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Abstract

This paper describes a highly successful application of MRFs to the prob-
lem of generating high-resolution range images. A new generation of
range sensors combines the capture of low-resolution range images with
the acquisition of registered high-resolution camera images. The MRF
in this paper exploits the fact that discontinuities in range and coloring
tend to co-align. This enables it to generate high-resolution, low-noise
range images by integrating regular camera images into the range data.
We show that by using such an MRF, we can substantially improve over
existing range imaging technology.

1 Introduction

In recent years, there has been an enormous interest in developing technologies for measur-
ing range. The set of commercially available technologies include passive stereo with two
or more cameras, active stereo, triangulating light stripers, millimeter wavelength radar,
and scanning and flash lidar. In the low-cost arena, systems such as the Swiss Ranger and
the CanestaVision sensors provide means to acquire low-res range data along with passive
camera images. Both of these devices capture high-res visual images along with lower-res
depth information. This is the case for a number of devices at all price ranges, including
the highly-praised range camera by 3DV Systems.

This paper addresses a single shortcoming that (with the exception of stereo) is shared
by most active range acquisition devices: Namely that range is captured at much lower
resolution than images. This raises the question as to whether we can turn a low-resolution
depth imager into a high-resolution one, by exploiting conventional camera images? A
positive answer to this question would significantly advance the field of depth perception.
Yet we lack techniques to fuse high-res conventional images with low-res depth images.

This paper applies graphical models to the problem of fusing low-res depth images with
high-res camera images. Specifically, we propose a Markov Random Field (MRF) method
for integrating both data sources. The intuition behind the MRF is that depth discontinuities
in a scene often co-occur with color or brightness changes within the associated camera
image. Since the camera image is commonly available at much higher resolution, this
insight can be used to enhance the resolution and accuracy of the depth image.

Our approach performs this data integration using a multi-resolution MRF, which ties
together image and range data. The mode of the probability distribution defined by the
MRF provides us with a high-res depth map. Because we are only interested in finding the
mode, we can apply fast optimization technique to the MRF inference problem, such as a
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Figure 1. The MRF is composed of 5 node types: The measurements mapped to two types of vari-
ables, the range measurement variables labeled z, image pixel variables labeled z. The density of
image pixels is larger than those of the range measurements. The reconstructed range nodes, labeled
y, are unobservable, but their density matches that of the image pixels. Auxiliary nodes labeled w
and « mediate the information from the image and the depth map, as described in the text.

conjugate gradient algorithm. This approach leads to a high-res depth map within seconds,
increasing the resolution of our depth sensor by an order of magnitude while improving
local accuracy. To back up this claim, we provide several example results obtained using a
low-res laser range finder paired with a conventional point-and-shot camera.

While none of the modeling or inference techniques in this paper are new, we believe
that this paper provides a significant application of graphical modeling techniques to a
problem that can dramatically alter an entire growing industry.

2 Thelmage-Range MRF

Figure 1 shows the MRF designed for our task. The input to the MRF occurs at two layers,
through the variables labeled x; and the variables labeled z;. The variables x; correspond
to the image pixels, and their values are the three-dimensional RGB value of each pixel.
The variables z; are the range measurements. The range measurements are sampled much
less densely than the image pixels, as indicated in this figure.

The key variables in this MRF are the ones labeled y, which model the reconstructed
range at the same resolution as the image pixels. These variables are unobservable. Addi-
tional nodes labeled « and w leverage the image information into the estimated depth map

Specifically, the MRF is defined through the following potentials:
1. The depth measurement potential is of the form
o= ) k(- w) @)
i€L
Here L is the set of indexes for which a depth measurement is available, and &
is a constant weight placed on the depth measurements. This potential measures

the quadratic distance between the estimated range in the high-res grid i and the
measured range in the variables z, where available.

2. A depth smoothness prior is expressed by a potential of the form
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Here N(4) is the set of nodes adjacent to i. ® is a weighted quadratic distance
between neighboring nodes.

3. The weighting factors w;; are a key element, in that they provide the link to the
image layer in the MRF. Each w;; is a deterministic function of the corresponding
two adjacent image pixels, which is calculated as follows:

wi; = exp(—cug) (3)
wij = o — a3 4

Here c is a constant that quantifies how unwilling we are to have smoothing occur
across edges in the image.

The resulting MRF is now defined through the constraints ¥ and ®. The con-
ditional distribution over the target variables y is given by an expression of the
form
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where Z is a normalizer (partition function).

3 Optimization

Unfortunately, computing the full posterior is impossible for such an MRF, not least be-
cause the MRF may possesses many millions of nodes; even loopy belief propagation [19]
requires enormous time for convergence. Instead, for the depth reconstruction problem we
shall be content with computing the mode of the posterior.

Finding the mode of the log-posterior is, of course, a least square optimization problem,
which we solve with the well-known conjugate gradient (CG) algorithm [12]. A typical
single-image optimization with 2 - 10° nodes takes about a second to optimize on a modern
computer.

The details of the CG algorithm are omitted for brevity, but can be found in contem-
porary texts. The resulting algorithm for probable depth image reconstruction is now re-
markably simple: Simply set 4! by the bilinear interpolation of z, and then iterate the CG
update rule. The result is a probable reconstruction of the depth map at the same resolution
as the camera image.

4 Results

Our experiments were performed with a SICK sweeping laser range finder and a Canon
consumer digital camera with 5 mega pixels per image. Both were mounted on a rotating
platform controlled by a servo actuator. This configuration allows us to survey an entire
room from a consistent vantage point and with known camera and laser positions at all
times. The output of this system is a set of pre-aligned laser range measurements and
camera images.

Figure 2 shows a scan of a bookshelf in our lab. The top row contains several views of
the raw measurements and the bottom row is the output of the MRF. The latter is clearly
much sharper and less noisy; many features that are smaller than the resolution of the laser
scanner are pulled out by the camera image. Figure 5 shows the same scene from much
further back.

A more detailed look is taken in Figure 3. Here we examine the painted metal door
frame to an office. The detailed structure is completely invisible in the raw laser scan
but is easily drawn out when the image data is incorporated. It is notable that traditional
mesh fairing algorithms would not be able to recover this fine structure, as there is simply
insufficient evidence of it in the range data alone. Specifically, when running our MRF
using a fixed value for w;;, which effectively decouples the range image and the depth
image, the depth reconstruction leads to a model that is either overly noise (for w;; = 1 or



(2) Raw low-res depth map (b) Raw low-res 3D model (c) Image mapped onto 3D model
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(d) MRF high-res depth map  (e) MRF high-res 3D model (f) Image mapped onto 3D model

Figure 2: Example result of our MRF approach. Panels (a-c) show the raw data, the low-res depth
map, a 3D model constructed from this depth map, and the same model with image texture superim-
posed. Panels (d-f) show the results of our algorithm. The depth map is now high-resolution, as is
the 3D model. The 3D rendering is a substantial improvement over the raw sensor data; in fact, many
small details are now visible.

smooths out the edge features for w;; = 5. Our approach clearly recovers those corners,
thanks to the use of the camera image.

Finally, in Fig. 4 we give one more example of a shipping crate next to a white wall. The
coarse texture of the wooden surface is correctly inferred in contrast to the smooth white
wall. This brings up the obvious problem that sharp color gradients do frequently occur
on smooth surfaces; take, for example, posters. While this fact can sometimes lead to
falsely-textured surfaces, it has been our experience that these flaws are often unnoticeable



(a) Raw 3D model, with and without color from the image

(c) Reconstruction with our MRF, integrating both depth and image color

Figure 3: The important of the image information in depth recovery is illustrated in this figure. It
shows a part of a door frame, for which a course depth map and a fine-grained image is available. The
rendering labeled (b) show the result of our MRF when color is entirely ignored, for different fixed
value of the weights w;;. The images in (c) are the results of our approach, which clearly retains the
sharp corner of the door frame.

and certainly no worse than the original scan. Clearly, the reconstruction of such depth
maps is an ill-posed problem, and our approach generates a high-res model that is still
significantly better than the original data. Notice, however, that the background wall is
recovered accurately, and the corner of the room is visually enhanced.

5 Reéated Work

One of the primary acquisition techniques for depth is stereo. A good survey and compari-
son of stereo algorithms can is due to [14]. Our algorithm does not apply to stereo vision,
since by definition the resolution of the image and the inferred depth map are equivalent.



(a) 3D model based on the raw range data, with and without texture
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Figure 4: This example illustrate that the amount of smoothing in the range data is dependent on
the image texture. On the left is a wooden box with an unsmooth surface that causes significant
color variations. The 3D model generated from the MRF provides relatively little smoothing. In the
background is a while wall with almost no color variation. Here our approach smooths the mesh
significantly; in fact, it enhances the visibility of the room corner.

Passive stereo, in which the sensor does not carry its own light source, is unable to esti-
mate ranges in the absence of texture (e.g., when imaging a featureless wall). Active stereo
techniques supply their own light [4]. However, those techniques differ in characteristics
from laser-based system to an extent that renders them practically inapplicable for many
applications (most notably: long-range acquisition, where time-of-flight techniques are an
order of magnitude more accurate then triangulation techniques, and bright-light outdoor
environments). We remark that Markov Random fields have become a defining method-
ology in stereo reconstruction [15], along with layered EM-style methods [2, 16]; see the
comparison in [14].

Similar work due to [20] relies on a different set of image cues to improve stereo shape
estimates. In particular, learned regression coefficients are used to predict the band-passed
shape of a scene from a band-passed image of that scene. The regression coefficients are



Figure5: 3D model of a larger indoor environment, after applying our MRF.

learned from laser-stripe-scanned reference models with regitered images.

For range images, surfaces, and point clouds, there exists a large literature on smooth-
ing while preserving features such as edges. This includes work on diffusion processes [6],
frequency-domain filtering [17], and anisotropic diffusion [5]; see also [3] and [1]. Most
recently [10] proposed an efficient non-iterative technique for feature-preserving mesh
smoothing, [9] adapted bilateral filtering for application to mesh denoising. and [7] de-
veloped anisotropic MRF techniques. None of these techniques, however, integrates high-
resolution images to guide the smoothing process. Instead, they all operate on monochro-
matic 3D surfaces.

Our work can be viewed as generating super-resolution. Super-resolution techniques
have long been popular in the computer vision field [8] and in aerial photogrammetry [11].
Here Bayesian techniques are often brought to bear for integrating multiple images into a
single image of higher resolution. None of these techniques deal with range data. Finally,
multiple range scans are often integrated into a single model [13, 18], yet none of these
techniques involve image data.

6 Conclusion

We have presented a Markov Random Field that integrated high-res image data into low-res
range data, to recover range data at the same resolution as the image data. This approach is
specifically aimed at a new wave of commercially available sensors, which provide range
at lower resolution than image data.

The significance of this work lies in the results. We have shown that our approach can
truly fill the resolution gap between range and images, and use image data to effectively



boost the resolution of a range finder. While none of the techniques used here are new
(even though CG is usually not applied for inference in MRFs), we believe this is the first
application of MRF to multimodal data integration. A large number of scientific fields
would benefit from better range sensing; the present approach provides a solution that
endows low-cost range finders with unprecedented resolution and accuracy.
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