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Abstract

We prove the strongest known bound for the risk of hypotheses selected
from the ensemble generated by running a learning algorithm incremen-
tally on the training data. Our result is based on proof techniques that are
remarkably different from the standard risk analysis based on uniform
convergence arguments.

1 Introduction

In this paper, we analyze the risk of hypotheses selected from the ensemble obtained by
running an arbitrary on-line learning algorithm on an i.i.d. sequence of training data. We
describe a procedure that selects from the ensemble a hypothesis whose risk is, with high

probability, at most
Inn)? [ M,
M, + O (———( ] +1/—1In 'n) ,
n n

where M, is the average cumulative loss incurred by the on-line algorithm on a training
sequence of length n. Note that this bound exhibits the “fast” rate (Inn)?/n whenever the
cumulative loss nM,, is O(1).

This result is proven through a refinement of techniques that we used in [2] to prove the
substantially weaker bound M,, + O( v/ (In n.)/-n.)_ As in the proof of the older result, we
analyze the empirical process associated with a run of the on-line learner using exponential
inequalities for martingales. However, this time we control the large deviations of the
on-line process using Bernstein’s maximal inequality rather than the Azuma-Hoeffding
inequality. This provides a much tighter bound on the average risk of the ensemble. Finally,
we relate the risk of a specific hypothesis within the ensemble to the average risk. As in [2],
we select this hypothesis using a deterministic sequential testing procedure, but the use of
Bernstein’s inequality makes the analysis of this procedure far more complicated.

The study of the statistical risk of hypotheses generated by on-line algorithms, initiated
by Littlestone [5], uses tools that are sharply different from those used for uniform con-
vergence analysis, a popular approach based on the manipulation of suprema of empirical
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processes (see, e.g., [3]). Unlike uniform convergence, which is tailored to empirical risk
minimization, our bounds hold for any learning algorithm. Indeed, disregarding efficiency
issues, any learner can be run incrementally on a data sequence to generate an ensemble of
hypotheses.

The consequences of this line of research to kernel and margin-based algorithms have been
presented in our previous work [2].

Notation. An example is a pair (x,y), where x € X’ (which we call instance) is a data
element and y € ) is the label associated with it. Instances & are tuples of numerical and/or
symbolic attributes. Labels 3 belong to a finite set of symbols (the class elements) or to
an interval of the real line, depending on whether the task is classification or regression.
We allow a learning algorithm to output hypotheses of the form h : & — D, where D
is a decision space not necessarily equal to ). The goodness of hypothesis i on example
(z.y) is measured by the quantity £(h(z),y), where £ : D x ) — R is a nonnegative and
bounded loss function.

2 A bound on the average risk

An on-line algorithm A works in a sequence of trials. In each trial f = 1,2,... the algo-
rithm takes in input a hypothesis H;_; and an example Z, = (X, Y}), and returns a new
hypothesis H; to be used in the next trial. We follow the standard assumptions in statis-
tical learning: the sequence of examples Z" = ((X1,Y1),.... (X, Yy, )) is drawn i.i.d.
according to an unknown distribution over X’ x ). We also assume that the loss function ¢
satisfies 0 < £ < 1. The success of a hypothesis /1 is measured by the risk of h, denoted by
risk(h). This is the expected loss of h on an example (X, Y) drawn from the underlying
distribution, risk(h) = E{(h(X),Y). Define also riskemp(/) to be the empirical risk
of h on a sample 2",

. 1 T
riskemp(h) = — > Uh(X),Yy) .
=1

Given a sample Z" and an on-line algorithm A, we use Hy, H,,..., H,,_ to denote the
ensemble of hypotheses generated by A. Note that the ensemble is a function of the random
training sample Z". Our bounds hinge on the sample statistic

n

1
My = Mn(Z") = =3 0(He-1(X0), Y2)

S =1
which can be easily computed as the on-line algorithm is run on Z".

The following bound, a consequence of Bernstein’s maximal inequality for martingales due
to Freedman [4], is of primary importance for proving our results.

Lemma 1 Let Ly, Lo, ... be a sequence of random variables, 0 < L, < 1. Define the
bounded martingale difference sequence V, = E[L; | Ly, ..., Li—1] — L; and the asso-

ciated martingale S,, = Vi + ...+ V,, with conditional variance K, = %;_, Var[L, |
Ly,...,Ly1]. Then, for all s,k > 0,

2
P(Sn > s, Kn <k) <exp (_21;;72/3) )
# S

The next proposition, derived from Lemma 1, establishes a bound on the average risk of
the ensemble of hypotheses.



Proposition 2 Let Hy, ..., H,_ be the ensemble of hypotheses generated by an arbitrary
on-line algorithm A. Then, for any 0 < § < 1,

1 & 36 nM,+3 M, nM, +3
— i >N — — — — | |< 0.
[F’(”ZrlSk(Hr—l)_Mu-‘F = ln( 5 )+2\/ - ln( 5 ))_6

t=1

The bound shown in Proposition 2 has the same rate as a bound recently proven by
Zhang [6, Theorem 5]. However, rather than deriving the bound from Bernstein inequality
as we do, Zhang uses an ad hoc argument.

Proof. Let

l mn
Hn = ;'_L ZIiSk(H,-__lJ and H—l = riSk(Hf_l) = F(Hf_l(X.i_)-,y’f,} for t =0T
Let #; be the conditional variance Var(f’(Ht_l(X,),Yt) | Zi,...,Z_1). Also, set

for brevity K, = Y. &, K, |- %], and introduce the function A(x) =
2 In w for x > 0. We find upper and lower bounds on the probability

IP(Z Viei > A(K,) + VA(K,) K) : (1)
t=1

The upper bound is determined through a simple stratification argument over Lemma 1.
We can write

P(i Vit > A(K,) + VA(K,) Ky
t=1
sP(ijVM > A(K;) + VAR, Ky
t=1
< ZGP(; Vi1 2 A(s) + VA(5) 5, K7, = 5)
< ZP(Z Vit 2 A(s) + VA(s) 5, K < 5+1)
< Zexp( 2 (Afs) + yA(s) o)° ) (using Lemma 1).

S(A(s) + VA(s)s) +2(s + 1)

Since ( (Als)+y/Als) o) > A(s)/2 forall s > 0, we obtain
3

Af5}+\fA(s}s)+2fa‘+l] -
n T
. )
1) < ,—A(s)/2 — —_—— <4 2
Lg" é(s+l)(s+3) @

As far as the lower bound on (1) is concerned, we note that our assumption 0 < ¢ < 1
implies x; < risk(H,;_;) for all £ which, in turn, gives K, < nfi,. Thus

(1) = H"(np:,,_ —nM, > A(K,) + VA(K,) K.,,_)

i — nMy > A(njtn) + VA(pin) npin n;zn)

> P
}P’(Qn_un > 2nM,, + 3A(npn) + /4n M,, A(npy,) + 5A(njuy,)? )
= (.

> B+ 3A(x) +/BA@) + 342(x)),



where we set for brevity & = nu,, and B = n M,,. We would like to solve the inequality
> B+ 3A() + /B A() + §42(x) 3)

w.r.t. z. More precisely, we would like to find a suitable upper bound on the (unique) =*
such that the above is satisfied as an equality.

A (tedious) derivative argument along with the upper bound A(x) < 4 In (£+%) show that

2’ =B+2,/B In (&) +361n (Z2)

makes the left-hand side of (3) larger than its right-hand side. Thus ' is an upper bound
on z*, and we conclude that

(1)2P(z> B+2\/BIn(B2) +36In (22) )

which, recalling the definitions of = and B, and combining with (2), proves the bound. [l

3 Selecting a good hypothesis from the ensemble

If the decision space D of A is a convex set and the loss function ¢ is convex in its first
argument, then via Jensen’s inequality we can directly apply the bound of Proposition 2 to
the risk of the average hypothesis H = 1 7' | H,_, . This yields

n t

P (risk(ﬁ) = Mioe 28 1 (w) +2 \/£ In (M)) <5. 4
n T 2

Observe that this is a O(1/n) bound whenever the cumulative loss n M,, is O(1).

If the convexity hypotheses do not hold (as in the case of classification problems), then
the bound in (4) applies to a hypothesis randomly drawn from the ensemble (this was
investigated in [1] though with different goals).

In this section we show how to deterministically pick from the ensemble a hypothesis
whose risk is close to the average ensemble risk.

To see how this could be done, let us first introduce the functions

8B 2Br | 2Br
Es(r,t) = 3(n—t) ki n—t and Erit) =& (? ¥ n— F."f) ’

with B = In 2242,

Let riskemp(H;.t + 1) + & (riskemp(H;.t + 1), t) be the penalized empirical risk of
hypothesis H;, where

1 T
risk H,t+1)= —— ((H(X;).Y;
emp (H:. ) ““t?-z,zﬂ (He(X3),Y3)
is the empirical risk of H; on the remaining sample Z; 1, ..., Z,,. We now analyze the per-
formance of the learning algorithm that returns the hypothesis H minimizing the penalized
risk estimate over all hypotheses in the ensemble, i.e., '

H= argmin(riskemp(Hp, t+1)+&s (riskemp(H,_,t +1), t)) : (5)
0<t<n

"Note that, from an algorithmic point of view, this hypothesis is fairly easy to compute. In par-

ticular, if the underlying on-line algorithm is a standard kernel-based algorithm, H can be calculated
via a single sweep through the example sequence.



Lemma 3 Let Hy, ..., H,_ be the ensemble of hypotheses generated by an arbitrary on-
line algorithm A working with a loss € satisfying 0 < { < 1. Then, for any 0 < § < 1, the

hypothesis H satisfies

P (rlsk(H) > 0mrlél (risk(H;) 4+ 2 cs(risk(H,;), f))) <4.

Proof. We introduce the following short-hand notation

Ry = riskemp(H;,t+1), T = argmin (R, + E5(Ry. 1))
0<t<n
T = argmin(risk(H;) + 2¢s(risk(H;),t)) .
0<t<n

Also, let H* = Hp- and R* = riskemp(H7-,T* + 1) = Rp-. Note that H defined
in (5) coincides with Hz. Finally, let

V2B(2B +9r(n—1t)) — 2B

Qlnt) = 3(n — 1)

With this notation we can write

P(risk(ﬁ) > risk(H") +2¢5(risk(H*),T*))
< ]P’(rlsk(H > risk(H") + 2¢5(R* — Q(R',T'),T*))
+ ]P’(r:.sk H*) < R" - Q(R*._T*))

< P(risk(H)> risk(H")+ 2¢s (R* — Q(R“.T"‘),T"‘))

n—1

+ Z]P’(risk(Ht) &R~ Q(Rt,t)) '
t=0
Applying the standard Bernstein’s inequality (see, e.g., [3, Ch. 8]) to the random variables
R, with |R;| < 1 and expected value risk(H;), and upper bounding the variance of R;
with risk(H,), yields

P(risk(Ht) <R - B+ +/B(B + 18(n — f)ri_o.k(H,,)))S B

3(n—t)
With a little algebra, it is easy to show that

B+ /B(B + 18(n — t)risk(H,))
3(n—t)

risk(H;] < Rf —

is equivalent to risk(H,;) < R; — Q(R,,t). Hence, we get
]P’(risk(ﬁ’) > risk(H") + ZCg(risk(H"),T'))

< P(risk(ﬁ') > risk(H") 4+ 2¢5 (R — Q(R",T7),T") ) +ne B

1A

P(risk(ﬁ) > risk(H") + 2&;(31:?*)) 4ne 2



where in the last step we used

Al 28 @l B ('r— @,t):&g(r,t).

n—1% n—t

Set for brevity £ = E5(R*, T*). We have

P(risk(f‘) > risk(H*) + 25)

= P(risk(ﬁf) > risk(H*) + 26, Ry + &(R7,T) < R* + 5)

(since Rz + Es( R4, f) < R* + £ holds with certainty)
n—1

=< . JP(R; + E5(Ry,t) < R* + &, risk(H,) > risk(H*) + 25) . (6)

=0
Now, if Ry + E5( Ry, t) < R* + £ holds, then at least one of the following three conditions
Ry < risk(H,) — &(Ry,t), R*>risk(H*)+ &, risk(H;)—risk(H")<2E
must hold. Hence, for any fixed # we can write

P(Rf + & (Ri,t) < R* + &, risk(H,) > risk(H*) + 25)
< IP’(Rt < risk(H;) — & (R 1), risk(H,) > risk(H*) + 28)
+1P’(R“ > risk(H*) + £, risk(H,) > risk(H") + 28)
+EP(risk(Hg) —risk(H*) <2&, risk(H;) > risk(H") + 28)

< ]P’(R; < risk(H;) —£5(Rt.t))+P(R* > risk(H") +£) : (7)
Plugging (7) into (6) we have
P (risk(ﬁ) > risk(H") + 25)

n—1

< 3 }P(m < risk(H;) — Ea(R;.t)) +n ]P(R*‘ > risk(H") + 5)
t=0

n—1

ne ®+n Z]P’(R; > risk(H,;) +€,5(R;.t)) < ne B 4n2e B,
t=0

IA

where in the last two inequalities we applied again Bernstein’s inequality to the random
variables R; with mean risk(H,). Putting together we obtain

P(risk(H) > risk(H*) + 2cs(risk(H*),T*))< (2n + n?)e P

which, recalling that B = In ”(%“) implies the thesis. O

Fixn > 1landé € (0,1). Foreach f = 0,...,n — 1, introduce the function

11C In(n—t) +1 9 2Cx —
3 n—t n—t

filz) =z +

where C' = In 3-1’(—':;31 Note that each f; is monotonically increasing. We are now ready
to state and prove the main result of this paper.



Theorem 4 Fix any loss function € satisfying 0 < { < 1. Let Hy, ..., H,_ be the ensem-

ble of hypotheses generated by an arbitrary on-line algorithm A and let H be the hypoth-
esis minimizing the penalized empirical risk expression obtained by replacing cz with ¢; o

in (5). Then, for any 0 < & < 1, H satisfies

A 36 il 3 M, In 2n(n+3) )
P(ﬂﬁuH)Zﬁwlﬁcmm+n I 248 t3) o Min 7 <4,
=i<n =

t 4 n—t

where M, = — Ly
over t witht = D,wet'd.s

imtr1 ((Hi—1(X5),Yi). In particular, upper bounding the minimum

P(nsk(ﬂ) > fo (M,, +E1 w

j'tj[” In 2n(n+3)

g ))gé. ®)
T

For n — oo, bound (8) shows that risk(ff) is bounded with high probability by

In%n 1,
J\L,+O(n 'n+ N _lnu) .
n n

If the empirical cumulative loss n M,, is small (say, M,, < ¢/n, where ¢ is constant with r2),
then our penalized empirical risk minimizer H achieves a O((an 'n.)/:-":.) risk bound. Also,

recall that, in this case, under convexity assumptions the average hypothesis H achieves
the sharper bound O(1/n).

+2

Proof. Let puyn = -5 Y0, " risk(H,). Applying Lemma 3 with c5/ we obtain

A 2 )
P(rlsk(H) > “I‘Cﬂ#lél“ (risk(H;) + cs/2(risk(H,),t)) )5 5% 9)
We then observe that
min (risk(H,,) + 2 (risk(Hy), t))
= Ufglélﬂigl;léln(rlsk(ff ) + ¢s/2(risk(H;), :))
1 n—1
< olgnxl?n — ; (rlsk(H.,-) + c5/2(risk(H;), a))
1 Rlg ¢ 1 X[ [2Crisk(H,) C
< i e
- UEETIIIE::.(’UM”_l_ —1 '3:?—;+ﬂ.—f.§( n—i +ﬂ.—“.".

(using the inequality /= +y < /T + % )

_ o A =i @ = [2Crisk(H;)
= min bin+—— ==
0<t<n - n—t &~ 3 n—i n—f n—i

. 11C In(n—t) +1 QC;Q =
o — 24/ -
[)lﬁnilg-n. (}u’f‘ B 3 Ti—4 ¥ n—t

(using Zf:l 1/i <1+ Ink and the concavity of the square root)

= min 1 .
0<i<n ff(ﬁ !‘-,?1)

IA



Now, it is clear that Proposition 2 can be immediately generalized to imply the following

set of inequalities, one foreacht =0,...,n —1,
36 A My, A )
P e 2 My + =+ 2/ ) < = (10)
' —t n—t 2n
where A = In M . Introduce the random variables K. ..., K,,_1 to be defined later.

We can write
]P’( Illlél” (risk(Hf_) + c5/a(risk(H,), t)) > 1(11}12’1 K;)

n—1

< P( 2}111 Sfelpeen) = 111111 K ) = ;P(ft(“f,n) > K) .

<t<n

Now, foreacht =0, ..., n—1,define K, = f; (M,,,, -+ ‘ff’ ’} + 2 u‘%) . Then (10)

and the monotonicity of fo, ..., fn—1 allow us to obtain

0<t<n 0<t<n

]P’(m]n (rlSk(Ht + ¢s5/2(risk(Hy) f))) min K;)

n—1
364 M, A
= ) > | St ‘y
o ;P(fl(ﬂf.dn} __f (‘Ur! u+ f+2 — ))
n—1 . .
= Y P(pen=Mau+ B4 4oyt <é/2.
p n—t n—1
Combining with (9) concludes the proof. O

4 Conclusions and current research issues

We have shown tail risk bounds for specific hypotheses selected from the ensemble gen-
erated by the run of an arbitrary on-line algorithm. Proposition 2, our simplest bound, is
proven via an easy application of Bernstein’s maximal inequality for martingales, a quite
basic result in probability theory. The analysis of Theorem 4 is also centered on the same
martingale inequality. An open problem is to simplify this analysis, possibly obtaining a
more readable bound. Also, the bound shown in Theorem 4 contains In n terms. We do not
know whether these logarithmic terms can be improved to In(M,,n), similarly to Propo-
sition 2. A further open problem is to prove lower bounds, even in the special case when
nM,, is bounded by a constant.
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