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Abstract

In this paper, we aim at analyzing the characteristic of neuronal popula-
tion responses to instantaneous or time-dependent inputs and the role of
synapses in neural information processing. We have derived an evolu-
tion equation of the membrane potential density function with synaptic
depression, and obtain the formulas for analytic computing the response
of instantaneous �re rate. Through a technical analysis, we arrive at sev-
eral signi�cant conclusions: The background inputs play an important
role in information processing and act as a switch betwee temporal inte-
gration and coincidence detection. the role of synapses can be regarded
as a spatio-temporal �lter; it is important in neural information process-
ing for the spatial distribution of synapses and the spatial and temporal
relation of inputs. The instantaneous input frequency can affect the re-
sponse amplitude and phase delay.

1 Introduction

Noise has an important impact on information processing of the nervous system in vivo. It
is signi�cance for us to study the stimulus-and-response behavior of neuronal populations,
especially to transients or time-dependent inputs in noisy environment, viz. given this sto-
chastic environment, the neuronal output is typically characterized by the instantaneous
�ring rate. It has come in for a great deal of attention in recent years[1-4]. Moreover, it
is revealed recently that synapses have a more active role in information processing[5-7].
The synapses are highly dynamic and show use-dependent plasticity over a wide range
of time scales. Synaptic short-term depression is one of the most common expressions
of plasticity. At synapses with this type of modulation, pre-synaptic activity produces a
decrease in synaptic. The present work is concerned with the processes underlying in-
vestigating the collectivity dynamics of neuronal population with synaptic depression and



the instantaneous response to time-dependence inputs. First, we deduce a one-dimension
Fokker-Planck (FP) equation via reducing the high-dimension FP equations. Then, we de-
rive the stationary solution and the response of instantaneous �re rate from it. Finally, the
models are analyzed and discussed in theory and some conclusions are presented.

2 Models and Methods

2.1 Single Neuron Models and Density Evolution Equations

Our approach is based on the integrate-and-�re(IF) neurons. The population density based
on the integrate-and-�re neuronal model is low-dimensional and thus can be computed
ef�ciently, although the approach could be generalized to other neuron models. It is com-
pletely characterized by its membrane potential below threshold. Details of the generation
of an action potential above the threshold are ignored. Synaptic and external inputs are
summed until it reaches a threshold where a spike is emitted. The general form of the
dynamics of the membrane potential v in IF model can be written as

�v
dv(t)

dt
= �v(t) + Se(t) + �v

NX
k=1

Jk(t)�(t� tspk ); (1)

where 0 � v � 1, �v is the membrane time constant, Se(t) is an external current directly
injected in the neuron, N is the number of synaptic connections, tspk is occurring time of
the �ring of a presynaptic neuron k and obeys a Poisson distribution with mean �k, Jk(t)
is the ef�cacy of synapse k. The transmembrane potential, v, has been normalized so that
v = 0marks the rest state, and v = 1 the threshold for �ring. When the latter is achieved, v
is reset to zero. Jk(t) = ADk(t), where A is a constant representing the absolute synaptic
ef�cacy corresponding to the maximal postsynaptic response obtained if all the synaptic
resources are released at once, and Dk(t) act in accordance with complex dynamics rule.
We use the phenomenological model by Tsodyks & Markram [7] to simulate short-term
synaptic depression:

dDk(t)

dt
=
(1�Dk(t))

�d
� UkDk(t)�(t� tspk ); (2)

where Dk is a `depression' variable, Dk 2 [0; 1], �d is the recovery time constant, Uk is a
constant determining the step decrease in Dk. Using the diffusion approximation, we can
get from (1) and (2)

�v
dv(t)

dt
= �v(t) + Se(t) + �v

NX
k=1

ADk(�k +
p
�k�k(t));

dDk(t)

dt
=
(1�Dk)
�d

� UkDk(�k +
p
�k�k(t)): (3)

The Fokker-Planck equation of equations (3) is
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whereD = (D1; D2; :::DN ), and

p(t; v;D) = pd(t;Djv)pv(t; v);
Z 1

�1
pd(t;Djv)dD = 1: (5)

We assume that D1; D2; :::DN are uncorrelated, then we have

pd(t;Djv) =
NY
k=1

~pkd(t;Dkjv); (6)

where ~pkd(t;Dkjv) is the conditional probability density. Moreover, we can assume

~pkd(t;Dkjv) � pkd(t;Dk): (7)
Substituting (5) into (4), we get
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Integrating Eqation (8) overD, we get

�v
@pv(t; v)

@t
= � @

@v
(�v + ~Kv)pv(t; v) +

Qv
2

@2pv(t; v)

@v2
; (9)

where

~Kv =

Z
KvpddD =Se +

NX
k=1

�v�kAmk; Qv =

NX
k=1

�v�kA
2
k;

mk =

Z
Dkp

k
d(t;Dk)dDk; 
k =

Z
D2
kp
k
d(t;Dk)dDk; (10)

and pkd(t;Dk) satis�es the following equation Fokker-Planck equation

@pkd
@t

= � @

@Dk
(KDk

pkd) +
1

2

@2

@D2
k

(U2kD
2
k�kp

k
d): (11)

From (10) and (11), we can get
dmk

dt
= �( 1

�d
+ U�k)mk +

1

�d
;

d
k
dt

= �( 2
�d
+ (2U � U2)�k)
k +

2mk

�d
: (12)

Let

Jv(t; v) = (
�v + ~Kv

�v
)pv(t; v)�

Qv
2�v

@pv(t; v)

@v
;

r(t) = Jv(t; 1); (13)
where Jv(t; v) is the probability �ux of pv , r(t) is the �re rate. The boundary conditions of
equation (9) are

pv(t; 1) = 0;

Z 1

0

pv(t; v)dv = 1; r(t) = Jv(t; 0): (14)



2.2 Stationary Solution and Response Analysis

When the system is in the stationary states, @pv=@t = 0; dmk=dt = 0; d
k=dt = 0;
pv(t; v) = p0v(v); r(t) = r0; mk(t) = m0

k; 
k(t) = 
0k and �k(t) = �0k. are time-
independent. From (9), (12), (13) and (14), we get

p0v(v) =
2�vr0
Q0v

exp[� (v �
~K0
v )
2

Q0v
]

Z 1

v

exp[
(v

0 � ~K0
v )
2

Q0v
]dv

0
; 0 � v � 1;
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k

: (15)

Sometimes, we are more interested in the instantaneous response to time-dependence ran-
dom �uctuation inputs. The inputs take the form:
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0
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1
k(t)); (16)

where "k � 1. Thenmk and 
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Substituting (17) into (12), and ignoring the high order item, it yields:

dm1
k

dt
= �( 1

�d
+ Uk�

0
k)m

1
k � Uk�0k�1k(t);

d
1k
dt

= �( 2
�d
+ (2Uk � U2k )�0k)
1k +

2m1
k

�d
� (2Uk � U2k )�0k�1k(t): (19)

With the de�nitions
~Kv = ~K0

v + � ~K
1
v (t) +O(�

2);

Qv = Q
0
v + �Q

1
v(t) +O(�

2);

pv = p
0
v + �p1(t) +O(�

2);

r = r0 + �r1(t) +O(�
2); (20)

where �� 1; and boundary conditions of p1

p1(t; 1) = 0;

Z 1

0

p1(t; v)dv = 0; (21)



using the perturbative expansion in powers of �; we can get
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@p1
@t

= � @

@v
(�v + ~K0

v )p1 +
Q0v
2

@2p1
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� @f0(t; v)
@v
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f0(t; v) = ~K1
v (t)p

0
v �

Q1v(t)

2

@p0v
@v
;

r1 = �
Q0v
2�v

@p1(t; 1)

@v
� Q

1
v(t)

2�v

@p0v(1)

@v
: (22)

For the oscillatory inputs ~K1
v (t) = k(!)e

j!t, Q1v(t) = q(!)ej!t, the output has the same
frequency and takes the forms p1(t; v) = p!(!; v)ej!t; @p1=@t = j!p1.

For inputs that vary on a slow enough time scale, satisfy �v! � 1; we de�ne

�l = �v!;

p1 = p
0
1 + �lp

1
1 +O(�

2
l );

r1 = r
0
1 + �lr

1
1 +O(�

2
l ): (23)

Using the perturbative expansion in powers of �l; we get

@f0(t; v)
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The solutions of equtions (24) are

pn1 =
2

Q0v
exp[� (v �

~K0
v )
2

Q0v
]

Z 1

v

(�vr
n
1 � Fn) exp[

(v
0 � ~K0

v )
2

Q0v
]dv

0
;

rn1 =
2r0
Q0v

Z 1

0

exp[� (v �
~K0
v )
2

Q0v
]

Z 1

v

Fn exp[
(v

0 � ~K0
v )
2

Q0v
]dv

0
dv;

F0 = f0(t; v); F1 = j

Z v

0

p01(v
0
)dv

0
; n = 0; 1. (25)

In general, Q1v(t)� ~K1
v (t), then we have

F0 = f0(t; v) � ~K1
v (t)p

0
v: (26)

From (23), (25) and (26), we can get

r1 �
2r0
Q0v

~K1
v (t)

Z 1

0

exp[� (v �
~K0
v )
2

Q0v
]

Z 1

v

p0v exp[
(v
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2

Q0v
]dv

0
dv + j!�v�

2r0
Q0v
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exp[� (v �
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Q0v
]

Z 1

v

[

Z v
0

0

p01(v
00
)dv

00
] exp[

(v
0 � ~K0

v )
2

Q0v
]dv

0
dv: (27)

In the limit of high frequency inputs, i.e. 1=�v! � 1; with the de�nitions

�h =
1

�v!
;

p1 = p
0
h + �hp

1
h +O(�

2
h); (28)



we obtain

p0h = 0; p1h = j
@f0(t; v)

@v
;

r1 = �
Q1v(t)

2�v

@p0v(1)

@v
� j�h

Q0v
2�v

@2f0(t; 1)

@v2
+O(�2h)

� Q1v(t)

Q0
r0 � j�h

Q0v
2�v

( ~K1
v (t)

@2p0v(1)

@v2
� Q

1
v(t)

2

@3p0v
@v3

)

=
Q1v(t)r0
Q0v

� 2j�h
~K1
v (t)r0
Q0v

�
(1� ~K0

v )�
Q1v(t)
~K1
v (t)Q

0
v

�
1� ~K0

v �Q0v
��
: (29)

When Q1v(t)� ~K1
v (t), we have

r1 �
Q1v(t)r0
Q0v

� 2j
~K1
v (t)r0

�v!Q0v
(1� ~K0

v )(1�
Q1v(t)
~K1
v (t)Q

0
v

); (30)

3 Discussion

In equation (15), ~K0
v re�ects the average intensity of background inputs andQ0v re�ects the

intensity of background noise. When 1� �dUk�
0
k, we have

~K0
v � Se +

NX
k=1

�vA

�dUk
;

Q0v �
NX
k=1

�vA
2

�dUk(1 + �dUk�
0
k(1� Uk=2))

: (31)

From (31), we can know the change of background inputs �0k has little in�uence on ~K0
v

which is dominated by parameter �vA=�dUk, but more in�uence on Q0v which decreases
with �0k increasing.

In the low input frequency regime, from (27), we can know that the input frequency !
increasing will result in the response amplitude and the phase delay increasing. However,
in the high input frequency limit regime, from (30), we can know the input frequency !
increasing will result in the response amplitude and the phase delay decreasing. More-
over, from (27) and (30), we know the stationary background �re rate r0 play an important
part in response to changes in �uctuation outputs. The instantaneous response r1 increases
monotonically with background �re rate r0:But the background �re rate r0 is a function
of the background noise Q0v: In equation (27),




r1= ~K1
v




 re�ects the response amplitude,
and in equation (30), r0=Q0v re�ects the response amplitude. As Figure 1 (A) and (B) show
that




r1= ~K1
v




 and r0=Q0v changes with variables Q0v and ~K0
v respectively. We can know,

for the subthreshold regime ( ~K0
v < 1), they increase monotonically with Q0v when ~K0

v is a
constant. However, for the suprathreshold regime ( ~K0

v > 1), they decrease monotonically
with Q0v when ~K0

v is a constant. When inputs remain, if the instantaneous response ampli-
tude increases, then we can take for the role of neurons are more like coincidence detection
than temporal integration. And from this viewpoint, it suggests that the background in-
puts play an important role in information processing and act as a switch between temporal
integration and coincidence detection.

In equation (16), if the inputs take the oscillatory form, �1k(t) = ej!t; according to (19),



Figure 1: Response amplitude versus Q0v and eK0
v . (A)




r1= ~K1
v




 (for equation (27))
changes with Q0v and ~K0

v . (B) r0=Q0v (for equation (30)) changes with Q0v and ~K0
v .

we get

m1
k = �

�dUk�
0
ke
j(!t��m)q

(�d!)2 + (1 + �dUk�
0
k)
2

; (32)

where �m =arctg( �d!
1+�dUk�0k

) is the phase delay, �dUk�0k=
q
(�d!)2 + (1 + �dUk�

0
k)
2 is

the amplitude. The minus shows it is a `depression' response amplitude. The phase delay
increases with the input frequency ! and decreases with the background input �0k. The
`depression' response amplitude decrease with the input frequency ! and increase with the
background input �0k. The equations (15) (18), (12), (19), (27), (30) and (32) show us a
point of view that the synapses can be regarded as a time-dependent external �eld which
impacts on the neuronal population through the time-dependent mean and variance. We
assume the inputs are composed of two parts, viz. �1k1(t) = �

1
k2(t) =

1
2e
j!t; then we can

get m1
k1
and m1

k2
. However, in general m1

k 6= m1
k1
+ m1

k2
, this suggest for us that the

spatial distribution of synapses and inputs is important on neural information processing.
In conclusion, the role of synapses can be regarded as a spatio-temporal �lter. Figure 2 is
the results of simulation of a network of 2000 neurons and the analytic solution for equation
(15) and equation (27) in different conditions.

4 Summary

In this paper, we deal with the model of the integrate-and-�re neurons with synaptic cur-
rent dynamics and synaptic depression. In Section 2, �rst, using the membrane potential
equation (1) and combining the synaptic depression equation (2), we derive the evolution
equation (4) of the joint distribution density function. Then, we give an approach to cut
the evolution equation of the high dimensional function down to one dimension, and get
equation (9). Finally, we give the stationary solution and the response of instantaneous �re
rate to time-dependence random �uctuation inputs. In Section 3, the analysis and discus-
sion of the model is given and several signi�cant conclusions are presented. This paper can
only investigate the IF neuronal model without internal connection. We can also extend to
other models, such as the non-linear IF neuronal models of sparsely connected networks of
excitatory and inhibitory neurons.



Figure 2: Simulation of a network of 2000 neurons (thin solid line) and the analytic solution
(thick solid line) for equation (15) and equation (27), with �v = 15(ms), �d = 1(s),
A = 0:5, Uk = 0:5, N = 30, ! = 6:28(Hz); �1k = sin(!t), "k�

0
k = 10(Hz), �

0
k = 70(Hz)

(A and C) and 100(Hz) (B and D), Se = 0:5(A and B) and 0:8(C and D). The horizontal
axis is time (0-2s), and the longitudinal axis is the �re rate.
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