Sequencend Tree Kernels
with Statistical Feature Mining

Jun Suzuki and Hideki Isozaki
NTT Communication Science Laboratories, NTT Corp.
2-4 Hikaridali, Seika-cho, Soraku-gun, Kyoto,619-0237 Japan
{jun, isozaki}@cslab.kecl.ntt.co.jp

Abstract

This paper proposes a hew approach to feature selection based on a sta-
tistical feature mining technique for sequence and tree kernels. Since
natural language data take discrete structures, convolution kernels, such
as sequence and tree kernels, are advantageous for both the concept and
accuracy of manyatural language processingsks. However, experi-
ments have shown that the best results can only be achieved when lim-
ited small sub-structures are dealt with by these kernels. This paper dis-
cusses this issue of convolution kernels and then proposes a statistical
feature selection that enable us to use larger sub-structures effectively.
The proposed method, in order to execute efficiently, can be embedded
into an original kernel calculation process by ussup-structure min-

ing algorithms. Experiments on real NLP tasks confirm the problem in
the conventional method and compare the performance of a conventional
method to that of the proposed method.

1 Introduction

Since natural language data take the form of sequences of words and are generally analyzed
into discrete structures, such as trees (parsed trdsgyete kernelssuch as sequence
kernels [7, 1] and tree kernels [2, 5], have been shown to offer excellent results in the
natural language processing (NL#gld. Conceptually, these proposed kernels are defined

as instances ofonvolution kernelg3, 11], which provides the concept of kernels over
discrete structures.

However, unfortunately, experiments have shown that in some cases there is a critical issue
with convolution kernels in NLP tasks [2, 1, 10]. That is, since natural language data
contain many types of symbols, NLP tasks usually deal with extremely high dimension
and sparse feature space. As a result, the convolution kernel approach can never be trained
effectively, and it behaves like a nearest neighbor rule. To avoid this issue, we generally
eliminate large sub-structures from the set of features used. However, the main reason for
using convolution kernels is that we aim to use structural features easily and efficiently.

If their use is limited to only very small structures, this negates the advantages of using
convolution kernels.

This paper discusses this issue of convolution kernels, in particular sequence and tree ker-

nels,and proposes a new method based on statistical significant test. The proposed method
deals only with those features that are statistically significant for solving the target task,
and large significant sub-structures can be used without over-fitting. Moreover, by us-
ing sub-structure mininglgorithms, the proposed method can be executed efficiently by
embedding it in an original kernel calculation process, which is defined bghthamic-
programming(DP) based calculation.

2 Convolution Kernels for Sequences and Trees

Convolution kernels have been proposed as a concept of kernels for discrete structures,
such as sequences, trees and graphs. This framework defines the kernel function between
input objects as the convolution of “sub-kernels”, i.e. the kernels for the decompositions
(parts or sub-structures) of the objects. LétandY be discrete objects. Conceptually,
convolution kerneld< (X, Y') enumerate all sub-structures occurringdirendY” and then
calculate their inner product, which is simply written &@(X,Y) = (¢(X),¢(Y)) =

> 0:i(X) - 9:(Y). ¢ represents the feature mapping from the discrete object to the feature
space; that isp(X) = (61(X),...,¢:(X),...). Therefore, with sequence kernels, input
objectsX andY are sequences, angd(X) is a sub-sequence; with tree kernels,and

Y are trees, ang,;(X) is a sub-tree. Up to now, many kinds of sequence and tree kernels
have been proposed for a variety of different tasks. To clarify the discussion, this paper
basically follows the framework of [1], which proposedjapped word sequence kernel

and [5], which introduced kbeled ordered tree kernel

We can treat that sequence is one of the special form of trees if we say sequences are rooted
by their last symbol and each node has one child each of a previous symbol. Thus, in this
paper, the word ‘tree’ is always including sequence. L &k a set of finite symbols. Then,

let L™ be a set of symbols whose sizesarmndP (L") be a set of trees that are constructed

by £". The meaning of “size” in this paper is the the number of nodes in a tree. We denote
atreeu € P(L}) whose size i or less, whereJ, _, L™ = L. LetT be a tree and
sub(7) be a function that returns a set of all possible sub-treds itWe define a function

C,(t) that returns a constam(0 < A < 1), if the sub-treg coversu with the same root
symbol. For example, a sub-tree ‘a-b-c-d’, where ‘a’, ‘b’, ‘c’ and ‘d’ represent symbols
and ‘-’ represents an edge between symbols, covers sub-trees ‘d’, ‘a-c-d’ and ‘b-d’. That
is, C,,(t) = A if u matcheg allowing the node skip, 0 otherwise. We also define a function
~.(t) that returns the difference of size of sub-treemdu. For example, it = a-b-c-d

andu = a-b, themy, (t) = |4 — 2| = 2.

Formally, sequence and tree kernels can be defined as the same form as

KSCTE(TL T2) = Z Z Cu(tl)'vu(tl) Z Cu(tQ)'vu(ﬂ)_ (1)

u€P(LY) resubyr?) t2esulT2)

Note that this formula is also including the node skip framework that is generally introduced
only in sequence kernels[7, 1§;is the decay factor that handles the gap present in sub-trees
u andt.

Sequence and tree kernels are defined in recursive formula to calculate them efficiently
instead of the explicit calculation of Equation (1). Moreover, when implemented, these
kernels can calculated d(n|T"||T?|), where|T| represents the number of nodeginby

using the DP technique. Note, that if the kernel does not use size restriction, the calculation
cost become® (|T||T2|).

3 Problem of Applying Convolution Kernels to Real tasks

According to the original definition of convolution kernels, all of the sub-structures are
enumerated and calculated for the kernels. The number of sub-structures in the input ob-
ject usually becomes exponential against input object size. The number of syfdbpls,

is generally very large number (i.e. more than 10,000) since words are treated as symbols.
Moreover, the appearance of sub-structures (sub-sequences and sub-trees) are highly corre-
lated with that of sub-structures of sub-structures themselves. As a result, the dimension of
feature space becomes extremely high, and all kernel vé{iég Y") are very small com-

pared to the kernel value of the object itséif(X, X). In this situation, the convolution
kernel approach can never be trained effectively, and it will behave like a nearest neighbor
rule; we obtain a result that is very precise but with very low recall. The details of this issue
were described in [2].

To avoid this, most conventional methods use an approach that involves smoothing the
kernel values or eliminating features based on the sub-structure size. For sequence kernels,
[1] use a feature elimination method based on the size of sub-sequembés means that

the kernel calculation deals only with those sub-sequences whose lengtr iess. As

well as the sequence kernel, [2] proposed a method that restricts the features based on sub-
tree depth for tree kernels. These methods seem to work well on the surface, however, good
results can only be achieved wheris very small, i.e.n = 2 or 3. For examplep = 3

showed the best performance for parsing in the experimental results of [2}; aad?

showed the best for the text classification task in [1]. The main reason for using these
kernels is that they allow us to employ structural features simply and efficiently. When
only small-sized sub-structures are used (ike= 2 or 3), the full benefits of the kernels

are missed.

Moreover, these results do not mean that no larger-sized sub-structures are useful. In some
cases we already know that certain larger sub-structures can be significant features for
solving the target problem. That is, significant larger sub-structures, which the conventional
methods cannot deal with efficiently, should have the possibility of further improving the
performance. The aim of the work described in this paper is to be able to use any significant
sub-structure efficiently, regardless of its size, to better solve NLP tasks.

4 Statistical Feature Mining Method for Sequence and Tree Kernels

This section proposes a new approach to feature selection, which is based on statistical
significant test, in contrast to the conventional methods, which use sub-structure size.

To simplify the discussion, we restrict ourselves to dealing hereafter with the two-
class (positive and negative) supervised classification problem. In our approach, we
test the statistical deviation of all sub-structures in the training samples between the
appearance of positive samples and negative samples, and then, select only the sub-
structures which are larger than a certain thresholds features. This allows us
to select only the statistically significant sub-structures. In this paper, we explains
our proposed method by using the chi-squared) (value as a statistical metric.

We note, however, we can use many

Table 1: Contingency table and notation types of statistical metrics in our proposed

for the chi-squared value method.
c c | >.r First, we briefly explain how to calculate
m O 1 Ou: O, the x? value by referring to Table 1c and
T Oue | Ous 0. ¢ represent the names of classgéor the
Scolumn| 0. | O: N positive class and for the negative class.

0;;, wherei € {u,a} andj € {c,c}, rep-

resentsthe number of samples in each cas@,;, for instance, represents the number

of u that appeared i@m. Let N be the total number of training samples. Sing€eand

O, are constant for training sampleg? can be obtained as a function 6f, and O,,..

The x? value expresses the normalized deviation of the observation from the expectation:
Chl(()u7 Ouc) = Eie{uﬂ},je{cf}(oij — Eij)Q/Eij, WhEFEEij =n- Ol/n : Oj/n, which
represents the expectation. We simply represent ¢hi(X).) asx?(u).

In the kernel calculation with the statistical feature selectiog?{fu) < 7 holds, that isu

is not statistically significant, them is eliminated from the features, and the value.a$
presumed to be O for the kernel value. Therefore, the sequence and tree kernel with feature
selection (SK,TK+FS) can be defined as follows:

KSK,TK+FS(T1’ T2) _ Z Z Cu(tl)wu(tl) Z Cu(tQ)wu(ﬁ).
u€{ulT<x2(u),u€P(LT)} t1esublyT?) t2esulr2)
@
The difference with their original kernels is simply the condition of the first summation,
whichisT < x2(u).

The basic idea of using a statistical metric to select features is quite natural, but it is not
a very attractive approach. We note, however, it is not clear how to calculate that kernels
efficiently with a statistical feature selection. It is computationally infeasible to calculate
x?(u) for all possibleu with a naive exhaustive method. In our approach, we take ad-
vantage ofsub-structure mininglgorithms in order to calculatg?(u) efficiently and to
embed statistical feature selection to the kernel calculation. Formally, sub-structure min-
ing is to find the complete set, but no-duplication, of all significant (generally frequent)
sub-structures from dataset. Specifically, we apply combination of a sequential pattern
mining technique, PrefixSpan [9], and a statistical metric pruning (SMP) method, Apriori
SMP [8]. PrefixSpan can substantially reduce the search space of enumerating all signif-
icant sub-sequences. Briefly saying, it finds any sub-sequenceghose size is, by
searching a single symbal in the projected database of the sub-sequence (prefof)

sizen — 1. The projected database is a partial database which only contains all postfixes
(pointers in the implementation) of appeared the prefir the database. It starts search-

ing fromn = 1, that is, it enumerates all the significant sub-sequences by the recursive
calculation ofpattern-growth searching in the projected database of prefand adding a
symbolw to u, andprefix-projection, making projected database:of.

Before explaining the algorithm of the proposed kernels, we introduce the upper bound of
thex? value. The upper bound of thé value of a sequenaev, which is the concatenation

of sequences andv, can be calculated by the value of the contingency table of the prefix
u [8]: x*(uv) < X%(u) = max (chi(Oye, Oue), chi(Oy — Oy, 0)) . This upper bound
indicates that if¢? (u) < 7 holds, no (super-)sequences, whose prefix is:, can be larger

than threshold; < x2(uv). In our context, we can eliminate all (super-)sequences
from candidates of the feature without the explicit evaluation:wof

Using this property in the PrefixSpan algorithm, we can eliminate to evaluate all the (super-
)sequencesv by evaluating the upper bound of sequenceifter finding the number of
individual symbolw appeared in projected database:pfve evaluateiw in the following

three conditions: (1y < x?(uw), (2) 7 > % (uw), 7 > X?(uw), and (3)7 > x2(uw),

7 < X?(uw). With condition (1), sub-sequeneew is selected as the feature. With condi-

tion (2), ww is pruned, that is, alkwv are also pruned from search space. With condition
(3), uw is not a significant, howevet,wwv can be a significant; thusw is not selected as
features, however, mining is continue dawv. Figure 1 shows an example of searching
and pruning the sub-sequences to select significant features by the PrefixSpan with SMP
algorithm.

+1 |
+1

wibd

Projected databage
i | sample id: pointe|
Ex. 5:3 P

’#‘Vy\ -. ! ! . N & i .
.. N ' n=3 '1 Xz select asafeature]

L PRPRPRE

0By 122 02 .32 15 .22 H Teal
thresholdr =1.00 ey dis 01 ers a3 efs 12, lo)<randie(u) <r continue{‘_)
d dd3 i3, #Wzr pruning X

Figure1: Example of searching and pruning the sub-sequences by PrefixSpan with SMP
algorithm

T! bﬁag sub-tree b, W &

G by
Stri ding und m dlb/z/oa%as dﬂﬁs m‘%{
the postorder rversa: (A (0) d (d@)) bc)a) | d(B)dab dd(d)abda da)b

Figure2: Example of the string encoding for trees under the postorder traversal

The famous tree mining algorithm [12] cannot be simply applied as a feature selection
method for the proposed tree kernels, because this tree mining executes preorder search of
trees while tree kernels calculate the kernel in postorder. Thus, we take advantage of the
string (sequence) encodimgethod for trees and treat them in sequence kernels. Figure 2
shows an example of the string encoding for trees under the postorder traversal. The brack-
ets indicate the hierarchical relation between their left and right hand side nodes. We treat
these brackets as a special symbol during the sequential pattern mining phase. Sub-trees
are evaluated as the same if and only if the string encoded sub-sequences are exactly the
same including brackets. For example, ‘d) b) a’ and ‘d b)) a’ are different.

We previously said that sequence can be treated as one of trees. We also encode in the case
of sequence; for example a sequence 'a b ¢ d’ is encoded in ‘((((a) b) ¢) d)’. That is, we
can define sequence and tree kernels with our feature selection method in the same form.

Sequence and Tree Kernels with Statistical Feature MiningSequence and Tree kernels
with our proposed feature selection method is defined in the following equations.

KSK,TK+FS(T17 T2, D) — Z Z Hn (/1'11_1’ 1—1]27 D) (3)
1<i<|TY 1<5<|T2|
D represents the training data, andndj represent indices of nods in postorderTof
andT?, respectively. Let,(T}',T7; D) be a function that returns the sum value of all
statistically significant common sub-sequencétt; = > and|u| < n.

Ho(T}TD)= > Ju(T},T}5D), (4)
uEFV,L(TilﬁT]?;D)
wherel',, (T}, T7; D) represents a set of sub-sequences, whi¢h|is< n, that satisfy the
above condition 1. Then, lef, (T}, T7; D), J. (T}, T;; D) and 7,/ (T}, T}; D) be func-
tions that calculate the value of the common sub-sequences béf\&/muin recursively.

| oy _ {TUTHTE D) - Ty (84, 42) if ww € Ty (T}, T2 D),
juw(Ti, 7Tj) - {O other\JNiSe ’ J (5)

whereZ,(t;,t?) is a function that returns 1 ifff = w andt; = w, and 0 otherwise.

T, (T}, T?; D) is a set of sub-sequences, whichd$ < n, that satisfy condition (3). We

introduce a special symbal to represent an “empty sequence”, and define = w and
[Aw| = 1.
1 if u=A,
JUTHTED) =40 if j=0 and u#A, (6)
AT (T 773'271; D) + 7,/ (T}, ,113'2717 D) otherwise

0 if i=0
" 1 2. _ 9
T 155 D) = {AJJ(Tﬂ_l, T%D) + Ju(TL,, 7% D) othewise ()

The following equations are introduced to select a set of significant sub-sequences.
Do(T},T% D) = {u | u € To(T}, TE D), 7 < X2 (u), upy € N "angu,)} (8)
Uy € m‘ '1 angu;) evaluates if a sub-sequeneés complete sub-tree, where ang(u

returns ancestor of the node. For example, ‘d) b @’ is not a complete subtree, because
the last node ‘a’ is not an ancestor of ‘d" and ‘b’.

1 2. U, (I (T, T2, D), e u {tl} if ¢ =12,
L(T, 15 D) = {(Z) otherwise ! ©
whereVU,, (F,w) = {uw | u € F 7 < X2 (uw), luw| < n}, andF represents a set of sub-
sequences. Note that, (T}, T? j, D) andT',, (T}, T7; D) have only sub-sequencesthat

satisfyT < x*(uw) andT < X*(uw), respectively, ifft; = ¢3 and|uw| < n; otherwise
they become empty sets.

The following two equations are introduced for recursive the set operation to calculate
I (T},T?; D) andT, (T}, T D).

- 0 ifj=0

/ 1 2. _)z ’ ~
F”<T“13’D>‘{r;<7;1,7’;1;D>urx<nl,z;21;b> otherwise 1°)
- 0 it i=0

" 1 2. _)= ’ .
Fﬂﬂﬁﬂjn{maghﬁﬂ»um01bﬁﬂn otherwise (V)

In the implementationy?(uw) and ¥?(uw), whereuw represents a concatenation of a
sequence; and a symbolv, can be calculated by a set of pointers.aigainst data and the
number of appearance af in backside of the pointers. We note that the set of pointers of
uw can be simply obtained from previous searcmoth condition (1),uw is stored in

I,, andT,,. With condition (3),uw is only stored i,

There are some technique in order to calculate kernel faster in the implementation. For
example, sincg?(u) andx?(u) are constant against the same data, we only have to calcu-
late them once. We store the internal search results of PrefixSpan with SMP algorithm in
a TRIE structure. After that, we look in that results in TRIE instead of explicitly calculate
x2(u) again when the kernel finds the same sub-sequence. Moreover, when the projected
database is exactly the same, these sub-sequences can be merged since the ¥alue of

and x?(uv) for any postfixv are exactly the same. Moreover, we introduce a ‘transposed
index’ for fast evaluation of?(u) andx?(u). By using that, we only have to look up that
index ofw to evaluate whether or not amyw are significant features.

Equations (4) to (7) can be performed in the same as the original DP based kernel calcu-
lation. The recursive set operations of Equations (9) to (11) can be executed as well as

Table 2: Experimental Results

Question Classification Subjectivity Detection Polarity Identification

n 1 2 3 4] oo 1 2 3 4] oo 1 2 3 4] oo
SK+FS - | .823].827| .824] .822 - | .822].839] .841] .842 - |.824].838]|.839| .839
SK - |.808] .818| .808] .797 - |.823].824| .809] .772 - | .835].835] .833].789
TK+FS - |.812].815| .812] .812 - | .834] .857| .854]| .856 -|.830].832| .835] .833
TK -1.802].802] .797| .783 - |.842] .850] .830] .755 - |.828].827] .820| .745
BOW-K | .754|.792].790| .778 - .717] 729|.715] .649 - .740].810] .822] .795 -

Equationg(5) to (7). Moreover, calculating?(u) and?(u) with sub-structure mining al-
gorithms allow to calculate the same order of the DP based kernel calculation. As a result,
statistical feature selection can be embedded in original kernel calculation based on the DP.

Essentially, the worst case time complexity of the proposed method will become exponen-
tial, since we enumerate individual sub-structures in sub-structure mining phase. However,
actual calculation time in the most cases of our experiments is even faster than original
kernel calculation, since search space pruning efficiently remove vain calculation and the
implementation techniques briefly explained above provide practical calculation speed.

We note that if we set = 0, which means all features are dealt with kernel calculation, we
can get exactly the same kernel value as the original tree kernel.

5 Experiments and Results

We evaluated the performance of the proposed method in actual NLP tasks, gkt
guestion classificatio(EQC), subjectivity detectioffSD) andpolarity identification(PI)

tasks. These tasks are defined as a text categorization task: it maps a given sentence into
one of the pre-defined classes. We used data provided by [6] for EQC, that contains about
5500 questions with 50 question types. SD data was created from Mainichi news articles,
and the size was 2095 sentences consisting of 822 subjective sentences. Pl data has 5564
sentences with 2671 positive opinion. By using these data, we compared the proposed
method (SK+FS and TK+FS) with a conventional method (SK or TK), as discussed in
Section 3, and witlbag-of-words(BOW) Kernel (BOW-K)[4] as baseline methods. We

used word sequences for input objects of sequence kernels and word dependency trees for
tree kernels.

Support Vector Machine (SVM) was selected as the kernel-based classifier for training and
classification with a soft margin parametér= 1000. We used th@ne-vs-restlassifier of

SVM as the multi-class classification method for EQC. We evaluated the performance with
label accuracy by using ten-fold cross validation: eight for training, one for development
and remaining one for test set. The parametendr was automatically selected from

the value set oh = {0.1,0.3,0.5,0.7,0.9} andr = {3.84,6.63} by the development

test. Note that these two values represent the 10% and 5% levels of significance the
distribution with one degree of freedom, which usedtResignificant test.

Tables 2 shows our experimental results. where each table indicates the restriction of

the sub-structure size, amd= co means all possible sub-structures are used. As shown in
this table, SK or TK achieve maximum performance whes 2 or 3. The performance
deteriorates considerably oneexceeds 4 or more. This implies that larger sub-structures
degrade classification performance, which showed the same tendency as in the previous
studies discussed in Section 3. This is evidence of over-fitting in learning. On the other
hand, SK+FS and TK+FS provided consistently better performance than the conventional
methods. Moreover, the experiments confirmed one important fact: in some cases, max-
imum performance was achieved with= co. This indicates that certain sub-sequences

createdusing very large structures can be extremely effective. If the performance is im-
proved by using a larget, this means that significant features do exist. Thus, we can
improve the performance of some classification problems by dealing with larger substruc-
tures. Even if optimum performance was not achieved with oo, the difference from the
performance of a smaller is quite small compared to that of SK and TK. This indicates
that our method is very robust against sub-structure size.

6 Conclusions

This paper proposed a statistical feature selection method for sequence kernels and tree
kernels. Our approach can select significant features automatically based on a statistical
significance test. The proposed method can be embedded in the original DP based kernel
calculation process by using sub-structure mining algorithms.

Our experiments demonstrated that our method is superior to conventional methods. More-
over, the results indicate that complex features exist and can be effective. Our method can
employ them without over-fitting problems, which yields benefits in terms of concept and
performance.

References

[1] N. Cancedda, E. Gaussier, C. Goutte, and J.-M. Renders. Word-Sequence Kéwnetsl of
Machine Learning ResearcB:1059-1082, 2003.

[2] M. Collins and N. Duffy. Convolution kernels for natural language.Phoc. of Neural Infor-
mation Processing Systems (NIPS’20@001.

[3] D. Haussler. Convolution kernels on discrete structuregekhnical Report UCS-CRL-99-10
UC Santa Cruz, 1999.

[4] T.Joachims. Text Categorization with Support Vector Machines: Learning with Many Relevant
Features. IiProc. of European Conference on Machine Learning (ECML, @8pes 137-142,
1998.

[5] H. Kashima and T. Koyanagi. Kernels for Semi-Structured DataPrbc. 19th International
Conference on Machine Learning (ICML200Rages 291298, 2002.

[6] X.LiandD. Roth. Learning Question Classifiers.Rroc. of the 19th International Conference
on Computational Linguistics (COLING 20Q2)ages 556-562, 2002.

[7] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text Classification
Using String KernelJournal of Machine Learning Researc1419-444, 2002.

[8] S. Morishita and J. Sese. Traversing Iltemset Lattices with Statistical Metric Prunifgodn
of ACM SIGACT-SIGMOD-SIGART Symp. on Database Systems (POD$0@s 226-236,
2000.

[9] J. Pei, J. Han, B. Mortazavi-Asl, and H. Pinto. PrefixSpan: Mining Sequential Patterns Effi-
ciently by Prefix-Projected Pattern Growth. Pnoc. of the 17th International Conference on
Data Engineering (ICDE 2001)pages 215-224, 2001.

[10] J. Suzuki, Y. Sasaki, and E. Maeda. Kernels for Structured Natural Language DBtac|of
the 17th Annual Conference on Neural Information Processing Systems (NIPS2003)

[11] C. Watkins. Dynamic alignment kernels. Technical Report CSD-TR-98-1Royal Holloway,
University of London Computer Science Department, 1999.

[12] M. J. Zaki. Efficiently Mining Frequent Trees in a Forest. Rroc. of the 8th International
Conference on Knowledge Discovery and Data Mining (KDD, @2ges 71-80, 2002.

