
Sequenceand Tree Kernels
with Statistical Feature Mining

Jun Suzuki and Hideki Isozaki
NTT Communication Science Laboratories, NTT Corp.

2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto,619-0237 Japan
{jun, isozaki}@cslab.kecl.ntt.co.jp

Abstract

This paper proposes a new approach to feature selection based on a sta-
tistical feature mining technique for sequence and tree kernels. Since
natural language data take discrete structures, convolution kernels, such
as sequence and tree kernels, are advantageous for both the concept and
accuracy of manynatural language processingtasks. However, experi-
ments have shown that the best results can only be achieved when lim-
ited small sub-structures are dealt with by these kernels. This paper dis-
cusses this issue of convolution kernels and then proposes a statistical
feature selection that enable us to use larger sub-structures effectively.
The proposed method, in order to execute efficiently, can be embedded
into an original kernel calculation process by usingsub-structure min-
ing algorithms. Experiments on real NLP tasks confirm the problem in
the conventional method and compare the performance of a conventional
method to that of the proposed method.

1 Introduction

Since natural language data take the form of sequences of words and are generally analyzed
into discrete structures, such as trees (parsed trees),discrete kernels, such as sequence
kernels [7, 1] and tree kernels [2, 5], have been shown to offer excellent results in the
natural language processing (NLP)field. Conceptually, these proposed kernels are defined
as instances ofconvolution kernels[3, 11], which provides the concept of kernels over
discrete structures.

However, unfortunately, experiments have shown that in some cases there is a critical issue
with convolution kernels in NLP tasks [2, 1, 10]. That is, since natural language data
contain many types of symbols, NLP tasks usually deal with extremely high dimension
and sparse feature space. As a result, the convolution kernel approach can never be trained
effectively, and it behaves like a nearest neighbor rule. To avoid this issue, we generally
eliminate large sub-structures from the set of features used. However, the main reason for
using convolution kernels is that we aim to use structural features easily and efficiently.
If their use is limited to only very small structures, this negates the advantages of using
convolution kernels.

This paper discusses this issue of convolution kernels, in particular sequence and tree ker-

nels,and proposes a new method based on statistical significant test. The proposed method
deals only with those features that are statistically significant for solving the target task,
and large significant sub-structures can be used without over-fitting. Moreover, by us-
ing sub-structure miningalgorithms, the proposed method can be executed efficiently by
embedding it in an original kernel calculation process, which is defined by thedynamic-
programming(DP) based calculation.

2 Convolution Kernels for Sequences and Trees

Convolution kernels have been proposed as a concept of kernels for discrete structures,
such as sequences, trees and graphs. This framework defines the kernel function between
input objects as the convolution of “sub-kernels”, i.e. the kernels for the decompositions
(parts or sub-structures) of the objects. LetX andY be discrete objects. Conceptually,
convolution kernelsK(X, Y) enumerate all sub-structures occurring inX andY and then
calculate their inner product, which is simply written as:K(X, Y) = 〈φ(X), φ(Y)〉 =∑

i φi(X) · φi(Y). φ represents the feature mapping from the discrete object to the feature
space; that is,φ(X) = (φ1(X), . . . , φi(X), . . .). Therefore, with sequence kernels, input
objectsX andY are sequences, andφi(X) is a sub-sequence; with tree kernels,X and
Y are trees, andφi(X) is a sub-tree. Up to now, many kinds of sequence and tree kernels
have been proposed for a variety of different tasks. To clarify the discussion, this paper
basically follows the framework of [1], which proposed agapped word sequence kernel,
and [5], which introduced alabeled ordered tree kernel.

We can treat that sequence is one of the special form of trees if we say sequences are rooted
by their last symbol and each node has one child each of a previous symbol. Thus, in this
paper, the word ‘tree’ is always including sequence. LetL be a set of finite symbols. Then,
letLn be a set of symbols whose sizes aren andP (Ln) be a set of trees that are constructed
byLn. The meaning of “size” in this paper is the the number of nodes in a tree. We denote
a treeu ∈ P (Ln

1) whose size isn or less, where∪n
m=1Lm = Ln

1 . Let T be a tree and
sub(T) be a function that returns a set of all possible sub-trees inT . We define a function
Cu(t) that returns a constant,λ(0 < λ ≤ 1), if the sub-treet coversu with the same root
symbol. For example, a sub-tree ‘a-b-c-d’, where ‘a’, ‘b’, ‘c’ and ‘d’ represent symbols
and ‘-’ represents an edge between symbols, covers sub-trees ‘d’, ‘a-c-d’ and ‘b-d’. That
is,Cu(t) = λ if u matchest allowing the node skip, 0 otherwise. We also define a function
γu(t) that returns the difference of size of sub-treest andu. For example, ift = a-b-c-d
andu = a-b, thenγu(t) = |4− 2| = 2.

Formally, sequence and tree kernels can be defined as the same form as

KSK,TK(T 1, T 2) =
∑

u∈P (Ln
1)

∑

t1∈sub(T 1)

Cu(t1)γu(t1)
∑

t2∈sub(T 2)

Cu(t2)γu(t2). (1)

Note that this formula is also including the node skip framework that is generally introduced
only in sequence kernels[7, 1];λ is the decay factor that handles the gap present in sub-trees
u andt.

Sequence and tree kernels are defined in recursive formula to calculate them efficiently
instead of the explicit calculation of Equation (1). Moreover, when implemented, these
kernels can calculated inO(n|T 1||T 2|), where|T | represents the number of nodes inT , by
using the DP technique. Note, that if the kernel does not use size restriction, the calculation
cost becomesO(|T 1||T 2|).

3 Problem of Applying Convolution Kernels to Real tasks

According to the original definition of convolution kernels, all of the sub-structures are
enumerated and calculated for the kernels. The number of sub-structures in the input ob-
ject usually becomes exponential against input object size. The number of symbols,|L|,
is generally very large number (i.e. more than 10,000) since words are treated as symbols.
Moreover, the appearance of sub-structures (sub-sequences and sub-trees) are highly corre-
lated with that of sub-structures of sub-structures themselves. As a result, the dimension of
feature space becomes extremely high, and all kernel valuesK(X,Y) are very small com-
pared to the kernel value of the object itself,K(X, X). In this situation, the convolution
kernel approach can never be trained effectively, and it will behave like a nearest neighbor
rule; we obtain a result that is very precise but with very low recall. The details of this issue
were described in [2].

To avoid this, most conventional methods use an approach that involves smoothing the
kernel values or eliminating features based on the sub-structure size. For sequence kernels,
[1] use a feature elimination method based on the size of sub-sequencen. This means that
the kernel calculation deals only with those sub-sequences whose length isn or less. As
well as the sequence kernel, [2] proposed a method that restricts the features based on sub-
tree depth for tree kernels. These methods seem to work well on the surface, however, good
results can only be achieved whenn is very small, i.e.n = 2 or 3. For example,n = 3
showed the best performance for parsing in the experimental results of [2], andn = 2
showed the best for the text classification task in [1]. The main reason for using these
kernels is that they allow us to employ structural features simply and efficiently. When
only small-sized sub-structures are used (i.e.n = 2 or 3), the full benefits of the kernels
are missed.

Moreover, these results do not mean that no larger-sized sub-structures are useful. In some
cases we already know that certain larger sub-structures can be significant features for
solving the target problem. That is, significant larger sub-structures, which the conventional
methods cannot deal with efficiently, should have the possibility of further improving the
performance. The aim of the work described in this paper is to be able to use any significant
sub-structure efficiently, regardless of its size, to better solve NLP tasks.

4 Statistical Feature Mining Method for Sequence and Tree Kernels

This section proposes a new approach to feature selection, which is based on statistical
significant test, in contrast to the conventional methods, which use sub-structure size.

To simplify the discussion, we restrict ourselves to dealing hereafter with the two-
class (positive and negative) supervised classification problem. In our approach, we
test the statistical deviation of all sub-structures in the training samples between the
appearance of positive samples and negative samples, and then, select only the sub-
structures which are larger than a certain thresholdτ as features. This allows us
to select only the statistically significant sub-structures. In this paper, we explains
our proposed method by using the chi-squared (χ2) value as a statistical metric.

Table 1: Contingency table and notation
for the chi-squared value

c c̄
∑

row
u Ouc Ouc̄ Ou

ū Oūc Oūc̄ Oū∑
column Oc Oc̄ N

We note, however, we can use many
types of statistical metrics in our proposed
method.

First, we briefly explain how to calculate
theχ2 value by referring to Table 1.c and
c̄ represent the names of classes,c for the
positive class and̄c for the negative class.
Oij , wherei ∈ {u, ū} andj ∈ {c, c̄}, rep-

resentsthe number of samples in each case.Ouc̄, for instance, represents the number
of u that appeared in̄c. Let N be the total number of training samples. SinceN and
Oc are constant for training samples,χ2 can be obtained as a function ofOu andOuc.
Theχ2 value expresses the normalized deviation of the observation from the expectation:
chi(Ou, Ouc) =

∑
i∈{u,ū},j∈{c,c̄}(Oij −Eij)2/Eij , whereEij = n ·Oi/n ·Oj/n, which

represents the expectation. We simply represent chi(Ou, Ouc) asχ2(u).

In the kernel calculation with the statistical feature selection, ifχ2(u) < τ holds, that is,u
is not statistically significant, thenu is eliminated from the features, and the value ofu is
presumed to be 0 for the kernel value. Therefore, the sequence and tree kernel with feature
selection (SK,TK+FS) can be defined as follows:

KSK,TK+FS(T 1, T 2) =
∑

u∈{u|τ≤χ2(u),u∈P (Ln
1)}

∑

t1∈sub(T 1)

Cu(t1)γu(t1)
∑

t2∈sub(T 2)

Cu(t2)γu(t2).

(2)
The difference with their original kernels is simply the condition of the first summation,
which isτ ≤ χ2(u).

The basic idea of using a statistical metric to select features is quite natural, but it is not
a very attractive approach. We note, however, it is not clear how to calculate that kernels
efficiently with a statistical feature selection. It is computationally infeasible to calculate
χ2(u) for all possibleu with a naive exhaustive method. In our approach, we take ad-
vantage ofsub-structure miningalgorithms in order to calculateχ2(u) efficiently and to
embed statistical feature selection to the kernel calculation. Formally, sub-structure min-
ing is to find the complete set, but no-duplication, of all significant (generally frequent)
sub-structures from dataset. Specifically, we apply combination of a sequential pattern
mining technique, PrefixSpan [9], and a statistical metric pruning (SMP) method, Apriori
SMP [8]. PrefixSpan can substantially reduce the search space of enumerating all signif-
icant sub-sequences. Briefly saying, it finds any sub-sequencesuw whose size isn, by
searching a single symbolw in the projected database of the sub-sequence (prefix)u of
sizen − 1. The projected database is a partial database which only contains all postfixes
(pointers in the implementation) of appeared the prefixu in the database. It starts search-
ing from n = 1, that is, it enumerates all the significant sub-sequences by the recursive
calculation ofpattern-growth, searching in the projected database of prefixu and adding a
symbolw to u, andprefix-projection, making projected database ofuw.

Before explaining the algorithm of the proposed kernels, we introduce the upper bound of
theχ2 value. The upper bound of theχ2 value of a sequenceuv, which is the concatenation
of sequencesu andv, can be calculated by the value of the contingency table of the prefix
u [8]: χ2(uv) ≤ χ̂2(u) = max (chi(Ouc, Ouc), chi(Ou −Ouc, 0)) . This upper bound
indicates that if̂χ2(u) < τ holds, no (super-)sequencesuv, whose prefix isu, can be larger
than threshold,τ ≤ χ2(uv). In our context, we can eliminate all (super-)sequencesuv
from candidates of the feature without the explicit evaluation ofuv.

Using this property in the PrefixSpan algorithm, we can eliminate to evaluate all the (super-
)sequencesuv by evaluating the upper bound of sequenceu. After finding the number of
individual symbolw appeared in projected database ofu, we evaluateuw in the following
three conditions: (1)τ ≤ χ2(uw), (2) τ > χ2(uw), τ > χ̂2(uw), and (3)τ > χ2(uw),
τ ≤ χ̂2(uw). With condition (1), sub-sequenceuw is selected as the feature. With condi-
tion (2),uw is pruned, that is, alluwv are also pruned from search space. With condition
(3), uw is not a significant, however,uwv can be a significant; thusuw is not selected as
features, however, mining is continue touwv. Figure 1 shows an example of searching
and pruning the sub-sequences to select significant features by the PrefixSpan with SMP
algorithm.

⊥

a b c d e
+1
-1
+1
-1
-1
-1

.

.

.

class training data
a b c d a e
c a e f b c d
d b c a e
b a c b b
a c a d
d a b d e c
.
.
.

()2 'uχ
()2ˆ 'uχ

w
3.2
1.5

4.8
0.2

2.5
1.9

0.9
0.9

5.2
1.8

1:2
2:3

Projected database
5:2
6:3

b c d e2.2
0.5

0.5
0.1

3.2
1.5

1.8
1.5

c0.5
0.1

0.5
0.1d

c d0.4
0.3

3.2
1.5 a b2.2

0.5
1.2
1.2

a e1.5
1.5

2.2
1.5d2.2

1.5threshold

n=1

n=2

n=3
c e0.2

0.1
3.2
1.5

3:5
4:3

1:3
2:6

Projected database
4:5
6:4

Sample id: pointer
Ex. 2:3

Projected database

select as a feature

pruning3,

2,
1,

continue00.1=τ
() τχ ≥u2

() () τχτχ << uu 22 ˆ and ,

() τχ ≥u2ˆ

Figure1: Example of searching and pruning the sub-sequences by PrefixSpan with SMP
algorithm

a
b c

d d a
d a

(((d (b) d (d a) a) b c) a)

1T

String encoding under
the postorder traversal :

1

2

3

4 5
6

7 8

d (b) d a) b

b

9

d a) b

sub-tree
b

d d a1
2

3 6

7

b

b

d a4 5

7

*

a
b c

d d a
d

1 3

4
6

7 8

9

d d (d) a) b c) a)

Figure2: Example of the string encoding for trees under the postorder traversal

The famous tree mining algorithm [12] cannot be simply applied as a feature selection
method for the proposed tree kernels, because this tree mining executes preorder search of
trees while tree kernels calculate the kernel in postorder. Thus, we take advantage of the
string (sequence) encodingmethod for trees and treat them in sequence kernels. Figure 2
shows an example of the string encoding for trees under the postorder traversal. The brack-
ets indicate the hierarchical relation between their left and right hand side nodes. We treat
these brackets as a special symbol during the sequential pattern mining phase. Sub-trees
are evaluated as the same if and only if the string encoded sub-sequences are exactly the
same including brackets. For example, ‘d) b) a’ and ‘d b) a’ are different.

We previously said that sequence can be treated as one of trees. We also encode in the case
of sequence; for example a sequence ’a b c d’ is encoded in ‘((((a) b) c) d)’. That is, we
can define sequence and tree kernels with our feature selection method in the same form.

Sequence and Tree Kernels with Statistical Feature Mining:Sequence and Tree kernels
with our proposed feature selection method is defined in the following equations.

KSK,TK+FS(T 1, T 2;D) =
∑

1≤i≤|T 1|

∑

1≤j≤|T 2|
Hn(T 1

i , T 2
j ;D) (3)

D represents the training data, andi andj represent indices of nods in postorder ofT 1

andT 2, respectively. LetHn(T 1
i , T 2

j ;D) be a function that returns the sum value of all
statistically significant common sub-sequencesu if t1i = t2j and|u| ≤ n.

Hn(T 1
i , T 2

j ;D) =
∑

u∈Γn(T 1
i

,T 2
j
;D)

Ju(T 1
i , T 2

j ;D), (4)

whereΓn(T 1
i , T 2

j ;D) represents a set of sub-sequences, which is|u| ≤ n, that satisfy the
above condition 1. Then, letJu(T 1

i , T 2
j ;D), J ′u(T 1

i , T 2
j ;D) andJ ′′u (T 1

i , T 2
j ;D) be func-

tions that calculate the value of the common sub-sequences betweenT 1
i andT 2

j recursively.

Juw(T 1
i , T 2

j) =
{
J ′u(T 1

i , T 2
j ;D) · Iw(t1i , t

2
j) if uw ∈ Γ̂n(T 1

i , T 2
j ;D),

0 otherwise,
(5)

whereIw(t1i , t
2
j) is a function that returns 1 ifft1i = w and t2j = w, and 0 otherwise.

Γ̂n(T 1
i , T 2

j ;D) is a set of sub-sequences, which is|u| ≤ n, that satisfy condition (3). We
introduce a special symbolΛ to represent an “empty sequence”, and defineΛw = w and
|Λw| = 1.

J ′u(T 1
i , T 2

j ;D) =





1 if u = Λ,
0 if j = 0 and u 6= Λ,
λJ ′u(T 1

i , T 2
j−1;D) + J ′′u (T 1

i , T 2
j−1,D) otherwise,

(6)

J ′′u (T 1
i , T 2

j ;D) =
{

0 if i = 0,
λJ ′′u (T 1

i−1, T
2
j ;D) + Ju(T 1

i−1, T
2
j ;D) otherwise. (7)

The following equations are introduced to select a set of significant sub-sequences.

Γn(T 1
i , T 2

j ;D) = {u | u ∈ Γ̂n(T 1
i , T 2

j ;D), τ ≤ χ2(u), u|u| ∈ ∩|u|−1
i=1 ans(ui)} (8)

u|u| ∈ ∩|u|−1
i=1 ans(ui) evaluates if a sub-sequenceu is complete sub-tree, where ans(ui)

returns ancestor of the nodeui. For example, ‘d) b a’ is not a complete subtree, because
the last node ‘a’ is not an ancestor of ‘d’ and ‘b’.

Γ̂n(T 1
i , T 2

j ;D) =
{

Ψn(Γ̂′n(T 1
i , T 2

j ;D), t1i) ∪ {t1i } if t1i = t2j ,
∅ otherwise,

(9)

whereΨn(F, w) = {uw | u ∈ F, τ ≤ χ̂2(uw), |uw| ≤ n}, andF represents a set of sub-
sequences. Note thatΓn(T 1

i , T 2
j ;D) and Γ̂n(T 1

i , T 2
j ;D) have only sub-sequencesu that

satisfyτ ≤ χ2(uw) andτ ≤ χ̂2(uw), respectively, ifft1i = t2j and|uw| ≤ n; otherwise
they become empty sets.

The following two equations are introduced for recursive the set operation to calculate
Γn(T 1

i , T 2
j ;D) andΓ̂n(T 1

i , T 2
j ;D).

Γ̂′n(T 1
i , T 2

j ;D) =
{∅ if j = 0,

Γ̂′n(T 1
i , T 2

j−1;D) ∪ Γ̂′′n(T 1
i , T 2

j−1;D) otherwise,
(10)

Γ̂′′n(T 1
i , T 2

j ;D) =
{∅ if i = 0 ,

Γ̂′′n(T 1
i−1, T

2
j ;D) ∪ Γ̂n(T 1

i−1, T
2
j ;D) otherwise.

(11)

In the implementation,χ2(uw) and χ̂2(uw), whereuw represents a concatenation of a
sequenceu and a symbolw, can be calculated by a set of pointers ofu against data and the
number of appearance ofw in backside of the pointers. We note that the set of pointers of
uw can be simply obtained from previous search ofu. With condition (1),uw is stored in
Γn andΓ̂n. With condition (3),uw is only stored in̂Γn.

There are some technique in order to calculate kernel faster in the implementation. For
example, sinceχ2(u) andχ̂2(u) are constant against the same data, we only have to calcu-
late them once. We store the internal search results of PrefixSpan with SMP algorithm in
a TRIE structure. After that, we look in that results in TRIE instead of explicitly calculate
χ2(u) again when the kernel finds the same sub-sequence. Moreover, when the projected
database is exactly the same, these sub-sequences can be merged since the value ofχ2(uv)
andχ̂2(uv) for any postfixv are exactly the same. Moreover, we introduce a ‘transposed
index’ for fast evaluation ofχ2(u) andχ̂2(u). By using that, we only have to look up that
index ofw to evaluate whether or not anyuw are significant features.

Equations (4) to (7) can be performed in the same as the original DP based kernel calcu-
lation. The recursive set operations of Equations (9) to (11) can be executed as well as

Table 2: Experimental Results
Question Classification Subjectivity Detection Polarity Identification

n

SK+FS
SK

TK+FS
TK

BOW-K

1 2 3 4 ∞
- .823 .827 .824 .822
- .808 .818 .808 .797
- .812 .815 .812 .812
- .802 .802 .797 .783

.754 .792 .790 .778 -

1 2 3 4 ∞
- .822 .839 .841 .842
- .823 .824 .809 .772
- .834 .857 .854 .856
- .842 .850 .830 .755

.717 729 .715 .649 -

1 2 3 4 ∞
- .824 .838 .839 .839
- .835 .835 .833 .789
- .830 .832 .835 .833
- .828 .827 .820 .745

.740 .810 .822 .795 -

Equations(5) to (7). Moreover, calculatingχ2(u) andχ̂2(u) with sub-structure mining al-
gorithms allow to calculate the same order of the DP based kernel calculation. As a result,
statistical feature selection can be embedded in original kernel calculation based on the DP.

Essentially, the worst case time complexity of the proposed method will become exponen-
tial, since we enumerate individual sub-structures in sub-structure mining phase. However,
actual calculation time in the most cases of our experiments is even faster than original
kernel calculation, since search space pruning efficiently remove vain calculation and the
implementation techniques briefly explained above provide practical calculation speed.

We note that if we setτ = 0, which means all features are dealt with kernel calculation, we
can get exactly the same kernel value as the original tree kernel.

5 Experiments and Results

We evaluated the performance of the proposed method in actual NLP tasks, namelyEnglish
question classification(EQC),subjectivity detection(SD) andpolarity identification(PI)
tasks. These tasks are defined as a text categorization task: it maps a given sentence into
one of the pre-defined classes. We used data provided by [6] for EQC, that contains about
5500 questions with 50 question types. SD data was created from Mainichi news articles,
and the size was 2095 sentences consisting of 822 subjective sentences. PI data has 5564
sentences with 2671 positive opinion. By using these data, we compared the proposed
method (SK+FS and TK+FS) with a conventional method (SK or TK), as discussed in
Section 3, and withbag-of-words(BOW) Kernel (BOW-K)[4] as baseline methods. We
used word sequences for input objects of sequence kernels and word dependency trees for
tree kernels.

Support Vector Machine (SVM) was selected as the kernel-based classifier for training and
classification with a soft margin parameterC = 1000. We used theone-vs-restclassifier of
SVM as the multi-class classification method for EQC. We evaluated the performance with
label accuracy by using ten-fold cross validation: eight for training, one for development
and remaining one for test set. The parameterλ andτ was automatically selected from
the value set ofλ = {0.1, 0.3, 0.5, 0.7, 0.9} and τ = {3.84, 6.63} by the development
test. Note that these two values represent the 10% and 5% levels of significance in theχ2

distribution with one degree of freedom, which used theχ2 significant test.

Tables 2 shows our experimental results. wheren in each table indicates the restriction of
the sub-structure size, andn = ∞ means all possible sub-structures are used. As shown in
this table, SK or TK achieve maximum performance whenn = 2 or 3. The performance
deteriorates considerably oncen exceeds 4 or more. This implies that larger sub-structures
degrade classification performance, which showed the same tendency as in the previous
studies discussed in Section 3. This is evidence of over-fitting in learning. On the other
hand, SK+FS and TK+FS provided consistently better performance than the conventional
methods. Moreover, the experiments confirmed one important fact: in some cases, max-
imum performance was achieved withn = ∞. This indicates that certain sub-sequences

createdusing very large structures can be extremely effective. If the performance is im-
proved by using a largern, this means that significant features do exist. Thus, we can
improve the performance of some classification problems by dealing with larger substruc-
tures. Even if optimum performance was not achieved withn = ∞, the difference from the
performance of a smallern is quite small compared to that of SK and TK. This indicates
that our method is very robust against sub-structure size.

6 Conclusions

This paper proposed a statistical feature selection method for sequence kernels and tree
kernels. Our approach can select significant features automatically based on a statistical
significance test. The proposed method can be embedded in the original DP based kernel
calculation process by using sub-structure mining algorithms.

Our experiments demonstrated that our method is superior to conventional methods. More-
over, the results indicate that complex features exist and can be effective. Our method can
employ them without over-fitting problems, which yields benefits in terms of concept and
performance.

References

[1] N. Cancedda, E. Gaussier, C. Goutte, and J.-M. Renders. Word-Sequence Kernels.Journal of
Machine Learning Research, 3:1059–1082, 2003.

[2] M. Collins and N. Duffy. Convolution kernels for natural language. InProc. of Neural Infor-
mation Processing Systems (NIPS’2001), 2001.

[3] D. Haussler. Convolution kernels on discrete structures. InTechnical Report UCS-CRL-99-10.
UC Santa Cruz, 1999.

[4] T. Joachims. Text Categorization with Support Vector Machines: Learning with Many Relevant
Features. InProc. of European Conference on Machine Learning (ECML ’98), pages 137–142,
1998.

[5] H. Kashima and T. Koyanagi. Kernels for Semi-Structured Data. InProc. 19th International
Conference on Machine Learning (ICML2002), pages 291–298, 2002.

[6] X. Li and D. Roth. Learning Question Classifiers. InProc. of the 19th International Conference
on Computational Linguistics (COLING 2002), pages 556–562, 2002.

[7] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text Classification
Using String Kernel.Journal of Machine Learning Research, 2:419–444, 2002.

[8] S. Morishita and J. Sese. Traversing Itemset Lattices with Statistical Metric Pruning. InProc.
of ACM SIGACT-SIGMOD-SIGART Symp. on Database Systems (PODS’00), pages 226–236,
2000.

[9] J. Pei, J. Han, B. Mortazavi-Asl, and H. Pinto. PrefixSpan: Mining Sequential Patterns Effi-
ciently by Prefix-Projected Pattern Growth. InProc. of the 17th International Conference on
Data Engineering (ICDE 2001), pages 215–224, 2001.

[10] J. Suzuki, Y. Sasaki, and E. Maeda. Kernels for Structured Natural Language Data. InProc. of
the 17th Annual Conference on Neural Information Processing Systems (NIPS2003), 2003.

[11] C. Watkins. Dynamic alignment kernels. InTechnical Report CSD-TR-98-11. Royal Holloway,
University of London Computer Science Department, 1999.

[12] M. J. Zaki. Efficiently Mining Frequent Trees in a Forest. InProc. of the 8th International
Conference on Knowledge Discovery and Data Mining (KDD’02), pages 71–80, 2002.

