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Abstract

Consider the problem of joint parameter estimation and prediction in a Markov
random field: i.e., the model parameters are estimated on the basis of an ini-
tial set of data, and then the fitted model is used to perform prediction (e.g.,
smoothing, denoising, interpolation) on a new noisy observation. Working in the
computation-limited setting, we analyze a joint method in which thesame convex
variational relaxationis used to construct an M-estimator for fitting parameters,
and to perform approximate marginalization for the prediction step. The key re-
sult of this paper is that in the computation-limited setting, using an inconsistent
parameter estimator (i.e., an estimator that returns the “wrong” model even in
the infinite data limit) is provably beneficial, since the resulting errors can par-
tially compensate for errors made by using an approximate prediction technique.
En route to this result, we analyze the asymptotic properties of M-estimators
based on convex variational relaxations, and establish a Lipschitz stability prop-
erty that holds for a broad class of variational methods. We show that joint esti-
mation/prediction based on the reweighted sum-product algorithm substantially
outperforms a commonly used heuristic based on ordinary sum-product.1

Keywords: Markov random fields; variational method; message-passing algorithms; sum-product;
belief propagation; parameter estimation; learning.

1 Introduction

Consider the problem of joint learning (parameter estimation) and prediction in a Markov
random field (MRF): in the learning phase, an initial collection of data is used to esti-
mate parameters, and the fitted model is then used to perform prediction (e.g., smoothing,
interpolation, denoising) on a new noisy observation. Disregarding computational cost,
there exist optimal methods for solving this problem (Route A in Figure 1). For general
MRFs, however, optimal methods are computationally intractable; consequently, many re-
searchers have examined various types of message-passing methods for learning and pre-
diction problems, including belief propagation [3, 6, 7, 14], expectation propagation [5],
linear response [4], as well as reweighted message-passing algorithms [10, 13]. Accord-
ingly, it is of considerable interest to understand and quantify the performance loss incurred
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by using computationally tractable methods versus exact methods (i.e., Route B versus A
in Figure 1).
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Figure 1. Route A: computationally intractable combination of parameter estimation and
prediction. Route B: computationally efficient combination of approximate parameter esti-
mation and prediction.

It is now well known that many message-passing algorithms—including mean field, (gen-
eralized) belief propagation, expectation propagation and various convex relaxations—can
be understood from a variational perspective; in particular, all of these message-passing al-
gorithms are iterative methods solving relaxed forms of an exact variational principle [12].
This paper focuses on the analysis of variational methods basedconvex relaxations, which
includes a broad range of extant algorithms—among them the tree-reweighted sum-product
algorithm [11], reweighted forms of generalized belief propagation [13], and semidefinite
relaxations [12]. Moreover, it is straightforward to modify other message-passing methods
(e.g., expectation propagation [5]) so as to “convexify” them. At a high level, the key idea
of this paper is the following: given that approximate methods can lead to errors at both
the estimation and prediction phases, it is natural to speculate that these sources of error
might be arranged to partially cancel one another. Our theoretical analysis confirms this
intuition: we show that with respect to end-to-end performance, it is in fact beneficial, even
in the infinite data limit, to learn the “wrong” the model by using aninconsistentparameter
estimator.

More specifically, we show how any convex variational method can be used to define a
surrogate likelihood function. We then investigate the asymptotic properties of parameter
estimators based maximizing such surrogate likelihoods, and establish that they are asymp-
totically normal but inconsistent in general. We then prove that any variational method that
is based on a strongly concave entropy approximation is globally Lipschitz stable. Finally,
focusing on prediction for a coupled mixture of Gaussians, we prove upper bounds on
the increase in MSE of our computationally efficient method, relative to the unachievable
Bayes optimum. We provide experimental results using the tree-reweighted (TRW) sum-
product algorithm that confirm the stability of our methods, and demonstrate its superior
performance to a heuristic method based on standard sum-product.

2 Background

We begin with necessary notation and background on multinomial Markov random fields,
as well as variational representations and methods.

Markov random fields: Given an undirected graphG = (V,E) with N = |V | vertices,
we associate to each vertexs ∈ V a discrete random variableXs, taking values inXs =
{0, 1 . . . ,m − 1}. We assume that the vectorX = {Xs | s ∈ V } has a distribution that is



Markov with respect to the graphG, so that its distribution can be represented in the form

p(x; θ) = exp{
∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt) − A(θ)} (1)

HereA(θ) := log
∑

x∈XN exp
{ ∑

s∈V θs(xs) +
∑

(s,t)∈E θst(xs, xt)
}

is thecumulant
generating functionthat normalizes the distribution, andθs(·) and θst(·, ·) are potential
functions. In particular, we make use of the parameterizationθs(xs) :=

∑
j∈Xs

θs;jI j [xs],
whereI j [xs] is an indicator function for the event{xs = j}; the quantityθst is defined
analogously. Overall, the family of MRFs (1) is an exponential family with canonical
parameterθ ∈ R

d. Note that the elements of the canonical parameters are associated with
vertices{θs;j , s ∈ V, j ∈ Xs} and edges{θst;jk, (s, t) ∈ E, (j, k) ∈ Xs × Xt} of the
underlying graph.

Variational representation: We now describe how the cumulant generating function can
be represented as the solution of an optimization problem. The constraint set is given
by MARG(G;φ) :=

{
µ ∈ R

d | µ =
∑

x∈XN p(x)φ(x) for some p(·)
}

, consisting
of all globally realizable singletonµs(·) and pairwiseµst(· , ·) marginal distributions on
the graphG. For anyµ ∈ MARG(G;φ), we defineA∗(µ) = −maxp H(p), where
the maximum is taken over all distributions that have mean parametersµ. With these
definitions, it can be shown [12] thatA has the variational representation

A(θ) = max
µ∈MARG(G;φ)

{
θT µ − A∗(µ)

}
. (2)

3 From convex surrogates to joint estimation/prediction

In general, solving the variational problem (2) is intractable for two reasons: (i) the con-
straint setMARG(G;φ) is extremely difficult to characterize; and (ii) the dual function
A∗ lacks a closed-form representation. These challenges motivate approximations toA∗

andMARG(G;φ); the resulting relaxed optimization problem defines a convex surrogate
to the cumulant generating function.

Convex surrogates:Let REL(G;φ) be a compact and convex outer bound to the marginal
polytopeMARG(G;φ), and letB∗ be a strictly convex and twice continuously differen-
tiable approximation to the dual functionA∗. We use these approximations to define a
convex surrogateB via the relaxed optimization problem

B(θ) := max
τ∈REL(G;φ)

{
θT τ − B∗(τ)

}
. (3)

The functionB so defined has several desirable properties. First, sinceB is defined by the
maximum of a collection of functions linear inθ, it is convex [1]. Moreover, by the strict
convexity ofB∗ and compactness ofREL(G;φ), the optimum is uniquely attained at some
τ(θ). Finally, an application of Danskin’s theorem [1] yields thatB is differentiable, and
that∇B(θ) = τ(θ). Sinceτ(θ) has a natural interpretation as apseudomarginal, this last
property ofB is analogous to the well-known cumulant generating property ofA—namely,
∇A(θ) = µ(θ).

One example of such a convex surrogate is the tree-reweighted Bethe free energy consid-
ered in our previous work [11]. For this surrogate, the relaxed constraint setREL(G;φ)
takes the formLOCAL(G;φ) :=

{
τ ∈ R

d
+ |

∑
xs

τs(xs) = 1,
∑

xt
τst(xs, xt) =

τs(xs)
}

, whereas the entropy approximationB∗ is of the “convexified” Bethe form

−B∗(τ) =
∑

s∈V

Hs(τs) −
∑

(s,t)∈E

ρstIst(τst). (4)



HereHs andIst are the singleton entropy and edge-based mutual information, respectively,
and the weightsρst are derived from the graph structure so as to ensure convexity (see [11]
for more details). Analogous convex variational formulations underlie the reweighted gen-
eralized BP algorithm [13], as well as a log-determinant relaxation [12].

Approximate parameter estimation using surrogate likelihoods: Consider the prob-
lem of estimating the parameterθ using i.i.d. samples{x1, . . . , xn}. For an MRF of
the form (1), the maximum likelihood estimate (MLE) is specified using the vectorµ̂ of
empirical marginal distributions (singleton̂µs and pairwisêµst). Since the likelihood is
intractable to optimize (due to the cumulant generating functionA), it is natural to use the
convex surrogateB to define an alternative estimator obtained by maximizing the regular-
izedsurrogate likelihood:

θ̂n := arg max
θ∈Rd

{
LB(θ; µ̂) − λnR(θ)

}
= arg max

θ∈Rd

{
θT µ̂ − B(θ) − λnR(θ)

}
. (5)

HereR : R
d → R+ is a regularization function (e.g.,R(θ) = ‖θ‖2), whereasλn > 0

is a regularization coefficient. For the tree-reweighted Bethe surrogate, we have shown in
previous work [10] that in the absence of regularization, the optimal parameter estimates
θ̂n have a very simple closed-form solution, specified in terms of the weightsρst and the
empirical marginalŝµ. If a regularizing term is added, these estimates no longer have a
closed-form solution, but the optimization problem (5) can still be solved efficiently by
message-passing methods.

Joint estimation/prediction: Using such an estimator, we now consider the joint ap-
proach to estimation and prediction illustrated in Figure 2. Using an initial set of i.i.d. sam-
ples, we first use the surrogate likelihood (5) to construct a parameter estimateθ̂n. Given
a new noisy or incomplete observationy, we wish to perform near-optimal prediction or
data fusion using the fitted model (e.g., for smoothing or interpolation of a noisy image).
In order to do so, we first incorporate the new observation into the model, and then use
the message-passing algorithm associated with the convex surrogateB in order to compute
approximate pseudomarginalsτ . These pseudomarginals can then be used to construct a
predictionẑ(y; τ), where the specifics of the prediction depend on the observation model.
We provide a concrete illustration in Section 5 using a mixture-of-Gaussians observation
model.

4 Analysis

Asymptotics of estimator: We begin by considering the asymptotic behavior of the param-
eter estmiator̂θn defined by the surrogate likelihood (5). Since this parameter estimator is
a particular type ofM -estimator, the following result follows from standard techniques [8]:

Proposition 1. For a general graph with cycles,̂θn converges in probability to some fixed
θ̂ 6= θ∗; moreover,

√
n[θ̂n − θ̂] is asymptotically normal.

A key property of the estimator is itsinconsistency—i.e., the estimated modelθ̂ differs
from the true modelθ∗ even in the limit of large data. Despite this inconsistency, we will
see that̂θn is useful for performing prediction.

Algorithmic stability: A desirable property of any algorithm—particularly one applied
to statistical data—is that it exhibit an appropriate form of stability with respect to its
inputs. Not all message-passing algorithms have such stability properties. For instance,
the standard BP algorithm, although stable for relatively weakly coupled MRFs [3, 6],
can be highly unstable due to phase transitions. Previous experimental work has shown
that methods based on convex relaxations, including reweighted belief propagation [10],



Generic algorithm for joint parameter estimation and prediction:
1. Estimate parametersbθn from initial datax1, . . . , xn by maximizing surrogate likeli-

hoodLB .
2. Given a new set of observationsy, incorporate them into the model:

eθs( · ; ys) = bθ
n

s ( · ) + log p(ys | · ). (6)

3. Compute approximate marginalsτ by using the message-passing algorithm associated
with the convex surrogateB. Use approximate marginals to construct predictionbz(y; τ)
of z based on the observationy and pseudomarginalsτ .

Figure 2. Algorithm for joint parameter estimation and prediction. Both the learning and
prediction steps are approximate, but the key is that they are both based on the same under-
lying convex surrogateB. Such a construction yields a provably beneficial cancellation of
the two sources of error (learning and prediction).

reweighted generalized BP [13], and log-determinant relaxations [12] appear to be very
stable. Here we provide theoretical support for these empirical observations: in particular,
we prove that, in sharp contrast to non-convex methods, any variational method based on a
strongly convex entropy approximation is globally stable.

A function f : R
n → R is strongly convexif there exists a constantc > 0 such that

f(y) ≥ f(x) + ∇f(x)T
(
y − x) + c

2‖y − x‖2 for all x, y ∈ R
n. For a twice continuously

differentiable function, this condition is equivalent to the eigenspectrum of the Hessian
∇2f(x) being uniformly bounded away from zero byc. With this definition, we have:

Proposition 2. Consider any variational method based on a strongly concave entropy ap-
proximation−B∗; moreover, for any parameterθ ∈ R

d, let τ(θ) denote the associated
set of pseudomarginals. If the optimum is attained interior of the constraint set, then there
exists a constantR < +∞ such that

‖τ(θ + δ) − τ(θ)‖ ≤ R‖δ‖ for all θ, δ ∈ R
d.

Proof. By our construction of the convex surrogateB, we haveτ(θ) = ∇B(θ), so that the
statement is equivalent to the assertion that the gradient∇B is a Lipschitz function. Apply-
ing the mean value theorem to∇B, we can write∇B(θ + δ) −∇B(θ) = ∇2B(θ + tδ)δ
wheret ∈ [0, 1]. Consequently, in order to establish the Lipschitz condition, it suffices
to show that the spectral norm of∇2B(γ) is uniformly bounded above over allγ ∈ R

d.
Differentiating the relation∇B(θ) = τ(θ) yields∇2B(θ) = ∇τ(θ). Now standard sen-
sitivity analysis results [1] yield that∇τ(θ) = [∇2B∗(τ(θ)]−1. Finally, our assumption
of strong convexity ofB∗ yields that the spectral norm of∇2B∗(τ) is uniformly bounded
away from zero, which yields the claim.

Many existing entropy approximations, including the convexifed Bethe entropy (4), can be
shown to be strongly concave [9].

5 Bounds on performance loss

We now turn to theoretical analysis of the joint method for parameter estimation and pre-
diction illustrated in Figure 2. Note that given our setting of limited computation, the
Bayes optimum is unattainable for two reasons: (a) it has knowledge of the exact parame-
ter valueθ∗; and (b) the prediction step (7) involves computing exact marginal probabilities
µ. Therefore, our ultimate goal is to bound the performance loss of our method relative to
the unachievable Bayes optimum. So as to obtain a concrete result, we focus on the spe-
cial case of joint learning/prediction for a mixture-of-Gaussians; however, the ideas and
techniques described here are more generally applicable.



Prediction for mixture of Gaussians: Suppose that the discrete random vector is a label
vector for the components in a finite mixture of Gaussians: i.e., for eachs ∈ V , the random
variableZs is specified byp(Zs = zs |Xs = j; θ∗) ∼ N(νj , σ

2
j ), for j ∈ {0, 1, . . . ,m −

1}. Such models are widely used in statistical signal and image processing [2]. Suppose
that we observe a noise-corrupted version ofZs—namelyYs = αZs +

√
1 − α2Ws, where

Ws ∼ N(0, 1) is additive Gaussian noise, and the parameterα ∈ [0, 1] specifies the signal-
to-noise ratio (SNR) of the observation model. (Hereα = 0 corresponds to pure noise,
whereasα = 1 corresponds to completely uncorrupted observations.)

With this set-up, it is straightforward to show that the optimal Bayes least squares estimator
(BLSE) ofZ takes the form

ẑs(y;µ) :=
m−1∑

j=0

µs(j; θ
∗)

[
ωj(α)

(
ys − νj

)
+ νj

]
, (7)

whereµs(j; θ
∗) is the exact marginal of the distributionp(y |x)p(x; θ∗); andωj(α) :=

ασ2

j

α2σ2

j
+(1−α2)

is the usual BLSE weighting for a Gaussian with varianceσj . For this set-up,

the approximate predictor̂zs(y; τ) defined by our joint procedure in Figure 2 corresponds
to replacing the exact marginalsµ with the pseudomarginalsτs(j; θ̃) obtained by solving
the variational problem with̃θ.

Bounds on performance loss: We now turn to a comparison of the mean-squared error
(MSE) of the Bayes optimal predictor̂z(Y ;µ) to the MSE of the surrogate-based predictor
ẑ(Y ; τ). More specifically, we provide an upper bound on the increase in MSE, where the
bound is specified in terms of the coupling strength and the SNR parameterα. Although
results of this nature can be derived more generally, for simplicity we focus on the case
of two mixture components (m= 2), and consider the asymptotic setting, in which the
number of data samplesn → +∞, so that the law of large numbers [8] ensures that the
empirical marginalŝµn converge to the exact marginal distributionsµ∗. Consequently, the
MLE converges to the true parameter valueθ∗, whereas Proposition 1 guarantees that our
approximate parameter estimateθ̂n converges to the fixed quantitŷθ. By construction, we
have the relations∇B(θ̂) = µ∗ = ∇A(θ∗).

An important factor in our bound is the quantity

L(θ∗; θ̂) := sup
δ∈Rd

σmax

(
∇2A(θ∗ + δ) −∇2B(θ̂ + δ)

)
, (8)

whereσmax denotes the maximal singular value. Following the argument in the proof of
Proposition 2, it can be seen thatL(θ∗; θ̂) is finite. Two additional quantities that play a
role in our bound are the differences

∆ω(α) := ω1(α) − ω0(α), and ∆ν(α) := [1 − ω1(α)]ν1 − [1 − ω0(α)]ν0,

whereν0, ν1 are the means of the two Gaussian components. Finally, we defineγ(Y ;α) ∈
R

d with componentslog p(Ys|Xs=1)
p(Ys|Xs=0) for s ∈ V , and zeroes otherwise. With this notation,

we state the following result (see the technical report [9] for the proof):

Theorem 1. Let MSE(τ) andMSE(µ) denote the mean-squared prediction errors of the
surrogate-based predictor̂z(y; τ), and the Bayes optimal estimateẑ(y;µ) respectively. The
MSE increaseI(α) := 1

N

[
MSE(τ) − MSE(µ)

]
is upper bounded by

I(α) ≤ E

{
Ω2(α)∆2

ν(α) + Ω(α)
[
∆2

ω(α)

√∑
s Y 4

s

N
+ 2|∆ν(α)| |∆ω(α)|

√∑
s Y 2

s

N

]}

whereΩ(α) := min{1, L(θ∗; θ̂)‖γ(Y ;α)
N

‖}.
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Figure 3. Surface plots of the percentage increase in MSE relative to Bayes optimum
for different methods as a function of observation SNR and coupling strength. Top row:
Gaussian mixture with components(ν0, σ

2

0) = (−1, 0.5) and(ν1, σ
2

1) = (1, 0.5). Bot-
tom row: Gaussian mixture with components(ν0, σ

2

0) = (0, 1) and(ν0, σ
2

1) = (0, 9).
Left column: independence model (IND). Center column: ordinary belief propagation
(BP). Right column: tree-reweighted algorithm (TRW).

It can be seen thatI(α) → 0 asα → 0+ and asα → 1−, so that the surrogate-based
method is asymptotically optimal for both low and high SNR. The behavior of the bound
in the intermediate regime is controlled by the balance between these two terms.

Experimental results: In order to test our joint estimation/prediction procedure, we have
applied it to coupled Gaussian mixture models on different graphs, coupling strengths,
observation SNRs, and mixture distributions. Although our methods are more generally
applicable, here we show representative results form = 2 components, and two differ-
ent mixture types. The first ensemble, constructed with mean and variance components
(ν0, σ

2
0) = (0, 1) and (ν1, σ

2
1) = (0, 9), mimics heavy-tailed behavior. The second en-

semble is bimodal, with components(ν0, σ
2
0) = (−1, 0.5) and (ν1, σ

2
1) = (1, 0.5). In

both cases, each mixture component is equally weighted. Here we show results for a 2-D
grid with N = 64 nodes. Since the mixture variables havem = 2 states, the coupling
distribution can be written asp(x; θ) ∝ exp

{ ∑
s∈V θsxs +

∑
(s,t)∈E θstxsxt

}
. where

x ∈ {−1,+1}N are spin variables indexing the mixture components. In all trials, we chose
θs = 0 for all nodess ∈ V , which ensures uniform marginal distributionsp(xs; θ) at each
node. For each coupling strengthγ ∈ [0, 1], we chose edge parameters asθst ∼ U [0, γ],
and we varied the SNR parameterα controlling the observation model in[0, 1]. We eval-
uated the following three methods based on their increase in mean-squared error (MSE)
over the Bayes optimal predictor (7): (a) As a baseline, we used theindependence model
for the mixture components: parameters are estimatedθs(xs) = log µ̂s(xs), and setting
coupling termsθst(xs, xt) equal to zero. The prediction step reduces to performing BLSE
at each node independently. (b) Thestandard belief propagation(BP) approach is based on
estimating parameters (see step (1) of Figure 2) usingρst = 1 for all edges(s, t), and using
BP to compute the pseudomarginals. (c) Thetree-reweighted method(TRW) is based on
estimating parameters using the tree-reweighted surrogate [10] with weightsρst = 1

2 for all
edges(s, t), and using the TRW sum-product algorithm to compute the pseudomarginals.



Shown in Figure 3 are 2-D surface plots of the average percentage increase in MSE, taken
over 100 trials, as a function of the coupling strengthγ ∈ [0, 1] and the observation SNR
parameterα ∈ [0, 1] for the independence model (left column), BP approach (middle col-
umn) and TRW method (right column). For weak coupling (γ≈ 0), all three methods—
including the independence model—perform quite well, as should be expected given the
weak dependency. Although not clear in these plots, BP outperforms TRW for weak cou-
pling; however, both methods lose than than 1% in this regime. As the coupling is in-
creased, the BP method eventually deteriorates quite seriously; indeed, for large enough
coupling and low/intermediate SNR, its performance can be worse than the independence
model. Looking at alternative models (in which phase transitions are known), we have
found that this rapid degradation co-incides with the appearance of multiple fixed points.
In contrast, the behavior of the TRW method is extremely stable, consistent with our theory.

6 Conclusion

We have described and analyzed joint methods for parameter estimation and predic-
tion/smoothing using variational methods that are based on convex surrogates to the cu-
mulant generating function. Our results—both theoretical and experimental—confirm the
intuition that in the computation-limited setting, in which errors arise from approximations
made both during parameter estimation and subsequent prediction, it isprovably beneficial
to use an inconsistent parameter estimator. Our experimental results on the coupled mixture
of Gaussian model confirm the theory: the tree-reweighted sum-product algorithm yields
prediction results close to the Bayes optimum, and substantially outperforms an analogous
but heuristic method based on standard belief propagation.

References

[1] D. Bertsekas.Nonlinear programming. Athena Scientific, Belmont, MA, 1995.
[2] M. Crouse, R. Nowak, and R. Baraniuk. Wavelet-based statistical signal processing using

hidden Markov models.IEEE Trans. Signal Processing, 46:886–902, April 1998.
[3] A. Ihler, J. Fisher, and A. S. Willsky. Loopy belief propagation: Convergence and effects of

message errors.Journal of Machine Learning Research, 6:905–936, May 2005.
[4] M. A. R. Leisink and H. J. Kappen. Learning in higher order Boltzmann machines using linear

response.Neural Networks, 13:329–335, 2000.
[5] T. P. Minka. A family of algorithms for approximate Bayesian inference. PhD thesis, MIT,

January 2001.
[6] S. Tatikonda and M. I. Jordan. Loopy belief propagation and Gibbs measures. InProc. Uncer-

tainty in Artificial Intelligence, volume 18, pages 493–500, August 2002.
[7] Y. W. Teh and M. Welling. On improving the efficiency of the iterative proportional fitting

procedure. InWorkshop on Artificial Intelligence and Statistics, 2003.
[8] A. W. van der Vaart.Asymptotic statistics. Cambridge University Press, Cambridge, UK, 1998.
[9] M. J. Wainwright. Joint estimation and prediction in Markov random fields: Benefits of incon-

sistency in the computation-limited regime. Technical Report 690, Department of Statistics,
UC Berkeley, 2005.

[10] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Tree-reweighted belief propagation algo-
rithms and approximate ML estimation by pseudomoment matching. InWorkshop on Artificial
Intelligence and Statistics, January 2003.

[11] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. A new class of upper bounds on the log
partition function.IEEE Trans. Info. Theory, 51(7):2313–2335, July 2005.

[12] M. J. Wainwright and M. I. Jordan. A variational principle for graphical models. InNew
Directions in Statistical Signal Processing. MIT Press, Cambridge, MA, 2005.

[13] W. Wiegerinck. Approximations with reweighted generalized belief propagation. InWorkshop
on Artificial Intelligence and Statistics, January 2005.

[14] J. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free energy approximations and gener-
alized belief propagation algorithms.IEEE Trans. Info. Theory, 51(7):2282–2312, July 2005.


