodei consist of walks in the left subchain, and walks in the right subchain. Let
Wi→i\j be the set of self-return walks ofi which never visitj, so e.g. allw ∈ Wi→i\i+1

are contained in the subgraph{1, . . . , i}. With this notation:

ρ(W
(1)
i→i) = ρ(W

(1)
i→i\i+1) + ρ(W

(1)
i→i\i−1) (16)

The left single-revisit self-return walk-sumsρ(W
(1)
i→i\i+1) can be computed recursively

starting from node1. At node1, ρ(W
(1)
1→1\2) = 0 andρ(W1→1\2) = 1. A single-revisit

self-return walk from nodei in the left subchain consists of a step to nodei− 1, then some
number of self-return walks in the subgraph{1, . . . , i− 1}, and a step fromi− 1 back toi:

ρ(W
(1)
i→i\i+1) = ρ2

i,i−1ρ(Wi−1→i−1\i) =
ρ2

i,i−1

1 − ρ(W
(1)
i−1→i−1\i

)
(17)

Thus single-revisit (and multiple revisit) walk-sums in the left subchain of every nodei can
be calculated in one forward pass through the chain. The same can be done for the right
subchain walk-sums at every nodei, by starting at nodeN , and going backwards. Using
equations (15) and (16) these quantities suffice to calculate the variances atall nodes of the
chain. A similar forwards-backwards procedure computes the means as reweighted walk-
sums over the left and right single-visit walks for nodei, which start at an arbitrary node
(in the left or right subchain) and end ati, never visitingi before that [6]. In fact, these
recursive walk-sum calculations map exactly to operations in BP – e.g., in a normalized
chain∆Ji−1→i = −ρ(W

(1)
i→i\i+1) and∆hi−1→i = −ρ(W

(1)
∗→i\i+1;h). The same strategy

applies for trees: both single-revisit and single-visit walks at nodei can be partitioned
according to which subtree (rooted at a neighborj ∈ N(i) of i) the walk lives in. This
leads to a two-pass walks-sum calculation on trees (from the leaves to the root, and back)
to calculate means and variances at all nodes.



5 Walk-sum Analysis of Loopy Belief Propagation

First, we analyze LBP in the case that the model is walk-summable and show that LBP
converges and includes all the walks for the means, but only a subset of the walks for the
variances. Then, we consider the case of non-walksummable models and relate conver-
gence of the LBP variances to walk-summability of the computation tree.

5.1 LBP in walk-summable models

To compute means and variances in a walk-summable model, we need to calculate walk-
sums for certain sets of walks in the graphG. Running LBP inG is equivalent to exact
inference in the computation tree forG, and hence calculating walk-sums for certain walks
in the computation tree. In the computation tree rooted at nodei, walks ending at the root
have a one-to-one correspondence with walks ending at nodei in G. Hence, LBP captures
all of the walks necessary to calculate the means. For variances, the walks captured by
LBP have to start and end at the root in the computation tree. However, some of the self-
return walks inG translate to walks in the computation tree that end at the root but start
at a replica of the root, rather than at the root itself. These walks are not captured by the
LBP variances. For example, in Fig. 1(a), the walk(1, 2, 3, 1) is a self-return walk in the
original graphG but is not a self-return walk in the computation tree shown in Fig. 1(b).
LBP variances capture only those self-return walks of the original graphG which also
are self-return walks in the computation tree – e.g., the walk(1, 3, 2, 3, 4, 3, 1) is a self-
return walk in both Figs. 1(a) and (b). We call thesebacktracking walks. These simple
observations lead to our main result:

Proposition 2 (Convergence of LBP for walk-summable GMMs) If the model is walk-
summable, then LBP converges: the means converge to the true means and the LBP vari-
ances converge to walk-sums over just the backtracking self-return walks at each node.

Proof Outline. All backtracking walks have positive weights, since each edge is traversed
an even number of times. For a walk-summable model, LBP variances are walks-sums
over the backtracking walks and are therefore monotonically increasing with the iterations.
They also are bounded above by the absolute self-return walk-sums (diagonal elements of
∑

l R̄
l) and hence converge. For the means: the series

∑∞
l=0 Rlh converges absolutely

since|Rlh| ≤ R̄l|h|, and the series
∑

l R̄
l|h| is a linear combination of terms of the ab-

solutely convergent series
∑

l R̄
l. The LBP means are a rearrangement of the absolutely

convergent series
∑∞

l=0 Rlh, so they converge to the same values.�

As a corollary, LBP converges for all of the model classes listed in Proposition 1. Also, in
attractive models, the LBP variances are less than or equal to the true variances. Correctness
of the means was also shown in [3] for pairwise-normalizable models.4 They also show that
LBP variances omit some terms needed for the correct variances. These terms correspond
to correlations between the root and its replicas in the computation tree. In our framework,
each such correlation is a walk-sum over the subset of non-backtracking self-return walks
in G which, in the computation tree, begin at a particular replica of the root.

Example 2. Consider the graph in Fig. 1(a). Forρ = .39, the model is walk-summable with
%(R̄) ≈ .9990. Forρ = .395 andρ = .4, the model is still valid but is not walk-summable,
with %(R̄) ≈ 1.0118 and1.0246 respectively. In Fig. 2(a) we show LBP variances for
node1 (the other nodes are similar) vs. the iteration number. Asρ increases, first the
model is walk-summable and LBP converges, then for a small interval the model is not
walk-summable but LBP still converges,5 and for largerρ LBP does not converge. Also,

4However, they only prove convergence for the subset of diagonally dominant models.
5Hence, walk-summability is sufficient but not necessary for convergence of LBP.
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Figure 2: (a) LBP variances vs. iteration. (b)%(Rn) vs. iteration.

for ρ = .4, we note that%(R) = .8 < 1 and the series
∑

l R
l converges (but

∑

l R̄
l does

not) and LBP does not converge. Hence,%(R) < 1 is not sufficient for LBP convergence
showing the importance of the stricter walk-summability condition%(R̄) < 1.

5.2 LBP in non-walksummable models

We extend our analysis to develop a tighter condition for convergence of LBP variances
based on walk-summability of the computation tree (rather than walk-summability onG).6

For trees, walk-summability and validity are equivalent, i.e.J � 0 ⇔ %(R̄) < 1, hence
our condition is equivalent to validity of the computation tree.

First, we note that when a model onG is valid (J is positive-definite) but not walk-
summable, then some finite computation trees may be invalid (indefinite). This turns out
to be the reason why LBP variances can fail to converge. Walk-summability of the original
GMM implies walk-summability (and hence validity) of all of its computation trees. But
if the GMM is not walk-summable, then its computation tree may or may not be walk-
summable. In Example 2, forρ = .395 the computation tree is still walk-summable (even
though the model onG is not) and LBP converges. Forρ = .4, the computation tree is not
walk-summable and LBP does not converge. Indeed, LBP is not even well-posed in this
case (because the computation tree is indefinite) which explains its strange behavior seen
in the bottom plot of Fig. 2(a) (e.g., non-monotonicity and negative variances).

We characterize walk-summability of the computation tree as follows. LetTn be then-
step computation tree rooted at some nodei and defineRn , In − Jn whereJn is the
normalized information matrix onTn and In is the n × n identity matrix. Then-step
computation treeTn is walk-summable (valid) if and only if%(Rn) < 1 (in trees,%(R̄n) =
%(Rn)). The sequence{%(Rn)} is monotonically increasing and bounded above by%(R̄)
(see [6]) and hence converges. We are interested in the quantity%∞ ≡ limn→∞ %(Rn).

Proposition 3 (LBP validity/variance convergence) (i) If %∞ < 1, then all finite compu-
tation trees are valid and the LBP variances converge. (ii) If%∞ > 1, then the computation
tree eventually becomes invalid and LBP is ill-posed.

Proof Outline. (i) For someδ > 0, %(Rn) ≤ 1 − δ for all n which implies: all computa-
tion trees are walk-summable and variances monotonically increase;λmax(Rn) ≤ 1 − δ,
λmin(Jn) ≥ δ, and(Pn)i,i ≤ λmax(Pn) ≤ 1

δ
. The variances are monotonically increasing

6We can focus on one tree: if the computation tree rooted at nodei is walk-summable, then so is
the computation tree rooted at any nodej. Also, if a finite computation tree rooted at nodei is not
walk-summable, then some finite tree at nodej also becomes non-walksummable forn large enough.



and bounded above, hence they converge. (ii) Iflimn→∞ %(Rn) > 1, then there exists an
m for which%(Rn) > 1 for all n ≥ m and the computation tree is invalid.�

As discussed in [6], LBP is well-posed if and only if the information numbers computed on
the right in (7) and (9) are strictly positive for alln. Hence, it is easily detected if the LBP
computation tree becomes invalid. In this case, continuing to run LBP is not meaningful
and will lead to division by zero and/or negative variances.

Example 3. Consider a 4-node cycle with edge weights(−ρ, ρ, ρ, ρ). In Fig. 2(b), for
ρ = .49 we plot%(Rn) vs. n (lower curve) and observe thatlimn→∞ %(Rn) ≈ .98 < 1,
and LBP converges (similar to the upper plot of Fig. 2(a)). Forρ = .51 (upper curve), the
model defined on the 4-node cycle is still valid butlimn→∞ %(Rn) ≈ 1.02 > 1 so LBP is
ill-posed and does not converge (similar to the lower plot of Fig. 2(a)).

In non-walksummable models, the series LBP computes for the means is not absolutely
convergent and may diverge even when variances converge (e.g., in Example 2 with
ρ = .39867). However, in all cases where variances converge we have observed that with
enough damping of BP messages7 we also obtain convergence of the means. Apparently, it
is the validity of the computation tree that is critical for convergence of Gaussian LBP.

6 Conclusion

We have presented a walk-sum interpretation of inference in GMMs and have applied this
framework to analyze convergence of LBP extending previous results. In future work,
we plan to develop extended walk-sum algorithms which gather more walks than LBP.
Another approach is to estimate variances by sampling random walks in the graph. We
also are interested to explore possible connections between results in [8] – based on self-
avoiding walks in Ising models – and sufficient conditions for convergence of discrete LBP
[9] which have some parallels to our walk-sum analysis in the Gaussian case.

Acknowledgments This research was supported by the Air Force Office of Scientific
Research under Grant FA9550-04-1, the Army Research Office under Grant W911NF-05-
1-0207 and by a grant from MIT Lincoln Laboratory.

References

[1] J. Pearl.Probabilistic inference in intelligent systems. Morgan Kaufmann, 1988.

[2] J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief propagation and its generalizations.
Exploring AI in the new millennium, pages 239–269, 2003.

[3] Y. Weiss and W. Freeman. Correctness of belief propagation in Gaussian graphical models of
arbitrary topology.Neural Computation, 13:2173–2200, 2001.

[4] P. Rusmevichientong and B. Van Roy. An analysis of belief propagation on the turbo decoding
graph with Gaussian densities.IEEE Trans. Information Theory, 48(2):745–765, Feb. 2001.

[5] S. Tatikonda and M. Jordan. Loopy belief propagation and Gibbs measures.UAI, 2002.

[6] J. Johnson, D. Malioutov, and A. Willsky. Walk-Summable Gaussian Networks and Walk-Sum
Interpretation of Gaussian Belief Propagation. TR-2650, LIDS, MIT, 2005.

[7] K. Plarre and P. Kumar. Extended message passing algorithm for inference in loopy Gaussian
graphical models.Ad Hoc Networks, 2004.

[8] M. Fisher. Critical temperatures of anisotropic Ising lattices II, general upper bounds.Physical
Review, 162(2), 1967.

[9] A. Ihler, J. Fisher III, and A. Willsky. Message Errors in Belief Propagation.NIPS, 2004.

7Modify (8) as follows:∆h
(n+1)
i→j = (1 − α)∆h

(n)
i→j + α(−Ji,j(Ĵ

(n)

i\j
)−1ĥ

(n)

i\j
) with 0 < α ≤ 1.

In Example 2, withρ = .39867 andα = .9 the means converge.


