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Abstract

We propose efficient algorithms for learning ranking functions from or-
der constraints between sets—i.e.classes—of training samples. Our al-
gorithms may be used for maximizing the generalized Wilcoxon Mann
Whitney statistic that accounts for the partial ordering of the classes: spe-
cial cases include maximizing the area under the ROC curve for binary
classification and its generalization for ordinal regression. Experiments
on public benchmarks indicate that: (a) the proposed algorithm is at least
as accurate as the current state-of-the-art; (b) computationally, it is sev-
eral orders of magnitude faster and—unlike current methods—it is easily
able to handle even large datasets with over 20,000 samples.

1 Introduction

Many machine learning applications depend on accurately ordering the elements of a set
based on the known ordering of only some of its elements. In the literature, variants of this
problem have been referred to as ordinal regression, ranking, and learning of preference
relations. Formally, we want to find a functionf : ℜn → ℜ such that, for a set of test
samples{xk ∈ ℜn}, the output of the functionf(xk) can be sorted to obtain a ranking. In
order to learn such a function we are provided with training data,A, containingS sets (or
classes) of training samples:A =

⋃S

j=1(A
j = {xj

i}
mj

i=1), where thej-th setAj contains

mj samples, so that we have a total ofm =
∑S

j=1 mj samples inA. Further, we are also
provided with a directedorder graphG = (S, E) each of whose vertices corresponds to a
classAj , and the existence of a directed edgeEPQ—corresponding toAP → AQ—means
that all training samplesxp ∈ AP should be ranked higher than any samplexq ∈ AQ: i.e.
∀ (xp∈ AP , xq∈ AQ), f(xp) ≤ f(xq).

In general the number of constraints on the ranking function grows asO(m2) so that naive
solutions are computationally infeasible even for moderate sized training sets with a few
thousand samples. Hence, we propose amore stringentproblem with a larger (infinite) set
of constraints, that is nevertheless much more tractably solved. In particular, we modify
the constraints to:∀ (xp∈ CH(AP ), xq∈ CH(AQ)), f(xp) ≤ f(xq), whereCH(Aj)
denotes the set of all points in the convex hull ofAj .

We show how this leads to: (a) a family of approximations to the original problem; and (b)
considerably more efficient solutions that still enforce all of the original inter-group order
constraints. Notice that, this formulation subsumes the standard ranking problem (e.g.[4])
as a special case when each setAj is reduced to a singleton and the order graph is equal to
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Figure 1: Various instances of the proposed ranking problem consistent with the training set
{v, w, x, y, z} satisfyingv > w > x > y > z. Each problem instance is defined by an order
graph. (a-d) A succession of order graphs with an increasing number of constraints (e-f) Two order
graphs defining the same partial ordering but different problem instances.

a full graph. However, as illustrated in Figure 1, the formulation is more general and does
not require atotal orderingof the sets of training samplesAj , i.e. it allows any order graph
G to be incorporated into the problem.

1.1 Generalized Wilcoxon-Mann-Whitney Statistics

A distinction is usually made between classification and ordinal regression methods on
one hand, and ranking on the other. In particular, the loss functions used for classification
and ordinal regression evaluate whether each test sample is correctly classified: in other
words, the loss functions that are used to evaluate these algorithms—e.g.the0–1 loss for
binary classification—are computed for every sample individually, and then averaged over
the training or test set.

By contrast, bipartite ranking solutions are evaluated using theWilcoxon-Mann-Whitney
(WMW) statistic which measures the (sample averaged) probability that anypair of sam-
ples is ordered correctly; intuitively, the WMW statistic may be interpreted as thearea
under the ROC curve(AUC). We define a slight generalization of the WMW statistic that
accounts for our notion of class-ordering:

WMW (f,A) =
∑

Eij

∑mi

k=1

∑mj

l=1 δ
(

f(xi
k) < f(xj

l )
)

∑mi

k=1

∑mj

l=1 1
.

Hence, if a sample is individually misclassified because it falls on the wrong side of the
decision boundary between classes it incurs a penalty in ordinal regression, whereas, in
ranking, it may be possible that it is still correctly ordered with respect to every other test
sample, and thus it may incur no penalty in the WMW statistic.

1.2 Previous Work

Ordinal regression and methods for handling structured output classes: For a classic
description of generalized linear models for ordinal regression, see [11]. A non-parametric
Bayesian model for ordinal regression based on Gaussian processes (GP) was defined
[1]. Several recent machine learning papers consider structured output classes:e.g.[13]
presents SVM based algorithms for handling structured and interdependent output spaces,
and [5] discusses automatic document categorization into pre-defined hierarchies or tax-
onomies of topics.

Learning Rankings: The problem of learning rankings was first treated as a classification
problem on pairs of objects by Herbrich [4] and subsequently used on a web page ranking
task by Joachims [6]; a variety of authors have investigated this approach recently. The
major advantage of this approach is that it considers a more explicit notion of ordering—
However, the naive optimization strategy proposed there suffers from theO(m2) growth



in the number of constraints mentioned in the previous section. This computational bur-
den renders these methods impractical even for medium sized datasets with a few thousand
samples. In other related work, boosting methods have been proposed for learning prefer-
ences [3], and a combinatorial structure called the ranking poset was used for conditional
modeling of partially ranked data[8], in the context of combining ranked sets of web pages
produced by various web-page search engines. Another, less related, approach is [2].

Relationship to the proposed work:Our algorithm penalizes wrong ordering of pairs of
training instances in order to learn ranking functions (similar to [4]), but in addition, it can
also utilize the notion of a structured class order graph. Nevertheless, using a formula-
tion based on constraints over convex hulls of the training classes, our method avoids the
prohibitive computational complexity of the previous algorithms for ranking.

1.3 Notation and Background

In the following, vectors will be assumed to be column vectors unless transposed to a row
vector by a prime superscript′. For a vectorx in the n-dimensional real spaceℜn, the
cardinality of a setA will be denoted by #(A). The scalar (inner) product of two vectorsx
andy in then-dimensional real spaceℜn will be denoted byx′y and the2-norm ofx will
be denoted by‖x‖. For a matrixA ∈ ℜm×n, Ai is theith row ofA which is a row vector in
ℜn, while A·j is thejth column ofA. A column vector of ones of arbitrary dimension will
be denoted bye. ForA ∈ ℜm×n andB ∈ ℜn×k, the kernelK(A,B) mapsℜm×n×ℜn×k

into ℜm×k. In particular, ifx andy are column vectors inℜn then,K(x′, y) is a real
number,K(x′, A′) is a row vector inℜm andK(A,A′) is anm × m matrix. The identity
matrix of arbitrary dimension will be denoted byI.

2 Convex Hull formulation

We are interested in learning a ranking functionf : ℜn → ℜ given known ranking rela-
tionships between sometraining instancesAi, Aj ⊂ A. Let the ranking relationships be
specified by a setE = {(i, j)|Ai ≺ Aj}

To begin with, let us consider thelinearly separablebinary ranking case which is equivalent
to the problem of classifyingm points in then-dimensional real spaceℜn, represented by
them×n matrixA, according to membership of each pointx = Ai in the classA+ or A−

as specified by a given vector of labelsd. In others words, for binary classifiers, we want a
linear ranking functionfw(x) = w′x that satisfies the following constraints:
∀ (x+∈ A+, x−∈ A−), f(x−) ≤ f(x+) ⇒ f(x−)− f(x+) = w′x−− w′x+ ≤ −1 ≤ 0.

(1)

Clearly, the number of constraints grows asO(m+m−), which is roughly quadratic in
the number of training samples (unless we have severe class imbalance). While easily
overcome–based on additional insights–in the separable problem, in the non-separable
case, the quadratic growth in the number of constraints poses huge computational burdens
on the optimization algorithm; indeed direct optimization with these constraints is infeasi-
ble even for moderate sized problems. We overcome this computational problem based on
three key insightsthat are explained below.

First, notice that (by negation) the feasibility constraints in (1) can also be defined as:
∀ (x+∈ A+, x−∈ A−), w′x−−w′x+ ≤ −1 ⇔ ∄(x+∈ A+, x−∈ A−), w′x−−w′x+ > −1.

In other words, a solutionw is feasible iff there exist no pair of samples from the two
classes such thatfw(�) orders them incorrectly.

Second, we will make the constraints in (1)more stringent: instead of requiring that equa-
tion (1) be satisfied for each possible pair(x+∈ A+, x−∈ A−) in the training set, we will



Figure 2:Example binary problem where points belonging to theA+ andA− sets are represented
by blue circles and red triangles respectively. Note that two elementsxi and xj of the setA−

are not correctly ordered and hence generate positive values of the corresponding slack variables
yi andyj . Note that the pointxk (hollow triangle) is in the convex hull of the setA− and hence
the correspondingyk error can be writen as a convex combination (yk = λk

i yi + λk
j yj) of the two

nonzero errors corresponding to points ofA−

require (1) to be satisfied for each pair(x+∈ CH(A+), x−∈ CH(A−)), whereCH(Ai)
denotes the convex hull of the setAi [12]. Thus, our constraints become:

∀(λ+, λ−) such that

{

0 ≤ λ+ ≤ 1,
∑

λ+ = 1
0 ≤ λ− ≤ 1,

∑

λ− = 1

}

, w′A−′

λ−− w′A+′

λ+ ≤ −1.(2)

Next, notice that all the linear inequality and equality constraints on(λ+, λ−) may be
conveniently grouped together asBλ ≤ b, where,

λ =

[

λ−

λ+

]

m×1

b+ =

[

0
+

m+×1

1
−1

]

(m++2)×1

b− =

[

0
−

m−×1

1
−1

]

(m−+2)×1

b =

[

b+

b−

]

(3)

B− =

[

−Im− 0
e′ 0
−e′ 0

]

(m−+2)×m

B+ =

[

0 −Im+

0 e′

0 −e′

]

(m++2)×m

B =

[

B−

B+

]

(m+4)×m

(4)
Thus, our constraints onw can be written as:

∀λ s.t. Bλ ≤ b, w′A−′

λ−− w′A+′

λ+ ≤ −1 (5)

⇔ ∄λ s.t. Bλ ≤ b, w′A−′

λ−− w′A+′

λ+ > −1 (6)

⇔ ∃u s.t. B′u− w′[A−′

− A+′

] = 0, b′u ≤ −1, u ≥ 0, (7)

Where the second equivalent form of the constraints was obtained by negation (as before),
and the third equivalent form results from ourthird key insight: the application of Farka’s
theorem of alternatives[9]. The resulting linear system ofm equalities andm + 5 inequal-
ities inm + n + 4 variables can be used while minimizing any regularizer (such as‖w‖2)
to obtain the linear ranking function that satisfies (1); notice, however, that we avoid the
O(m2) scaling in constraints.

2.1 The binary non-separable case

In the non-separable case,CH(A+)
⋂

CH(A−) 6= ∅ so the requirements have to be re-
laxed by introducing slack variables. To this end, we allow one slack variableyi ≥ 0
for each training samplexi, and consider the slack for any pointinside the convex hull
CH(Aj) to also be a convex combination ofy (see Fig. 2). For example, this implies that



if only a subset of training samples have non-zero slacksyi> 0 (i.e. they are possibly mis-
classified), then the slacks of any points inside the convex hull also only depend on those
yi. Thus, our constraints now become:

∀λ s.t. Bλ ≤ b, w′A−′

λ−− w′A+′

λ+ ≤ −1 + (λ−y−+ λ+y+), y+≥ 0, y−≥ 0. (8)

Applying Farka’s theorem of alternatives, we get:

(2) ⇔ ∃u s.t. B′u −

[

A−w
−A+w

]

+

[

y−

y+

]

= 0, b′u ≤ −1, u ≥ 0 (9)

ReplacingB from equation (4) and definingu′ = [u−′

u+′

] ≥ 0 we get the constraints:

B+′

u+ + A+w + y+ = 0, (10)

B−′

u− − A−w + y− = 0, (11)

b+u+ + b−u− ≤ −1, u ≥ 0 (12)

2.2 The general ranking problem

Now we can extend the idea presented in the previous section for any given arbitrary di-
rectedorder graphG = (S, E), as stated in the introduction, each of whose vertices corre-
sponds to a classAj and the existence of a directed edgeEij means that all training samples
xi ∈ Ai should be ranked higher than any samplexj ∈ Aj , that is:

f(xj) ≤ f(xi) ⇒ f(xj) − f(xi) = w′xj − w′xi ≤ −1 ≤ 0 (13)

Analogously we obtain the following set of equations that enforced the ordering between
setsAi andAj :

Bi′uij + Aiw + yi = 0 (14)

Bj′

ûij − Ajw + yj = 0 (15)

biuij + bj ûij ≤ −1 (16)

uij , ûij ≥ 0 (17)

It can be shown that using the definitions ofBi,Bj ,bi,bj and the fact thatuij , ûij ≥ 0,
equations (14) can be rewritten in the following way:

γij + Aiw + yi ≥ 0 (18)

γ̂ij − Ajw + yj ≥ 0 (19)

γij + γ̂ij ≤ −1 (20)

yi, yj ≥ 0 (21)

whereγij = biuij and γ̂ij = bj ûij . Note that enforcing the constraints defined above
indeed implies the desired ordering, since we have:

Aiw + yi ≥ −γij ≥ γ̂ij + 1 ≥ γ̂ij ≥ Ajw − yj

It is also important to note the connection with Support Vector Machines (SVM) formu-
lation [10, 14] for the binary case. If we impose the extra constraints−γij = γ + 1 and
γ̂ij = γ−1, then equations (18) imply the constraints included in the standard primal SVM
formulation. To obtain a more general formulation,we can “kernelize” equations (14) by
making a transformation of the variablew as:w = A′v, where v can be interpreted as an
arbitrary variable inRm ,This transformation can be motivated by duality theory [10], then
equations (14) become:

γij + AiA′v + yi ≥ 0 (22)

γ̂ij − AjA′v + yj ≥ 0 (23)

γij + γ̂ij ≤ −1 (24)

yi, yj ≥ 0 (25)



If we now replace the linear kernelsAiA′ and AiA′ by more general kernelsK(Ai, A′)
andK(Aj , A′) we obtain a “kernelized” version of equations (14)

Eij ≡











γij + K(Ai, A′)v + yi ≥ 0
γ̂ij − K(Aj , A′)v + yj ≥ 0
γij + γ̂ij ≤ −1
yi, yj ≥ 0











(26)

Given a graphG = (V, E) representing the ordering of the training data and using equa-
tions (26) , we present next, a general mathematical programming formulation the ranking
problem:

min
{v,yi,γij | (i,j)∈E}

νǫ(y) + R(v)

s.t. Eij ∀(i, j) ∈ E
(27)

Whereǫ is a given loss function for the slack variablesyi andR(v) represents a regularizer
on the normal to the hyperplanev. For an arbitrary kernelK(x, x′) the number of variables
of formulation (27) is2 ∗ m + 2#(E) and the number of linear equations(excluding the
nonnegativity constraints) ism#(E) + #(E) = #(E)(m + 1). for a linear kernel i.e.
K(x, x′) = xx′ the number of variables of formulation (27) becomesm + n + 2#(E)
and the number of linear equations remains the same. When using a linear kernel and
usingǫ(x) = R(x) = ‖x‖2

2, the optimization problem (27) becomes a linearly constrained
quadratic optimization problem for which a unique solution exists due to the convexity of
the objective function:

min
{w,yi,γij | (i,j)∈E}

ν ‖y‖2
2 + 1

2w′w

s.t. Eij ∀(i, j) ∈ E
(28)

Unlike other SVM-like methods for ranking that need aO(m2) number of slack variables
y our formulation only require one slack variable for example, onlym slack variables
are used, giving our formulation computational advantage over ranking methods. Next,
we demonstrate the effectiveness of our algorithm by comparing it to two state-of-the-art
algorithms.

3 Experimental Evaluation

We test tested our approach in a set of nine publicly available datasets1 shown in Tab. 1
(several large datasets are not reported since only the algorithm presented in this paper was
able to run them). These datasets have been frequently used as a benchmark for ordinal
regression methods (e.g.[1]). Here we use them for evaluating ranking performance. We
compare our method against SVM for ranking (e.g.[4, 6]) using the SVM-light package2

and an efficient Gaussian process method (the informative vector machine)3 [7].

These datasets were originally designed for regression, thus the continuoustarget values
for each dataset were discretized into five equal size bins. We use these bins to define
our ranking constraints: all the datapoints with target value falling in the same bin were
grouped together. Each dataset was divided into 10% for testing and 90% for training.
Thus, the input to all of the algorithms tested was, for each point in the training set: (1) a
vector inℜn (wheren is different for each set) and (2) a value from1 to 5 denoting the
rank of the group to which it belongs.

Performance is defined in terms of the Wilcoxon statistic. Since we do not employ informa-
tion about the ranking of the elements within each group, order constraints within a group

1Available athttp:\\www.liacc.up.pt\ l̃torgo\Regression\DataSets.html
2http:\\www.cs.cornell.edu\People\tj\svm light\
3http:\\www.dcs.shef.ac.uk\ neil\ivm\



Table 1: Benchmark Datasets
Name m n Name m n

1 Abalone 4177 9 6 Machine-CPU 209 7
2 Airplane Comp. 950 10 7 Pyrimidines 74 28
3 Auto-MPG 392 8 8 Triazines 186 61
4 CA Housing 20640 9 9 WI Breast Cancer 194 33
5 Housing-Boston 506 14
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Figure 3: Experimental comparison of the ranking SVM, IVM and the proposed method on nine
benchmark datasets. Along with the mean values in 10 fold cross-validation, the entire range of vari-
ation is indicated in the error-bars. (a) The overall accuracy for all the three methods is comparable.
(b) The proposed method has a much lower run time than the other methods, even for the full graph
case for medium to large size datasets. NOTE: Both SVM-light and IVM ran out of memory and
crashed on dataset 4; on dataset 1, SVM-light failed to complete even one fold after more than 24
hours of run time, so its results could not be compiled in time for submission.

cannot be verified. Lettingb(m) = m(m − 1)/2, the total number of order constraints is
equal tob(m) −

∑

i b(mi), wheremi is the number of instances in groupi.

The results for all of the algorithms are shown in Fig.3. Our formulation was tested employ-
ing two order graphs, the full directed acyclic graph and the chain graph. The performance
for all datasets is generally comparable or significantly better for our algorithm (when us-
ing a chain order graph). Note that the performance for the full graph is consistently lower
than that for the chain graph. Thus, interestingly enforcing more order constraints does not
necessarily imply better performance. We suspect that this is due to the role that the slack
variables play in both formulations, since the number of slack variables remains the same
while the number of constraints increases. Adding more slack variables may positively
affect performance in the full graph, but this comes at a computational cost. An interesting
problem is to find the right compromise. A different but potentially related problem is that
of finding goodorder graph given a dataset. Note also that the chain graph is much more
stable regarding performance overall. Regarding run-time, our algorithm runs an order of
magnitude faster than current implementations of state-of-the-art methods, even approxi-
mate ones (like IVM).

4 Discussions and future work

We propose a general method for learning a ranking function from structured order con-
straints on sets of training samples. The proposed algorithm was illustrated on benchmark
ranking problems with two different constraint graphs: (a) a chain graph; and (b) a full



ordering graph. Although a chain graph was more accurate in the experiments shown in
Figure 3, with either type of graph structure, the proposed method is at least as accurate (in
terms of the WMW statistic for ordinal regression) as state-of-the-art algorithms such as
the ranking-SVM and Gaussian Processes for ordinal regression.

Besides being accurate, the computational requirements of our algorithm scale much more
favorably with the number of training samples as compared to other state-of-the-art meth-
ods. Indeed it was the only algorithm capable of handling several large datasets, while the
other methods either crashed due to lack of memory or ran for so long that they were not
practically feasible. While our experiments illustrate only specific order graphs, we stress
that the method is general enough to handle arbitrary constraint relationships.

While the proposed formulation reduces the computational complexity of enforcing or-
der constraints, it is entirely independent of theregularizerthat is minimized (under these
constraints) while learning the optimal ranking function. Though we have used a simple
margin regularization (via‖w‖2 in (28), and RKHS regularization in (27) in order to learn
in a supervisedsetting, we can just as easily easily use a graph-Laplacian based regular-
izer that exploits unlabeled data, in order to learn insemi-supervisedsettings. We plan to
explore this in future work.
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