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Abstract

This paper presents a rigorous statistical analysis characterizing regimes
in which active learning significantly outperforms classical passive learn-
ing. Active learning algorithms are able to make queries or select sample
locations in an online fashion, depending on the results of the previous
queries. In some regimes, this extra flexibility leads to significantly faster
rates of error decay than those possible in classical passive learning set-
tings. The nature of these regimes is explored by studying fundamen-
tal performance limits of active and passive learning in two illustrative
nonparametric function classes. In addition to examining the theoreti-
cal potential of active learning, this paper describes a practical algorithm
capable of exploiting the extra flexibility of the active setting and prov-
ably improving upon the classical passive techniques. Our active learning
theory and methods show promise in a number of applications, including
field estimation using wireless sensor networks and fault line detection.

1 Introduction

In this paper we address the theoretical capabilities of active learning for estimating func-
tions in noise. Several empirical and theoretical studies have shown that selecting samples
or making strategic queries in order to learn a target function/classifier can outperform
commonly used passive methods based on random or deterministic sampling [1–5]. There
are essentially two different scenarios in active learning: (i)selective sampling, where we
are presented a pool of examples (possibly very large), and for each of these we can de-
cide whether to collect a label associated with it, the goal being learning with the least
amount of carefully selected labels [3]; (ii)adaptive sampling, where one chooses an ex-
periment/sample location based on previous observations [4,6]. We consider adaptive sam-
pling in this paper. Most previous analytical work in active learning regimes deals with
very stringent conditions, like the ability to make perfect or nearly perfect decisions at
every stage in the sampling procedure. Our working scenario is significantly less restric-
tive, and based on assumptions that are more reasonable for a broad range of practical
applications.

We investigate the problem of nonparametric function regression, where the goal is to es-
timate a function from noisy point-wise samples. In the classical (passive) setting the
sampling locations are chosena priori, meaning that the selection of the sample locations
precedes the gathering of the function observations. In the active sampling setting, how-
ever, the sample locations are chosen in an online fashion: the decision of where to sample



next depends on all the observations made previously, in the spirit of the “Twenty Ques-
tions” game (in passive sampling all the questions need to be asked before any answers
are given). The extra degree of flexibility garnered through active learning can lead to sig-
nificantly better function estimates than those possible using classical (passive) methods.
However, there are very few analytical methodologies for these Twenty Questions prob-
lems when the answers are not entirely reliable (see for example [6–8]); this precludes
performance guarantees and limits the applicability of many such methods. To address this
critical issue, in this paper we answer several pertinent questions regarding the fundamental
performance limits of active learning in the context of regression under noisy conditions.

Significantly faster rates of convergence are generally achievable in cases involving func-
tions whose complexity (in a the Kolmogorov sense) is highly concentrated in small re-
gions of space (e.g., functions that are smoothly varying apart from highly localized abrupt
changes such as jumps or edges). We illustrate this by characterizing the fundamental
limits of active learning for two broad nonparametric function classes which map[0, 1]d
onto the real line: (i) Ḧolder smooth functions (spatially homogeneous complexity) and
(ii) piecewise constant functions that are constant except on ad− 1 dimensionalboundary
set or discontinuity embedded in thed dimensional function domain (spatially concentrated
complexity). The main result of this paper is two-fold. First, when the complexity of the
function is spatially homogeneous, passive learning algorithms are near-minimax optimal
over all estimation methods and all (active or passive) learning schemes, indicating that
active learning methods cannot provide faster rates of convergence in this regime. Second,
for piecewise constant functions, active learning methods can capitalize on the highly lo-
calized nature of the boundary by focusing the sampling process in the estimated vicinity
of the boundary. We present an algorithm that provably improves on the best possible pas-
sive learning algorithm and achieves faster rates of error convergence. Furthermore, we
show that this performance cannot be significantly improved on by any other active learn-
ing method (in a minimax sense). Earlier existing work had focused on one dimensional
problems [6, 7], and very specialized multidimensional problems that can be reduced to a
series of one dimensional problems [8]. Unfortunately these techniques cannot be extended
to more general piecewise constant/smooth models, and to the best of our knowledge our
work is the first addressing active learning in this class of models.

Our active learning theory and methods show promise for a number of problems. In par-
ticular, in imaging techniques such as laser scanning it is possible to adaptively vary the
scanning process. Using active learning in this context can significantly reduce image ac-
quisition times. Wireless sensor network constitute another key application area. Because
of necessarily small batteries, it is desirable to limit the number of measurements collected
as much as possible. Incorporating active learning strategies into such systems can dramat-
ically lengthen the lifetime of the system. In fact, active learning problems like the one we
pose in Section 4 have already found application in fault line detection [7] and boundary
estimation in wireless sensor networking [9].

2 Problem Statement

Our goal is to estimatef : [0, 1]d → R from a finite number of noise-corrupted samples.
We consider two different scenarios: (a)passive learning, where the location of the sample
points is chosen statistically independently of the measurement outcomes; and (b)active
learning, where the location of theith sample point can be chosen as a function of the
samples points and samples collected up to that instant. The statistical model we consider
builds on the following assumptions:

(A1) The observations{Yi}n
i=1 are given by

Yi = f(Xi) + Wi, i ∈ {1, . . . , n}.



(A2) The random variablesWi are Gaussian zero mean and varianceσ2. These are
independent and identically distributed (i.i.d.) and independent of{Xi}n

i=1.

(A3.1) Passive Learning: The sample locationsXi ∈ [0, 1]d are either deterministic or
random, but independent of{Yj}j 6=i. They do not depend in any way onf .

(A3.2) Active Learning: The sample locationsXi are random, and depend only on
{Xj , Yj}i−1

j=1. In other words the sample locationsXi have only a causal depen-

dency on the system variables{Xi, Yi}. Finally, given{Xj , Yj}i−1
j=1 the random

variableXi does not depend in any way onf .

Let f̂n : [0, 1]d → R denote an estimator based on the training samples{Xi, Yi}n
i=1.

When constructing an estimator under the active learning paradigm there is another de-
gree of freedom: we are allowed to choose oursampling strategy, that is, we can spec-
ify Xi|X1 . . .Xi−1, Y1 . . . Yi−1. We will denote the sampling strategy bySn. The pair
(f̂n, Sn) is called theestimation strategy. Our goal is to construct estimation strategies
which minimize the expected squared error,

Ef,Sn
[‖f̂n − f‖2],

whereEf,Sn is the expectation with respect to the probability measure of{Xi, Yi}n
i=1

induced by modelf and sampling strategySn, and‖ · ‖ is the usualL2 norm.

3 Learning in Classical Smoothness Spaces

In this section we consider classes of functions whose complexity is homogeneous over the
entire domain, so that there are no localized features, as in Figure 1(a). In this case we do
not expect the extra flexibility of the active learning strategies to provide any substantial
benefit over passive sampling strategies, since a simple uniform sampling scheme is nat-
urally matched to the homogeneous “distribution” of the target function’s complexity. To
exemplify this consider the Ḧolder smooth function class: a functionf : [0, 1]d → R is
Hölder smooth if it has continuous partial derivatives up to orderk = bαc 1 and

∀ z,x ∈ [0, 1]d : |f(z)− Px(z)| ≤ L‖z − x‖α,

whereL,α > 0, andPx(·) denotes the orderk Taylor polynomial approximation off
expanded aroundx. Denote this class of functions byΣ(L,α). Functions inΣ(L,α) are
essentiallyCα functions whenα ∈ N. The first of our two main results is a minimax lower
bound on the performance of all active estimation strategies for this class of functions.
Theorem 1. Under the requirements of the active learning model we have the minimax
bound

inf
(f̂n,Sn)∈Θactive

sup
f∈Σ(L,α)

Ef,Sn
[‖f̂n − f‖2] ≥ cn−

2α
2α+d , (1)

where c ≡ c(L,α, σ2) > 0 and Θactive is the set of all active estimation strategies (which
includes also passive strategies).

Note that the rate in Theorem 1 is the same as the classical passive learning rate [10, 11]
but the class of estimation strategies allowed is now much bigger. The proof of Theorem 1
is presented in our technical report [12] and uses standard tools of minimax analysis, such
as Assouad’s Lemma. The key idea of the proof is to reduce the problem of estimating
a function inΣ(L,α) to the problem of deciding among a finite number of hypotheses.
The key aspects of the proof for the passive setting [13] apply to the active scenario due
to the fact that we can choose an adequate set of hypotheses without knowledge of the
sampling strategy, although some modifications are required due to the extra flexibility of
the sampling strategy. There are various practical estimators achieving the performance
predicted by Theorem 1, including some based on kernels, splines or wavelets [13].

1k = bαc is the maximal integer such thatk < α.



4 The Active Advantage

In this section we address two key questions: (i) when does active learning provably yield
better results, and (ii) what are the fundamental limitations of active learning? These are
difficult questions to answer in general. We expect that, for functions whose complexity
is spatially non-uniform and highly concentrated in small subsets of the domain, the extra
spatial adaptivity of the active learning paradigm can lead into significant performance
gains. We study a class of functions which highlights this notion of “spatially concentrated
complexity”. Although this is a canonical example and a relatively simple function class,
it is general enough to provide insights into methodologies for broader classes.

A function f : [0, 1]d → R is calledpiecewise constant if it is locally constant2 in any
pointx ∈ [0, 1]d \B(f), whereB(f) ⊂ [0, 1]d, theboundary set, has upper box-counting
dimension at mostd − 1. Furthermore letf be uniformly bounded on[0, 1]d (that is,
|f(x)| ≤ M, ∀x ∈ [0, 1]d) and letB(f) satisfyN(r) ≤ βr−(d−1) for all r > 0, where
β > 0 is a constant andN(r) is the minimal number of closed balls of diameterr that
coversB(f). The set of all piecewise constant functionsf satisfying the above conditions
is denoted by PC(β, M).

The conditions above mean that (a) the functions are constant except alongd − 1-
dimensional “boundaries” where they are discontinuous and (b) the boundaries between
the various constant regions are(d − 1)-dimensional non-fractal sets. If the boundaries
B(f) are smooth thenβ is an approximate bound on their totald− 1 dimensional volume
(e.g., the length ifd = 2). An example of such a function is depicted in Figure 1(b). The
class PC(β, M) has the main ingredients that make active learning appealing: a function
f is “well-behaved” everywhere on the unit square, except on a small subsetB(f). We
will see that the critical task for any good estimator is to accurately find the location of the
boundaryB(f).

4.1 Passive Learning Framework

To obtain minimax lower bounds for PC(β, M) we consider a smaller class of functions,
namely the boundary fragment class studied in [11]. Letg : [0, 1]d−1 → [0, 1] be a Lipshitz
function with graph in[0, 1]d, that is

|g(x)− g(z)| ≤ ‖x− z‖, 0 ≤ g(x) ≤ 1, ∀ x,z ∈ [0, 1]d−1.

DefineG = {(x, y) : 0 ≤ y ≤ g(x), x ∈ [0, 1]d−1}. Finally definef : [0, 1]d → R by
f(x) = 2M1G(x)−M . The class of all the functions of this form is called theboundary
fragment class (usuallyM = 1), denoted by BF(M). Note that there are only two regions,
and the boundary separating those is a function of the firstd− 1 variables.

It is straightforward to show that BF(M) ⊆ PC(β, M) for a suitable constantβ; therefore
a minimax lower bound for the boundary fragment class is trivially a lower bound for the
piecewise constant class. From the results in [11] we have

inf
(f̂n,Sn)∈Θpassive

sup
f∈PC(β,M)

Ef,Sn
[d2(f̂n, f)] ≥ cn−

1
d , (2)

wherec ≡ c(β, M, σ2) > 0.

There exist practical passive learning strategies that are near-minimax optimal. For exam-
ple, tree-structured estimators based onRecursive Dyadic Partitions (RDPs) are capable of

2A functionf : [0, 1]d → R is locally constant at a pointx ∈ [0, 1]d if

∃ε > 0 : ∀y ∈ [0, 1]d : ‖x− y‖ < ε ⇒ f(y) = f(x).



(a) (b)
Figure 1: Examples of functions in the classes considered: (a) Hölder smooth function. (b)
Piecewise constant function.

nearly attaining the minimax rate above [14]. These estimators are constructed as follows:
(i) Divide [0, 1]d into 2d equal sized hypercubes. (ii) Repeat this process again on each
hypercube. Repeating this process log2 m times gives rise to a partition of the unit hyper-
cube into md hypercubes of identical size. This process can be represented as a 2d-ary
tree structure (where a leaf of the tree corresponds to a partition cell). Pruning this tree
gives rise to an RDP with non-uniform resolution. Let Π denote the class of all possible
pruned RDPs. The estimators we consider are constructed by decorating the elements of a
partition with constants. Let π be an RDP; the estimators built over this RDP have the form
f̃ (π)(x) ≡

∑
A∈π cA1{x ∈ A}.

Since the location of the boundary is a priori unknown it is natural to distribute the sample
points uniformly over the unit cube. There are various ways of doing this; for example, the
points can be placed deterministically over a lattice, or randomly sampled from a uniform
distribution. We will use the latter strategy. Assume that {Xi}n

i=1 are i.i.d. uniform over
[0, 1]d. Define the complexity regularized estimator as

f̂n ≡ arg min
f̃(π):π∈Π

{
1
n

n∑
i=1

(
f̃ (π)(Xi)− Yi

)2

+ λ
log n

n
|π|

}
, (3)

where |π| denotes the number of elements of π and λ > 0. The above optimization can be
solved efficiently in O(n) operations using a bottom-up tree pruning algorithm [14].

The performance of the estimator in (3) can be assessed using bounding techniques in the
spirit of [14, 15]. From that analysis we conclude that

sup
f∈PC(β,M)

Ef [‖f̂n − f‖2] ≤ C(n/ log n)−
1
d , (4)

where C ≡ C(β, M, σ2) > 0. This shows that, up to a logarithmic factor, the rate in (2) is
the optimal rate of convergence for passive strategies. A complete derivation of the above
result is available in [12].

4.2 Active Learning Framework

We now turn our attention to the active learning scenario. In [8] this was studied for the
boundary fragment class. From that work and noting again that BF(M) ⊆ PC(β, M) we
have, for d ≥ 2,

inf
(f̂n,Sn)∈Θactive

sup
f∈PC(β,M)

Ef,Sn
[‖f̂n − f‖2] ≥ cn−

1
d−1 , (5)

where c ≡ c(M,σ2) > 0.
In contrast with (2), we observe that with active learning we have a potential performance
gain over passive strategies, effectively equivalent to a dimensionality reduction. Essen-
tially the exponent in (5) depends now on the dimension of the boundary set, d− 1, instead



of the dimension of the entire domain,d. In [11] an algorithm capable of achieving the
above rate for the boundary fragment class is presented, but this algorithm takes advantage
of the very special functional form of the boundary fragment functions. The algorithm
begins by dividing the unit hypercube into “strips” and performing a one-dimensional
change-point estimation in each of the strips. This change-point detection can be per-
formed extremely accurately using active learning, as shown in the pioneering work of
Burnashev and Zigangirov [6]. Unfortunately, the boundary fragment class is very restric-
tive and impractical for most applications. Recall that boundary fragments consist of only
two regions, separated by a boundary that is a function of the firstd − 1 coordinates. The
class PC(β, M) is much larger and more general and the algorithmic ideas that work for
boundary fragments can no longer be used. A completely different approach is required,
using radically different tools.

We now propose an active learning scheme for the piecewise constant class. The proposed
scheme is a two-step approach based in part on the tree-structured estimators described
above for passive learning. In the first step, called thepreview step, a rough estimator
of f is constructed usingn/2 samples (assume for simplicity thatn is even), distributed
uniformly over[0, 1]d. In the second step, called therefinement step, we selectn/2 samples
near the perceived locations of the boundaries (estimated in the preview step) separating
constant regions. At the end of this process we will have half the samples concentrated in
the vicinity of the boundary setB(f). Since accurately estimatingf nearB(f) is key to
obtaining faster rates, the strategy described seems quite sensible. However, it iscritical
that the preview step is able to detect the boundary with very high probability. If part of
the boundary is missed, then the error incurred is going to propagate into the final estimate,
ultimately degrading the performance. Therefore extreme care must be taken to detect the
boundary in the preview step, as described below.

Preview: The goal of this stage is to provide a coarse estimate of the location ofB(f).
Specifically, collectn′ ≡ n/2 samples at points distributed uniformly over[0, 1]d. Next
proceed by using the passive learning algorithm described before, but restrict the estimator
to RDPs with leafs at a maximum depth ofJ = d−1

(d−1)2+d log(n′/ log(n′)). This ensures
that, on average, every element of the RDP contains many sample points; therefore we
obtain a low variance estimate, although the estimator bias is going to be large. In other
words, we obtain a very “stable” coarse estimate off , where stable means that the estimator
does not change much for different realizations of the data.

The above strategy ensures that most of the time, leafs that intersect the boundary are at the
maximum allowed depth (because otherwise the estimator would incur too much empirical
error) and leafs away from the boundary are at shallower depths. Therefore we can “detect”
the rough location of the boundary just by looking at the deepest leafs. Unfortunately, if
the setB(f) is somewhat aligned with the dyadic splits of the RDP, leafs intersecting the
boundary can be pruned without incurring a large error. This is illustrated in Figure 2(b);
the cell with the arrow was pruned and contains a piece of the boundary, but the error
incurred by pruning is small since that region is mostly a constant region. However, worst-
case analysis reveals that the squared bias induced by these small volumes can add up,
precluding the desired rates. A way of mitigating this issue is to consider multiple RDP-
based estimators, each one using RDPs appropriately shifted. We used + 1 estimators in
the preview step: one on the initial uniform partition, andd over partitions whose dyadic
splits have been translated by2−J in each one of thed coordinates. Any leaf that is at the
maximum depth of any of thed + 1 RDPs pruned in the preview step indicates the highly
probable presence of a boundary, and will be refined in the next stage.

Refinement: With high probability, the boundary is contained in the leafs at the maximum
depth. In the refinement step we collect additionaln/2 samples in the corresponding par-
tition cells, using these to obtain a refined estimate of the functionf by again applying



(a) (b) (c) (d)

Figure 2: The two step procedure ford = 2: (a) Initial unpruned RDP andn/2 samples.
(b) Preview step RDP. Note that the cell with the arrow was pruned, but it contains a part
of the boundary. (c) Additional sampling for the refinement step. (d) Refinement step.

an RDP-based estimator. This produces a higher resolution estimate in the vicinity of the
boundary setB(f), yielding better performance than the passive learning technique.

To formally show that this algorithm attains the faster rates we desire we have to consider a
further technical assumption, namely that the boundary set is “cusp-free”3. This condition
is rather technical, but it is not very restrictive, and encompasses many interesting situa-
tions, including of course boundary fragments. For a more detailed explanation see [12].
Under this condition we have the following:

Theorem 2. Under the active learning scenario we have, for d ≥ 2 and functions f whose
boundary is cusp-free,

E
[
‖f̂n − f‖2

]
≤ C

(
n

log n

)− 1
d−1+1/d

, (6)

where C > 0.

This bound improves on (4), demonstrating that this technique performs better than the
best possible passive learning estimator. The proof of Theorem 2 is quite involved and is
presented in detail in [12]. The main idea behind the proof is to decompose the error of the
estimator for three different cases: (i) the error incurred during the preview stage in regions
“away” from the boundary; (ii) the error incurred by not detecting a piece of the boundary
(and therefore not performing the refinement step in that area); (iii) the error remaining
in the refinement region at the end of the process. By restricting the maximum depth of
the trees in the preview stage we can control the type-(i) error, ensuring that it does not
exceed the error rate in (6). Type-(ii) error corresponds to the situations when a part of the
boundary was not detected in the preview step. This can happen because of the inherent
randomness of the noise and sampling distribution, or because the boundary is somewhat
aligned with the dyadic splits. The latter can be a problem and this is why one needs to
performd + 1 preview estimates over shifted partitions. If the boundary is cusp-free then
it is guaranteed that one of those preview estimators is going to “feel” the boundary since
it is not aligned with the corresponding partition. Finally, the type-(iii) error is very easy to
analyze, using the same techniques we used for the passive estimator.

A couple of remarks are important at this point. Instead of a two-step procedure one can
reiterate this idea, performing multiple steps (e.g., for a three-step approach replace the
refinement step with the two-step approach described above). Doing so can further improve
the performance. One can show that the expected error will decay liken−1/(d−1+ε), with
ε > 0, given a sufficiently large number of steps. Therefore we can get rates arbitrarily
close to the lower bound rates in (5).

3A cusp-free boundary cannot have the behavior you observe in the graph of|x|1/2 at the origin.
Less “aggressive” kinks are allowed, such as in the graph of|x|.



5 Final Remarks

The results presented in this paper show that in certain scenarios active learning attains
provable gains over the classical passive approaches. Active learning is an intuitively ap-
pealing idea and may find application in many practical problems. Despite these draws,
the analysis of such active methods is quite challenging due to the loss of statistical inde-
pendence in the observations (recall that now the sample locations are coupled with all the
observations made in the past). The two function classes presented are non-trivial canonical
examples illustrating under what conditions one might expect active learning to improve
rates of convergence. The algorithm presented here for actively learning members of the
piecewise constant class demonstrates the possibilities of active learning. In fact, this al-
gorithm has already been applied in the context of field estimation using wireless sensor
networks [9]. Future work includes the further development of the ideas presented here to
the context of binary classification and active learning of the Bayes decision boundary.
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