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Abstract

We present a method for performing transductive inference on very large
datasets. Our algorithm is based on multiclass Gaussian processes and is
effective whenever the multiplication of the kernel matrix or its inverse
with a vector can be computed sufficiently fast. This holds, for instance,
for certain graph and string kernels. Transduction is achieved by varia-
tional inference over the unlabeled data subject to a balancing constraint.

1 Introduction

While obtaining labeled data remains a time and labor consuming task, acquisition and
storage of unlabelled data is becoming increasingly cheap and easy. This development
has driven machine learning research into exploring algorithms that make extensive use of
unlabelled data at training time in order to obtain better generalization performance.

A common problem of many transductive approaches is that they scale badly with the
amount of unlabeled data, which prohibits the use of massive sets of unlabeled data. Our
algorithm shows improved scaling behavior, both for standard Gaussian Process classifica-
tion and transduction. We perform classification on a dataset consisting of a digraph with
75, 888 vertices and508, 960 edges. To the best of our knowledge it has so far not been
possible to perform transduction on graphs of this size in reasonable time (with standard
hardware). On standard data our method shows competitive or better performance.

Existing Transductive Approachesfor SVMs use nonlinear programming [2] or EM-style
iterations for binary classification [4]. Moreover, on graphs various methods for unsuper-
vised learning have been proposed [12, 11], all of which are mainly concerned with com-
puting the kernel matrix on training and test set jointly. Other formulations impose that the
label assignment on the test set be consistent with the assumption of confident classification
[8]. Yet others impose that training and test set have similar marginal distributions [4].

The present paper uses all three properties. It is particularly efficient wheneverKα or
K−1α can be computed in linear time, whereK ∈ R

m×m is the kernel matrix andα ∈ R
m.

• We require consistency of training and test marginals. This avoids problems with
overly large majority classes and small training sets.
• Kernels (or their inverses) are computed on training and test set simultaneously.

On graphs this can lead to considerable computational savings.
• Self consistency of the estimates is achieved by a variational approach. This al-

lows us to make use of Gaussian Process multiclass formulations.



2 Multiclass Classification

We begin with a brief overview over Gaussian Process multiclass classification [10] recast
in terms of exponential families. Denote byX × Y with Y = {1..n} the domain of obser-
vations and labels. Moreover letX := {x1, . . . , xm} andY := {y1, . . . , ym} be the set of
observations. It is our goal to estimatey|x via

p(y|x, θ) = exp (〈φ(x, y), θ〉 − g(θ|x)) whereg(θ|x) = log
∑

y∈Y

exp (〈φ(x, y), θ〉) . (1)

φ(x, y) are the joint sufficient statistics ofx andy andg(θ|x) is the log-partition function
which takes care of the normalization. We impose a normal prior onθ, leading to the
following negative joint likelihood inθ andY :

P := − log p(θ, Y |X) =
m

∑

i=1

[g(θ|xi)− 〈φ(xi, yi), θ〉] +
1

2σ2
‖θ‖2 + const. (2)

For transduction purposesp(θ, Y |X) will prove more useful thanp(θ|Y,X). Note that a
normal prior onθ with varianceσ2

1 implies a Gaussian process on the random variable
t(x, y) := 〈φ(x, y), θ〉 with covariance kernel

Cov [t(x, y), t(x′, y′)] = σ2 〈φ(x, y), φ(x′, y′)〉 =: σ2k((x, y), (x′, y′)). (3)

Parametric Optimization Problem In the following we assume isotropy among the
class labels, that is〈φ(x, y), φ(x′, y′)〉 = δy,y′ 〈φ(x), φ(x′)〉 (this is not a necessary re-
quirement for the efficiency of our algorithm, however it greatly simplifies the presenta-
tion). This allows us to decomposeθ into θ1, . . . , θn such that

〈φ(x, y), θ〉 = 〈φ(x), θy〉 and‖θ‖2 =
n

∑

y=1

‖θy‖
2. (4)

Applying the representer theorem allows us to expandθ in terms ofφ(xi, yi) as θ =
∑m

i=1

∑n

y=1 αiyφ(xi, y). In conjunction with (4) we have

θy =
m

∑

i=1

αiyφ(xi) whereα ∈ R
m×n. (5)

Let µ ∈ R
m×n with µij = 1 if yi = j andµij = 0 otherwise, andK ∈ R

m×m with
Kij = 〈φ(xi), φ(xj)〉. Here joint log-likelihood (2) in terms ofα andK yields

m
∑

i=1

log

n
∑

y=1

exp ([Kα]iy)− trµ⊤Kα +
1

2σ2
tr α⊤Kα + const. (6)

Equivalently we could expand (2) in terms oft := Kα. This is commonly done in Gaussian
process literature and we will use both formulations, depending on the problem we need to
solve: ifKα can be computed effectively, as is the case with string kernels [9], we use the
α-parameterization. Conversely, ifK−1α is cheap, as for example with graph kernels [7],
we use thet-parameterization.

Derivatives Second order methods such as Conjugate Gradient require the computation
of derivatives of− log p(θ, Y |X) with respect toθ in terms ofα or t. Using the shorthand
π ∈ R

m×n with πij := p(y = j|xi, θ) we have

∂αP = K(π − µ + σ−2α) and∂tP = π − µ + σ−2K−1t. (7)

To avoid spelling out tensors of fourth order for the second derivatives (sinceα ∈ R
m×n)

we state the action of the latter as bilinear forms on vectorsβ, γ, u, v ∈ R
m×n. For con-

venience we use the “Matlab” notation of ’.∗’ to denote element-wise multiplication of
matrices:



∂2
αP[β, γ] = tr(Kγ)⊤(π. ∗ (Kβ))− tr(π. ∗Kγ)⊤(π. ∗ (Kβ)) + σ−2 tr γ⊤Kβ (8a)

∂2
t P[u, v] = tru⊤(π. ∗ v)− tr(π. ∗ u)⊤(π. ∗ v) + σ−2 tru⊤K−1v. (8b)

Let L · n be the computational time required to computeKα andK−1t respectively. One
may check thatL = O(m) implies that each conjugate gradient (CG) descent step can
be performed inO(m) time. Combining this with rates of convergence for Newton-type
or nonlinear CG solver strategies yields overall time costs in the order ofO(m log m) to
O(m2) worst case, a significant improvement over conventionalO(m3) methods.

3 Transductive Inference by Variational Methods

As we are interested in transduction, the labelsY (and analogously the dataX) decompose
asY = Ytrain ∪ Ytest. To directly estimatep(Ytest|X,Ytrain) we would need to integrat-
ing out θ, which is usually intractable. Instead, we now aim at estimating the mode of
p(θ|X,Ytrain) by variational means. With the KL-divergenceD and an arbitrary distribu-
tion q the well-known bound (see e.g. [5])

− log p(θ|X,Ytrain) ≤ − log p(θ|X,Ytrain) + D(q(Ytest)‖p(Ytest|X,Ytrain, θ)) (9)

= −
∑

Ytest

(log p(Ytest, θ|X,Ytrain)− log q(Ytest)) q(Ytest) (10)

holds. This bound (10) can be minimized with respect toθ andq in an iterative fashion. The
key trick is that while using a factorizing approximation forq we restrict the latter to dis-
tributions which satisfy balancing constraints. That is, we require them to yield marginals
on the unlabeled data which are comparable with the labeled observations.

Decomposing the Variational Bound To simplify (10) observe that

p(Ytest, θ|X,Ytrain) = p(Ytrain, Ytest, θ|X)/p(Ytrain|X). (11)

In other words, the first term in (10) equals (6) up to a constant independent ofθ or Ytest.
With qij := q(yi = j) we defineµij(q) = qij for all i > mtrain andµij(q) = 1 if yi = 1
and0 otherwise for alli ≤ mtrain. In other words, we are taking the expectation inµ over
all unobserved labelsYtest with respect to the distributionq(Ytest). We have

∑

Ytest

q(Ytest) log p(Ytest, θ|X,Ytrain)

=

m
∑

i=1

log

n
∑

j=1

exp ([Kα]ij)− tr µ(q)⊤Kα +
1

2σ2
trα⊤Kα + const. (12)

For fixedq the optimization overθ proceeds as in Section 2. Next we discussq.

Optimization over q The second term in (10) is the negative entropy ofq. Sinceq fac-
torizes we have

∑

Ytest

q(Ytest) log q(Ytest) =

m
∑

i=mtrain+1

qij log qij . (13)

It is unreasonable to assume thatq may be chosen freely from all factorizing distributions
(the latter would lead to a straightforward EM algorithm for transductive inference): if we
observe a certain distribution of labels on the training set, e.g., for binary classification we
see45% positive and55% negative labels, then it is very unlikely that the label distribution
on the test set deviates significantly. Hence we should make use of this information.



If m ≫ mtrain, however, a naive application of the variational bound can lead to cases
whereq is concentrated on one class — the increase in likelihood for a resulting very sim-
ple classifier completely outweighs any balancing constraints implicit in the data. This is
confirmed by experimental results. It is, incidentally, also the reason why SVM transduc-
tion optimization codes [4] impose a balancing constraint on the assignment of test labels.
We impose the following conditions:

r−j ≤
m

∑

i=mtrain+1

qij ≤ r+
j for all j ∈ Y and

n
∑

j=1

qij = 1 for all i ∈ {mtrain..m} .

Here the constraintsr−j = pemp(y = j) − ǫ andr+
j = pemp(y = j) + ǫ are chosen such

as to correspond to confidence intervals given by finite sample size tail bounds. In other
words we setpemp(y = j) = m−1

train

∑mtrain

i=1 {yi = j} andǫ such as to satisfy

Pr

{∣

∣

∣

∣

∣

m−1
train

mtrain
∑

i=1

ξi −m−1
test

mtest
∑

i=1

ξ′i

∣

∣

∣

∣

∣

> ǫ

}

≤ δ (14)

for iid {0, 1} random variablesξi andξ′i with meanp. This is a standard ghost-sample
inequality. It follows directly from [3, Eq. (2.7)] after application of a union bound over
the class labels thatǫ ≤

√

log(2n/δ)m/ (2mtrainmtest).

4 Graphs, Strings and Vectors

We now discuss the two main applications where computational savings can be achieved:
graphs and strings. In the case of graphs, the advantage arises from the fact thatK−1 is
sparse, whereas for texts we can use fast string kernels [9] to computeKα in linear time.

Graphs Denote byG(V,E) the graph given by verticesV and edgesE where each edge is
a set of two vertices. ThenW ∈ R

|V |×|V | denotes the adjacency matrix of the graph, where
Wij > 0 only if edge{i, j} ∈ E. We assume that the graphG, and thus also the adjacency
matrixW , is sparse. Now denote by1 the identity matrix and byD the diagonal matrix of
vertex degrees, i.e.,Dii =

∑

j Wij . Then the graph Laplacian and the normalized graph
Laplacian ofG are given by

L := D −W and L̃ := 1−D− 1

2 WD− 1

2 , (15)

respectively. Many kernelsK (or their inverse) onG are given by low-degree polynomials
of the Laplacian or the adjacency matrix ofG, such as the following:

K =

l
∑

i=1

ciW
2i,K =

l
∏

i=1

(1− ciL̃), or K−1 = L̃ + ǫ1. (16)

In all three cases we assumedci, ǫ ≥ 0 andl ∈ N. The first kernel arises from anl-step
random walk, the third case is typically referred to as regularized graph Laplacian. In these
casesKα or K−1t can be computed usingL = l(|V | + |E|) operations. This means
that if the average degree of the graph does not increase with the number of observations,
L = O(m) asm = |V | for inference on graphs.

From Graphs to Graphical Models Graphs are one of the examples where transduction
actually improves computational cost: Assume that we are given the inverse kernel matrix
K−1 on training and test set and we wish to perform induction only. In this case we need
to compute the kernel matrix (or its inverse) restricted to the training set. LetK−1 =
[

A B
B⊤ C

]

, then the upper left hand corner (representing the training set part only) of



K is given by the Schur complement
(

A−B⊤C−1B
)−1

. Computing the latter is costly.
Moreover, neither the Schur complement nor its inverse are typically sparse.

Here we have a nice connection between graphical models and graph kernels. Assume that
t is a normal random variable with conditional independence properties. In this case the
inverse covariance matrix has nonzero entries only for variables with a direct dependency
structure. This follows directly from an application of the Clifford-Hammersley theorem to
Gaussian random variables [6]. In other words, if we are given a graphical model of normal
random variables, their conditional independence structure is reflected byK−1.

In the same way as in graphical models marginalization may induce dependencies, com-
puting the kernel matrix on the training set only, may lead to dense matrices, even when
the inverse kernel on training and test data combined is sparse. The bottom line is there are
cases where it is computationally cheaper to take both training and test set into account and
optimize over a larger set of variables rather than dealing with a smaller dense matrix.

Strings: Efficient computation of string kernels using suffix trees was described in [9]. In
particular, it was observed that expansions of the form

∑m

i=1 αik(xi, x) can be evaluated
in linear time in the length ofx, provided some preprocessing for the coefficientsα and
observationsxi is performed. This preprocessing is independent ofx and can be computed
in O(

∑

i |xi|) time. The efficient computation scheme covers all kernels of type

k(x, x′) =
∑

s

ws#s(x)#s(x
′) (17)

for arbitraryws ≥ 0. Here,#s(x) denotes the number of occurrences ofs in x and the
sum is carried out over all substrings ofx. This means that computation time for evaluating
Kα is againO(

∑

i |xi|) as we need to evaluate the kernel expansion for allx ∈ X. Since
the average string length is independent ofm this yields anO(m) algorithm forKα.

Vectors: If k(x, x′) = φ(x)⊤φ(x′) andφ(x) ∈ R
d for d ≪ m, it is possible to carry

out matrix vector multiplications inO(md) time. This is useful for cases where we have a
sparse matrix with a small number of low-rank updates (e.g. from low rank dense fill-ins).

5 Optimization

Optimization in α and t: P is convex inα (and int sincet = Kα). This means that a com-
bination of Conjugate-Gradient and Newton-Raphson (NR) can be used for optimization.

• Compute updatesα←− α− η∂2
αP

−1
∂αP via

– Solve the linear system approximately by Conjugate Gradient iterations.
– Find optimalη by line search.

• Repeat until the norm of the gradient is sufficiently small.

Key is the fact that the arising linear system is only solved approximately, which can be
done using very few CG iterations. Since each of them isO(m) for fast kernel-vector
computations the overall cost is a sub-quadratic function ofm.

Optimization in q is somewhat less straightforward: we need to find the optimalq in terms
of KL-divergence subject to the marginal constraint. Denote byτ the part ofKα pertaining
to test data, or more formallyτ ∈ R

mtest×n with τij = [Kα]i+mtrain,j . We have:

minimize
q

tr q⊤τ +
∑

i,j

qij log qij (18)

subject toq−j ≤
∑

i

qij ≤ q+
j , qij ≥ 0 and

∑

i

qli = 1 for all j ∈ Y, l ∈ {1..mtest}



Table 1: Error rates on some benchmark datasets (mostly from UCI). The last column is
the error rates reported in [1]

DATASET #INST #ATTR IND. GP TRANSD. GP S3VM MIP

cancer 699 9 3.4%±4.1% 2.1%±4.7% 3.4%
cancer (progn.) 569 30 6.1%±3.7% 6.0%±3.7% 3.3%
heart (cleave.) 297 13 15.0%±5.6% 13.0%±6.3% 16.0%

housing 506 13 7.0%±1.0% 6.8%±0.9% 15.1%
ionosphere 351 34 8.6%±6.3% 6.1%±3.4% 10.6%

pima 769 8 19.6%±8.1% 17.6%±8.0% 22.2%
sonar 208 60 10.5%±5.1% 8.6%±3.4% 21.9%
glass 214 10 20.5%±1.6% 17.3%±4.5% —
wine 178 13 19.4%±5.7% 15.6%±4.2% —

tictactoe 958 9 3.9%±0.7% 3.3%±0.6% —
cmc 1473 10 32.5%±7.1% 28.9%±7.5% —

USPS 9298 256 5.9% 4.8% —1

This is a convex optimization problem. Using Lagrange multipliers one can show thatq
needs to satisfyqij = exp(−τij)bicj wherebi, cj ≥ 0. Solving for

∑n

j qij = 1 yields

qij =
exp(−τij)cj

P

n
l=1

exp(−τil)cl
. This means that instead of an optimization problem inmtest × n

variables we now only need to optimize overn variables subject to2n constraints.

Note that the exact matching constraint whereq+
i = q−i amounts to a maximum likelihood

problem for a shifted exponential family model whereqij = exp(τij) exp(γi − gj(γi)).
It can be shown that the approximate matching problem is equivalent to a maximum a
posteriori optimization problem using the norm dual to expectation constraints onqij . We
are currently working on extending this setting

In summary, the optimization now only depends onn variables. It can be solved by standard
second order methods. As initialization we chooseγi such that the per class averages match
the marginal constraint while ignoring the per sample balance. After that a small number
Newton steps suffices for optimization.

6 Experiments

Unfortunately, we are not aware of other multiclass transductive learning algorithms. To
still be able to compare our approach to other transductive learning algorithms we per-
formed experiments on some benchmark datasets. To investigate the performance of our
algorithm in classifying vertices of a graph, we choose the WebKB dataset.

Benchmark datasetsTable 1 reports results on some benchmark datasets. To be able to
compare the error rates of the transductive multiclass Gaussian Process classifier proposed
in this paper, we also report error rates from [2] and an inductive multiclass Gaussian
Process classifier. The reported error rates are for 10-fold crossvalidations. Parameters
were chosen by crossvalidation inside the training folds.

Graph Mining To illustrate the effectiveness of our approach on graphs we performed
experiments on the well known WebKB dataset. This dataset consists of8275 webpages
classified into7 classes. Each webpage contains textual content and/or links to other web-
pages. As we are using this dataset to evaluate our graph mining algorithm, we ignore the
text on each webpage and consider the dataset as a labelled directed graph. To have the data

1In [2] only subsets of USPS were considered due to the size of this problem.



Table 2: Results on WebKB for ‘inverse’10-fold crossvalidation
DATASET |V | |E| ERROR DATASET |V | |E| ERROR

Cornell 867 1793 10% Misc 4113 4462 66%
Texas 827 1683 8% all 8275 14370 53%

Washington 1205 2368 10% Universities 4162 9591 12%
Wisconsin 1263 3678 15%

set as large as possible, we did not remove any webpages, opposed to most other work.

Table 2 reports the results of our algorithm on different subsets of the WebKB data as
well as on the full data. We use the co-linkage graph and report results for ‘inverse’10-
fold stratified crossvalidations, i.e., we use1 fold as training data and9 folds as test data.
Parameters are the same for all reported experiments and were found by experimenting with
a few parametersets on the ‘Cornell’ subset only. It turned out that the class membership
probabilities are not well-calibrated on this dataset. To overcome this, we predict on the
test set as follows: For each class the instances that are most likely to be in this class are
picked (if they haven’t been picked for a class with lower index) such that the fraction of
instances assigned to this class is the same on the training and test set. We will investigate
the reason for this in future work.

The setting most similar to ours is probably the one described in [11]. Although a di-
rected graph approach outperforms there an undirected approach, we resorted to kernels
for undirected graphs, as those are computationally more attractive. We will investigate
computationally attractive digraph kernels in future work and expect similar benefits as re-
ported by [11]. Though we are using more training data than [11] we are also considering
a more difficult learning problem (multiclass without removing various instances). To in-
vestigate the behaviour of our algorithm with less training data, we performed a20-fold
inverse crossvalidation on the ‘wisconsin’ subset and observed an error rate of17% there.

To further strengthen our results and show that the runtime performance of our algorithm
is sufficient for classifying the vertices of massive graphs, we also performed initial ex-
periments on the Epinions dataset collected by Mathew Richardson and Pedro Domingos.
The dataset is a social network consisting of75, 888 people connected by508, 960 ‘trust’
edges. Additionally the dataset comes with a list of185 ‘topreviewers’ for25 topic areas.
We tried to predict these but only got12% of the topreviewers correct. As we are not aware
of any predictive results on this task, we suppose this low accuracy is inherent to this task.
However, the experiments show that the algorithm can be run on very large graph datasets.

7 Discussion and Extensions

We presented an efficient method for performing transduction on multiclass estimation
problems with Gaussian Processes. It performs particularly well whenever the kernel ma-
trix has special numerical properties which allow fast matrix vector multiplication. That
said, also on standard dense problems we observed very good improvements (typically a
10% reduction of the training error) over standard induction.

Structured Labels and Conditional Random Fieldsare a clear area where to extend
the transductive setting. The key obstacle to overcome in this context is to find a suitable
marginal distribution: with increasing structure of the labels the confidence bounds per
subclass decrease dramatically. A promising strategy is to use only partial marginals on
maximal cliques and enforce them directly similarly to an unconditional Markov network.



Applications to Document Analysisrequire efficient small-memory-footprint suffix tree
implementations. We are currently working on this, which will allow GP classification to
perform estimation on large document collections. We believe it will be possible to use
out-of-core storage in conjunction with annotation to work on sequences of108 characters.

Other Marginal Constraints than matching marginals are worth exploring. In particular,
constraints derived from exchangeable distributions such as those used by Latent Dirichlet
Allocation are a promising area to consider. This may also lead to connections between GP
classification and clustering.

SparseO(m1.3) Solvers for Graphshave recently been proposed by the theoretical com-
puter science community. It is worthwhile exploring their use for inference on graphs.
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