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Abstract

Although variants of value iteration have been proposed for finding Nash
or correlated equilibria in general-sum Markov games, these variants
have not been shown to be effective in general. In this paper, we demon-
strate by construction that existing variants of value iteration cannot find
stationary equilibrium policies in arbitrary general-sum Markov games.
Instead, we propose an alternative interpretation of the output of value it-
eration based on a new (non-stationary) equilibrium concept that we call
“cyclic equilibria.” We prove that value iteration identifies cyclic equi-
libria in a class of games in which it fails to find stationary equilibria. We
also demonstrate empirically that value iteration finds cyclic equilibria in
nearly all examples drawn from a random distribution of Markov games.

1 Introduction

Value iteration (Bellman, 1957) has proven its worth in a variety of sequential-decision-
making settings, most significantly single-agent environments (Puterman, 1994), team
games, and two-player zero-sum games (Shapley, 1953). In value iteration for Markov
decision processes and team Markov games, the value of a state is defined to be the maxi-
mum over all actions of the value of the combination of the state and action (orQ value).
In zero-sum environments, the max operator becomes a minimax over joint actions of the
two players. Learning algorithms based on this update have been shown to compute equi-
libria in both model-based scenarios (Brafman & Tennenholtz, 2002) and Q-learning-like
model-free scenarios (Littman & Szepesvári, 1996).

The theoretical and empirical success of such algorithms has led researchers to apply the
same approach in general-sum games, in spite of exceedingly weak guarantees of conver-
gence (Hu & Wellman, 1998; Greenwald & Hall, 2003). Here, value-update rules based on
select Nash or correlated equilibria have been evaluated empirically and have been shown
to perform reasonably in some settings. None has been identified that computes equilib-
ria in general, however, leaving open the question of whether such an update rule is even
possible.

Our main negative theoretical result is that an entire class of value-iteration update rules,
including all those mentioned above, can be excluded from consideration for computing
stationary equilibria in general-sum Markov games. Briefly, existing value-iteration al-
gorithms compute Q values as an intermediate result, then derive policies from these Q



values. We demonstrate a class of games in which Q values, eventhose corresponding to
an equilibrium policy, contain insufficient information for reconstructing an equilibrium
policy.

Faced with the impossibility of developing algorithms along the lines of traditional value
iteration that find stationary equilibria, we suggest an alternative equilibrium concept—
cyclic equilibria. A cyclic equilibrium is a kind of non-stationary joint policy that satisfies
the standard conditions for equilibria (no incentive to deviate unilaterally). However, unlike
conditional non-stationary policies such as tit-for-tat and finite-state strategies based on the
“folk theorem” (Osborne & Rubinstein, 1994), cyclic equilibria cycle rigidly through a set
of stationary policies.

We present two positive results concerning cyclic equilibria. First, we consider the class of
two-player two-state two-action games used to show that Q values cannot reconstruct all
stationary equilibrium. Section 4.1 shows that value iteration finds cyclic equilibria for all
games in this class. Second, Section 5 describes empirical results on a more general set of
games. We find that on a significant fraction of these games, value iteration updates fail to
converge. In contrast, value iteration finds cyclic equilibria for nearly all the games.

The success of value iteration in finding cyclic equilibria suggests this generalized solution
concept could be useful for constructing robust multiagent learning algorithms.

2 An Impossibility Result for Q Values

In this section, we consider a subclass of Markov games in which transitions are determin-
istic and are controlled by one player at a time. We show that this class includes games
that have no deterministic equilibrium policies. For this class of games, we present (proofs
available in an extended technical report) two theorems. The first, a negative result, states
that the Q values used in existing value-iteration algorithms are insufficient for deriving
equilibrium policies. The second, presented in Section 4.1, is a positive result that states
that value iteration does converge to cyclic equilibrium policies in this class of games.

2.1 Preliminary Definitions

Given a finite setX, define∆(X) to be the set of all probability distributions overX.

Definition 1 A Markov game Γ = [S,N,A, T,R, γ] is a set of statesS, a set of players
N = {1, . . . , n}, a set of actions for each player in each state{Ai,s}s∈S,i∈N (where we
represent the set of all state-action pairs asA ≡

⋃

s∈S

(

{s} ×
∏

i∈N Ai,s

)

, a transition
functionT : A → ∆(S), a reward functionR : A → R

n, and a discount factorγ.

Given a Markov gameΓ, letAs =
∏

i∈N Ai,s. A stationary policy is a set of distributions
{π(s) : s ∈ S}, where for alls ∈ S, π(s) ∈ ∆(As). Given a stationary policyπ, define
V π,Γ : S → R

n andQπ,Γ : A → R
n to be the unique pair of functions satisfying the

following system of equations: for alli ∈ N , for all (s, a) ∈ A,

V π,Γ
i (s) =

∑

a∈As

π(s)(a)Qπ,Γ
i (s, a), (1)

Qπ,Γ
i (s, a) = Ri(s, a) + γ

∑

s′∈S

T (s, a)(s′)V π,Γ
i (s′). (2)

A deterministic Markov game is a Markov gameΓ where the transition function is deter-
ministic: T : A → S. A turn-taking game is a Markov gameΓ where in every state, only
one player has a choice of action. Formally, for alls ∈ S, there exists a playeri ∈ N such
that for all other playersj ∈ N\{i}, |Aj,s| = 1.



2.2 A Negative Result for Stationary Equilibria

A NoSDE (pronounced “nasty”) game is a deterministic turn-taking Markov gameΓ with
two players, two states, no more than two actions for either player in either state, and no
deterministic stationary equilibrium policy. That the set of NoSDE games is non-empty is
demonstrated by the game depicted in Figure 1. This game has no deterministic stationary
equilibrium policy: If Player 1 sends, Player 2 prefers to send; but, if Player 2 sends,
Player 1 prefers to keep; and, if Player 1 keeps, Player 2 prefers to keep; but, if Player 2
keeps, Player 1 prefers to send. No deterministic policy is an equilibrium because one
player will always have an incentive to change policies.

1 2

R1(1, send, noop) = 0

R1(2, noop, send) = 0

R1(1, keep, noop) = 1 R1(2, noop, keep) = 3

1 2

R2(1, send, noop) = 3

R2(2, noop, send) = 0

R2(1, keep, noop) = 0 R2(2, noop, keep) = 1

Figure 1: An example of a NoSDE game. Here,S = {1, 2}, A1,1 = A2,2 =
{keep, send}, A1,2 = A2,1 = {noop}, T (1, keep, noop) = 1, T (1, send, noop) = 2,
T (2, noop, keep) = 2, T (2, noop, send) = 1, andγ = 3/4. In the unique stationary
equilibrium, Player 1 sends with probability2/3 and Player 2 sends with probability5/12.

Lemma 1 Every NoSDE game has auniquestationary equilibrium policy.1

It is well known that, in general Markov games, random policies are sometimes needed to
achieve an equilibrium. This fact can be demonstrated simply by a game with one state
where the utilities correspond to a bimatrix game with no deterministic equilibria (penny
matching, say). Random actions in these games are sometimes linked with strategies that
use “faking” or “bluffing” to avoid being exploited. That NoSDE games exist is surprising,
in that randomness is needed even though actions are always taken with complete infor-
mation about the other player’s choice and the state of the game. However, the next result
is even more startling. Current value-iteration algorithms attempt to find the Q values of a
game with the goal of using these values to find a stationary equilibrium of the game. The
main theorem of this paper states that it is not possible to derive a policy from the Q values
for NoSDE games, and therefore in general Markov games.

Theorem 1 For any NoSDE gameΓ = [S,N,A, T,R] with a unique equilibrium policy
π, there exists another NoSDE gameΓ′ = [S,N,A, T,R′] with its own unique equilibrium
policyπ′ such thatQπ,Γ = Qπ′,Γ′

butπ 6= π′ andV π,Γ 6= V π′,Γ′

.

This result establishes that computing or learning Q values is insufficient to compute a
stationary equilibrium of a game.2 In this paper we suggest an alternative, where we still

1The policy is both a correlated equilibrium and a Nash equilibrium.
2Although maintaining Q valuesandstate values and deriving policies from both sets of functions

might circumvent this problem, we are not aware of existing value-iteration algorithms or learning
algorithms that do so. This observation presents a possible avenue of research not followed in this
paper.



do value iteration in the same way, but we extract acyclic equilibriumfrom the sequence
of values instead of a stationary one.

3 A New Goal: Cyclic Equilibria

A cyclic policy is a finite sequence of stationary policiesπ = {π1, . . . , πk}. Associated
with π is a sequence of value functions{V π,Γ,j} and Q-value functions{Qπ,Γ,j} such that

V π,Γ,j
i (s) =

∑

a∈As

πj(s)(a) Qπ,Γ,j
i (s, a) and (3)

Qπ,Γ,j
i (s, a) = Ri(s, a) + γ

∑

s′∈S

T (s, a)(s′) V
π,Γ,inck(j)
i (s′) (4)

where for allj ∈ {1, . . . , k}, inck(k) = 1 andinck(j) = j + 1 if j < k.

Definition 2 Given a Markov gameΓ, a cyclic correlated equilibrium is a cyclic policyπ,
where for allj ∈ {1, . . . , k}, for all i ∈ N , for all s ∈ S, for all ai, a

′
i ∈ Ai,s:

∑

a−i∈A−i,s

πj(s)(ai, a−i) Qπ,Γ,j
i (s, ai, a−i) ≥

∑

(ai,a−i)∈As

πj(s)(ai, a−i) Qπ,Γ,j(s, a′
i, a−i). (5)

Here,a−i denotes a joint action for all players excepti. A similar definition can be con-
structed for Nash equilibria by insisting that all policiesπj(s) are product distributions. In
Definition 2, we imagine that action choices are moderated by a referee with a clock that
indicates the current stagej of the cycle. At each stage, a typical correlated equilibrium
is executed, meaning that the referee chooses a joint actiona from πj(s), tells each agent
its part of that joint action, and no agent can improve its value by eschewing the referee’s
advice. If no agent can improve its value by more thanǫ at any stage, we sayπ is an
ǫ-correlated cyclic equilibrium.

A stationary correlated equilibrium is a cyclic correlated equilibrium withk = 1. In the
next section, we show how value iteration can be used to derive cyclic correlated equilibria.

4 Value Iteration in General-Sum Markov Games

For a gameΓ, defineQΓ = (Rn)A to be the set of all state-action (Q) value functions,
VΓ = (Rn)S to be the set of all value functions, andΠΓ to be the set of all stationary
policies. Traditionally, value iteration can be broken down into estimating a Q value based
upon a value function, selecting a policyπ given the Q values, and deriving a value function
based uponπ and the Q value functions. Whereas the first and the last step are fairly
straightforward, the step in the middle is quite tricky. A pair(π,Q) ∈ ΠΓ ×QΓ agree(see
Equation 5) if, for alls ∈ S, i ∈ N , ai, a

′
i ∈ Ai,s:

∑

a−i∈A−i,s

π(s)(ai, a−i) Qi(s, ai, a−i) ≥
∑

(ai,a−i)∈As

π(s)(ai, a−i) Q(s, a′
i, a−i). (6)

Essentially,Q andπ agree ifπ is a best response for each player given payoffsQ. An
equilibrium-selection rule is a functionf : QΓ → ΠΓ such that for allQ ∈ QΓ,
(f(Q), Q) agree. The set of all such rules isFΓ. In essence, these rules update values
assuming an equilibrium policy for a one-stage game withQ(s, a) providing the terminal
rewards. Examples of equilibrium-selection rules are best-Nash, utilitarian-CE, dictatorial-
CE, plutocratic-CE, and egalitarian-CE (Greenwald & Hall, 2003). (Utilitarian-CE, which
we return to later, selects the correlated equilibrium in which total of the payoffs is max-
imized.) Foe-VI and Friend-VI (Littman, 2001) do not fit into our formalism, but it can



be proven that in NoSDE games they converge to deterministic policies that are neither
stationary nor cyclic equilibria. DefinedΓ : VΓ × VΓ → R to be a distance metric over
value functions, such that

dΓ(V, V ′) = max
s∈S,i∈N

|Vi(s) − V ′
i (s)|. (7)

Using our notation, the value-iteration algorithm for general-sum Markov games can be
described as follows.

Algorithm 1: ValueIteration( gameΓ, V 0 ∈ VΓ, f ∈ FΓ, IntegerT )
For t := 1 to T :

1. ∀s ∈ S, a ∈ A, Qt(s, a) := R(s, a) + γ
∑

s′∈S T (s, a)(s′) V t−1(s′).

2. πt = f(Qt).

3. ∀s ∈ S, V t(s) =
∑

a∈As
πt(s)(a) Qt(s, a).

Return{Q1, . . . , QT }, {π1, . . . , πT }, {V 1, . . . , V T }.

If a stationary equilibrium is sought, the final policy is returned.

Algorithm 2: GetStrategy(gameΓ, V 0 ∈ VΓ, f ∈ FΓ, IntegerT )

1. Run(Q1 . . . QT , π1 . . . πT , V 1 . . . V T ) = ValueIteration(Γ, V0, f, T ).

2. ReturnπT .

For cyclic equilibria, we have a variety of options for how many past stationary policies
we want to consider for forming a cycle. Our approach searches for a recent value function
that matches the final value function (an exact match would imply a true cycle). Ties are
broken in favor of the shortest cycle length. Observe that the order of the policies returned
by value iteration is reversed to form a cyclic equilibrium.

Algorithm 3: GetCycle(gameΓ, V 0 ∈ VΓ, f ∈ FΓ, IntegerT , IntegermaxCycle)

1. If maxCycle ≥ T , maxCycle := T − 1.

2. Run(Q1 . . . QT , π1 . . . πT , V 1 . . . V T ) = ValueIteration(Γ, V0, f, T ).

3. Definek := argmint∈{1,...,maxCycle} d(V T , V T−t).

4. For eacht ∈ {1, . . . , k} setπt := πT+1−t.

4.1 Convergence Conditions

Fact 1 If d(V T , V T−1) = ǫ in GetStrategy, thenGetStrategy returns an ǫγ
1−γ

-correlated
equilibrium.

Fact 2 If GetCycle returns a cyclic policy of lengthk andd(V T , V T−k) = ǫ, thenGetCy-
cle returns an ǫγ

1−γk -correlated cyclic equilibrium.

Since, givenV 0 andΓ, the space of value functions is bounded,eventuallythere will be two
value functions in{V 1, . . . , V T } that are close according todΓ. Therefore, the two prac-
tical (and open) questions are (1) how many iterations does it take to find anǫ-correlated
cyclic equilibrium? and (2) How large is the cyclic equilibrium that is found?

In addition to approximate convergence described above, in two-player turn-taking games,
one can proveexact convergence. In fact, all the members ofFΓ described above can be
construed as generalizations of utilitarian-CE in turn-taking games, and utilitarian-CE is
proven to converge.



Theorem 2 Given the utilitarian-CE equilibrium-selection rulef , for every NoSDE game
Γ, for everyV 0 ∈ VΓ, there exists some finiteT such thatGetCycle(Γ, V 0, f, T, ⌈T/2⌉)
returns a cyclic correlated equilibrium.

Theoretically, we can imagine passing infinity as a parameter to value iteration. Doing so
shows the limitation of value-iteration in Markov games.

Theorem 3 Given the utilitarian-CE equilibrium-selection rulef , for any NoSDE gameΓ
with unique equilibriumπ, for everyV 0 ∈ VΓ, the value-function sequence{V 1, V 2, . . .}
returned fromValueIteration(Γ, V 0, f,∞) does not converge toV π.

Since all of the other rules specified above (except friend-VI and foe-VI) can be imple-
mented with the utilitarian-CE equilibrium-selection rule, none of these rules will be guar-
anteed to converge, even in such a simple class as turn-taking games!

Theorem 4 Given the gameΓ in Figure 1 and its stationary equilibriumπ, givenV 0
i (s) =

0 for all i ∈ N , s ∈ S, then for any update rulef ∈ FΓ, the value-function sequence
{V 1, V 2, . . .} returned fromValueIteration(Γ, V 0, f,∞) does not converge toV π.

5 Empirical Results

To complement the formal results of the previous sections, we ran two batteries of tests
on value iteration in randomly generated games. We assessed the convergence behavior of
value iteration to stationary and cyclic equilibria.

5.1 Experimental Details

Our game generator took as input the set of playersN , the set of statesS, and for each
playeri and states, the actionsAi,s. To construct a game, for each state-joint action pair
(s, a) ∈ A, for each agenti ∈ N , the generator setsRi(s, a) to be an integer between
0 and 99, chosen uniformly at random. Then, it selectsT (s, a) to be deterministic, with
the resulting state chosen uniformly at random. We used a consistent discount factor of
γ = 0.75 to decrease experimental variance.

The primary dependent variable in our results was the frequency with which value itera-
tion converged to a stationary Nash equilibrium or a cyclic Nash equilibrium (of length
less than 100). To determine convergence, we first ran value iteration for 1000 steps. If
dΓ(V 1000, V 999) ≤ 0.0001, then we considered value iteration to have converged to a
stationary policy. If for somek ≤ 100

max
t∈{1,...,k}

dΓ(V 1001−t, V 1001−(t+k)) ≤ 0.0001, (8)

then we considered value iteration to have converged to a cycle.3

To determine if a game has a deterministic equilibrium, for every deterministic policyπ,
we ran policy evaluation (for 1000 iterations) to estimateV π,Γ andQπ,Γ, and then checked
if π was anǫ-correlated equilibrium forǫ=0.0001.

5.2 Turn-taking Games

In the first battery of tests, we considered sets of turn-taking games withx states andy
actions: formally, there werex states{1, . . . , x}. In odd-numbered states, Player 1 hady

3In contrast to theGetCyclealgorithm, we are here concerned with finding a cyclic equilibrium
so we check an entire cycle for convergence.
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Figure 2: (Left) For each combination of states and actions, 1000 deterministic turn-taking
games were generated. The graph plots the number of games where value iteration did
not converge to a stationary equilibrium. (Right) Frequency of convergence on 100 ran-
domly generated games with simultaneous actions.Cyclic uCE is the number of times
utilitarian-CE converged to a cyclic equilibrium.OTComb is the number of games where
any one of Friend-VI, Foe-VI, utilitarian-NE-VI, and 5 variants of correlated equilibrium-
VI: dictatorial-CE-VI (First Player), dictatorial-CE-VI (Second Player), utilitarian-CE-VI,
plutocratic-CE-VI, and egalitarian-VI converged to a stationary equilibrium.OTBest is
the maximum number of games where the best fixed choice of the equilibrium-selection
rule converged.uCE is the number of games in which utilitarian-CE-VI converged to a
stationary equilibrium.

actions and Player 2 had one action: in even-numbered states, Player 1 had one action and
Player 2 hady actions. We variedx from 2 to 5 andy from 2 to 10. For each setting ofx
andy, we generated and tested one thousand games.

Figure 2 (left) shows the number of generated games for which value iteration didnot
converge to a stationary equilibrium. We found that nearly half (48%, as many as 5% of
the total set) of these non-converged games had no stationary, deterministic equilibria (they
were NoSDE games). The remainder of the stationary, deterministic equilibria were simply
not discovered by value iteration. We also found that value iteration converged to cycles of
length 100 or less in 99.99% of the games.

5.3 Simultaneous Games

In a second set of experiments, we generated two-player Markov games where both agents
have at least two actions in every state. We varied the number of states between 2 and 9,
and had either 2 or 3 actions for every agent in every state.

Figure 2 (right) summarizes results for 3-action games (2-actions games were qualitatively
similar, but converged more often). Note that the fraction of random games on which the
algorithms converged to stationary equilibria decreases as the number of states increases.
This result holds because the larger the game, the larger the chance that value iteration will
fall into a cycle on some subset of the states. Once again, we see that the cyclic equilib-
ria are found much more reliably than stationary equilibria by value-iteration algorithms.
For example, utilitarian-CE converges to a cyclic correlated equilibrium about 99% of the
time, whereas with 10 states and 3 actions, on 26% of the games none of the techniques
converge.



6 Conclusion

In this paper, we showed that value iteration, the algorithmic core of many multiagent
planning reinforcement-learning algorithms, is not well behaved in Markov games. Among
other impossibility results, we demonstrated that the Q-value function retains too little
information for constructing optimal policies, even in 2-state, 2-action, deterministic turn-
taking Markov games. In fact, there are an infinite number of such games with different
Nash equilibrium value functions that have identical Q-value functions. This result holds
for proposed variants of value iteration from the literature such as updating via a correlated
equilibrium or a Nash equilibrium, since, in turn-taking Markov games, both rules reduce
to updating via the action with the maximum value for the controlling player.

Our results paint a bleak picture for the use of value-iteration-based algorithms for com-
puting stationary equilibria. However, in a class of games we called NoSDE games, a
natural extension of value iteration converges to a limit cycle, which is in fact a cyclic
(nonstationary) Nash equilibrium policy. Such cyclic equilibria can also be found reliably
for randomly generated games and there is evidence that they appear in some naturally
occurring problems (Tesauro & Kephart, 1999). One take-away message of our work is
that nonstationary policies may hold the key to improving the robustness of computational
approaches to planning and learning in general-sum games.
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